forked from JayZhang42/FederatedGPT-Shepherd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_pipeline.py
294 lines (242 loc) · 9.31 KB
/
eval_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import torch
import transformers
import huggingface_hub
import wandb
from scipy.stats import pearsonr
from datetime import datetime
from datasets import load_dataset
from dotenv import load_dotenv
from transformers import AutoTokenizer, AutoModelForCausalLM
from time import time
import gc
import json
import yaml
import argparse
import re
from tqdm import tqdm
import fire
import inspect
logg = lambda x: print(f"------------------------ {x} ---------------------------")
def inspectt(frame):
logg("")
args, _, _, values = inspect.getargvalues(frame)
for arg in args:
print(f"\t{arg}: {values[arg]}")
logg("")
def get_prompts_from_template(filepath, name, eval_name):
default_config = {
"max_new_tokens": 256,
"do_sample": True,
"temperature": 0.6,
"top_p": 0.9,
}
with open(filepath, "r") as f:
data = yaml.safe_load(f)
candidate_prompt = data[name]["candidate_prompt"]
evaluator_prompt = data[eval_name]["evaluator_prompt"]
candidate_generation_config = data[name].get("candidate_generation_config", default_config)
evaluator_generation_config = data[eval_name].get(
"evaluator_generation_config", default_config
)
print("candidate_prompt: ", candidate_prompt)
print("evaluator_prompt: ", evaluator_prompt)
print("candidate_generation_config: ", candidate_generation_config)
print("evaluator_generation_config: ", evaluator_generation_config)
return (
candidate_prompt,
evaluator_prompt,
candidate_generation_config,
evaluator_generation_config,
)
def get_tokenizer_and_model(model_name: str, cache_dir: str):
tokenizer = AutoTokenizer.from_pretrained(
model_name,
cache_dir=f"{cache_dir}/tokenizer",
pad_token_id=0,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
cache_dir=f"{cache_dir}/model",
torch_dtype=torch.float16,
device_map="auto",
offload_buffers=True,
)
return tokenizer, model
def tokenize(prompt, tokenizer):
tokenized = tokenizer(prompt, return_tensors="pt")
return tokenized
def generate_and_tokenize_prompt(data_point, tokenizer, prompt=None):
prompt = prompt.format(data_point["instruction"], data_point["input"])
tokenized_full_prompt = tokenize(prompt, tokenizer=tokenizer)
return tokenized_full_prompt
def eval_prompt_tokenizer(generated, output, eval_tokenizer, prompt=None):
prompt = prompt.format(generated, output)
tokenized_full_prompt = tokenize(prompt, tokenizer=eval_tokenizer)
return tokenized_full_prompt
def extract_score(text):
match = re.search(r"\b\d+(\.\d+)?\b", text)
return float(match.group(0)) if match else -1.0
def log2json(results, json_result):
with open(json_result, "w") as f:
json.dump(results, f, ensure_ascii=False, indent=4)
def generate_response(model, tokenizer, input_ids, attention_mask, generation_config):
try:
output = model.generate(
input_ids=torch.LongTensor(input_ids).to(model.device),
attention_mask=torch.LongTensor(attention_mask).to(model.device),
eos_token_id=tokenizer.eos_token_id,
**generation_config,
)
response_ids = output[0][len(input_ids[0]) :]
response = tokenizer.decode(response_ids, skip_special_tokens=True)
return response
except RuntimeError as e:
if "inf" in str(e) or "nan" in str(e):
print(f"Skipping example due to invalid output: {e}")
return None
else:
raise
def main(
output_dir=f"./out",
cache_dir=f"/dpc/kunf0097/l3-8b",
eval_data_path="./data/1/eval_medical_2k.json",
log_file=None,
candidate_name="meta-llama/Meta-Llama-3-8B-Instruct",
evaluator_name="meta-llama/Meta-Llama-3-8B-Instruct",
run_id=datetime.now().strftime("%y%m%d%H%M%S"),
log2wandb: bool = True,
project="huggingface",
entity="my-ku-org",
evals_per_example=2,
):
"""
Evaluate a model with LLM-as-a-Judge.
Args:
output_dir (str): Directory to save output. Default is './out'.
cache_dir (str): Directory to load/save tokenizer/model. Default is '/dpc/kunf0097/l3-8b'.
eval_data_path (str): Path to the evaluation data. Default is './data/1/eval_medical_2k.json'.
log_file (str): File to dump the outputs of the evaluator. Default is {output_dir}/results_{name.split('/')[1]}_{run_id}.json.
candidate_name (str): Model name for evaluation. Default is 'meta-llama/Meta-Llama-3-8B-Instruct'.
evaluator_name (str): Model name for the evaluator. Default is 'meta-llama/Meta-Llama-3-8B-Instruct'.
run_id (str): Run ID. Default is current timestamp.
log2wandb (bool): Whether to log to Weights & Biases. Default is True.
project (str): WandB project name. Default is huggingface.
entity (str): WandB entity name. Default is my-ku-org.
evals_per_example (int): No. of times the example to be evaluated. Default is 2.
"""
if log2wandb and (project is None or entity is None):
raise ValueError("Both 'project' and 'entity' must be set if 'log2wandb' is True.")
if log_file is None:
log_file = f"{output_dir}/results_{candidate_name.split('/')[1]}_{run_id}.json"
inspectt(inspect.currentframe())
(
candidate_prompt,
evaluator_prompt,
candidate_generation_config,
evaluator_generation_config,
) = get_prompts_from_template("template.yaml", candidate_name, evaluator_name)
start = time()
load_dotenv()
HF_TOKEN_WRITE = os.getenv("HF_TOKEN_WRITE")
huggingface_hub.login(token=HF_TOKEN_WRITE)
torch.cuda.empty_cache()
logg(run_id)
evaluator_tokenizer, evaluator_model = get_tokenizer_and_model(
model_name=evaluator_name, cache_dir=cache_dir
)
candidate_tokenizer, candidate_model = get_tokenizer_and_model(
model_name=candidate_name, cache_dir=cache_dir
)
data = load_dataset("json", data_files=eval_data_path)
eval_dataset = data["train"].map(
lambda x: generate_and_tokenize_prompt(x, candidate_tokenizer, candidate_prompt)
) # not shuffled
if log2wandb:
wandb.init(
project=project,
entity=entity,
name=f"laaj-{candidate_name.split('/')[1]}_{run_id}",
)
wandb.log({"Evaluation prompt": evaluator_prompt, "Evaluator": evaluator_name})
results = []
for i, example in tqdm(enumerate(eval_dataset)):
res = None
response = generate_response(
candidate_model,
candidate_tokenizer,
example["input_ids"],
example["attention_mask"],
candidate_generation_config,
)
if response is None:
continue
gt_response = example["output"] # groundtruth
eval_prompt_tokenized = eval_prompt_tokenizer(
response, gt_response, evaluator_tokenizer, prompt=evaluator_prompt
)
llm_scores = []
no_scores = []
for _ in range(evals_per_example):
generated_score = generate_response(
evaluator_model,
evaluator_tokenizer,
eval_prompt_tokenized["input_ids"],
eval_prompt_tokenized["attention_mask"],
evaluator_generation_config,
)
if generated_score is None:
continue
score = extract_score(generated_score)
if score >= 0.0 and score <= 5.0:
llm_scores.append(score)
else:
no_scores.append(generated_score) # to see what evaluator generated
llm_scores.append(results[i - 1]["running/run_score"] if i > 0 else 0.0)
res = {
"expected": gt_response,
"generated": response,
"scores": llm_scores,
"row_avg": sum(llm_scores) / len(llm_scores),
"no_scores": no_scores,
}
results.append(res)
# Transpose to compute column wise results
scores_t = list(zip(*[d["scores"] for d in results]))
row_avg_t = [d["row_avg"] for d in results]
pcc_results = {
f"pcc_{i}_{j}": (
pearsonr(scores_t[i], scores_t[j])[0] if len(scores_t[i]) > 1 else 0
)
for i in range(len(scores_t))
for j in range(i + 1, len(scores_t))
} # Calculate PCC for each pair of LLM scores
column_avg = {
f"avg_llm_score_{i}": sum(scores) / len(scores)
for i, scores in enumerate(scores_t)
} # Calculate average scores for each set of LLM scores
run_score = sum(row_avg_t) / len(row_avg_t)
results[i] = {
**res,
"running/pcc": pcc_results,
"running/column_avg": column_avg,
"running/run_score": run_score,
}
log2json(results, log_file)
if log2wandb:
wandb.log(results[i])
del scores_t
del example
gc.collect()
gc.collect()
if log2wandb:
table = wandb.Table(columns=list(results[0].keys()))
for r in results:
table.add_data(*r.values())
wandb.log({"Evaluation Results": table})
wandb.finish()
end = time()
logg(f"Elapsed: {end - start}")
if __name__ == "__main__":
logg("eval_pipeline.py")
fire.Fire(main)