This repository has been archived by the owner on Aug 2, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsinf.asm
664 lines (580 loc) · 22.9 KB
/
sinf.asm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
;
; MIT License
; -----------
;
; Copyright (c) 2002-2019 Advanced Micro Devices, Inc.
;
; Permission is hereby granted, free of charge, to any person obtaining a copy
; of this Software and associated documentaon files (the "Software"), to deal
; in the Software without restriction, including without limitation the rights
; to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
; copies of the Software, and to permit persons to whom the Software is
; furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
; OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
; THE SOFTWARE.
;
;
; An implementation of the sinf function.
;
; Prototype
;
; float sinf(float x);
;
; Computes sinf(x).
; It will provide proper C99 return values,
; but may not raise floating point status bits properly.
; Based on the NAG C implementation.
;
.const
ALIGN 16
L_signbit DQ 08000000000000000h
DQ 08000000000000000h
L_sign_mask DQ 07FFFFFFFFFFFFFFFh
DQ 07FFFFFFFFFFFFFFFh
L_one DQ 03FF0000000000000h
DQ 03FF0000000000000h
L_int_three DQ 00000000000000003h
DQ 00000000000000003h
L_one_half DQ 03FE0000000000000h
DQ 03FE0000000000000h
L_twobypi DQ 03FE45F306DC9C883h
DQ 03FE45F306DC9C883h
L_piby2_1 DQ 03FF921FB54400000h
DQ 03FF921FB54400000h
L_one_sixth DQ 03FC5555555555555h
DQ 03FC5555555555555h
L_piby2_1tail DQ 03DD0B4611A626331h
DQ 03DD0B4611A626331h
L_piby2_2 DQ 03dd0b4611a600000h
DQ 03dd0b4611a600000h
L_piby2_2tail DQ 03ba3198a2e037073h
DQ 03ba3198a2e037073h
L_inf_mask_32 DD 07F800000h
DD 07F800000h
DQ 07F8000007F800000h
L_int_two DQ 00000000000000002h
DQ 00000000000000002h
L_piby2_lead DQ 03ff921fb54442d18h
DQ 03ff921fb54442d18h
L_piby4 DQ 03fe921fb54442d18h
DQ 03fe921fb54442d18h
L_mask_3f2 DQ 03f20000000000000h
DQ 03f20000000000000h
L_mask_3f8 DQ 03f80000000000000h
DQ 03f80000000000000h
; Do these really need to be different?
L_large_x_fma3 DQ 04170008AC0000000h ; 16779436
L_large_x_sse2 DQ 0416E848000000000h ; 16000000
EXTRN __Lcosfarray:QWORD
EXTRN __Lsinfarray:QWORD
EXTRN __use_fma3_lib:DWORD
EXTRN __L_2_by_pi_bits:BYTE
; define local variable storage offsets
p_temp EQU 010h ; temporary for get/put bits operation
p_temp1 EQU 018h ; temporary for get/put bits operation
region EQU 020h ; pointer to region for remainder_piby2
r EQU 028h ; pointer to r for remainder_piby2
dummy_space EQU 040h
stack_size EQU 058h
include fm.inc
fname TEXTEQU <sinf>
fname_special TEXTEQU <_sinf_special>
;Define name and any external functions being called
EXTRN __remainder_piby2d2f_forC : PROC ; NEAR
EXTERN fname_special : PROC
.code
ALIGN 16
PUBLIC fname
fname PROC FRAME
StackAllocate stack_size
.ENDPROLOG
cmp DWORD PTR __use_fma3_lib, 0
jne Lsinf_fma3
Lsinf_sse2:
xorpd xmm2, xmm2 ; zeroed out for later use
;; if NaN or inf
movd edx, xmm0
mov eax, 07f800000h
mov r10d, eax
and r10d, edx
cmp r10d, eax
jz Lsinf_sse2_naninf
; GET_BITS_DP64(x, ux);
; get the input value to an integer register.
cvtss2sd xmm0, xmm0 ; convert input to double.
movd rdx, xmm0 ; rdx is ux
; ax = (ux & ~SIGNBIT_DP64);
mov r10, rdx
btr r10, 63 ; r10 is ax
mov r8d, 1 ; for determining region later on
;; if (ax <= 0x3fe921fb54442d18) abs(x) <= pi/4
mov rax, 03fe921fb54442d18h
cmp r10, rax
jg Lsinf_absx_gt_piby4
;; if (ax < 0x3f80000000000000) abs(x) < 2.0^(-7)
mov rax, 3f80000000000000h
cmp r10, rax
jge Lsinf_sse2_small
;; if (ax < 0x3f20000000000000) abs(x) < 2.0^(-13)
mov rax, 3f20000000000000h
cmp r10, rax
jge Lsinf_sse2_smaller
; sinf = x;
jmp Lsinf_sse2_cleanup
ALIGN 16
Lsinf_sse2_smaller:
; sinf = x - x^3 * 0.1666666666666666666;
movsd xmm2, xmm0
movsd xmm4, QWORD PTR L_one_sixth ; 0.1666666666666666666
mulsd xmm2, xmm2 ; x^2
mulsd xmm2, xmm0 ; x^3
mulsd xmm2, xmm4 ; x^3 * 0.1666666666666666666
subsd xmm0, xmm2 ; x - x^3 * 0.1666666666666666666
jmp Lsinf_sse2_cleanup
ALIGN 16
Lsinf_sse2_small:
movsd xmm2, xmm0 ; x2 = r * r;
mulsd xmm2, xmm0 ; x2
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; region 0 or 2 - do a sinf calculation
; zs = x + x3((s1 + x2 * s2) + x4(s3 + x2 * s4));
movsd xmm1, QWORD PTR __Lsinfarray+18h ; s4
mulsd xmm1, xmm2 ; s4x2
movsd xmm4, xmm2 ; move for x4
movsd xmm5, QWORD PTR __Lsinfarray+8h ; s2
mulsd xmm4, xmm2 ; x4
movsd xmm3, xmm0 ; move for x3
mulsd xmm5, xmm2 ; s2x2
mulsd xmm3, xmm2 ; x3
addsd xmm1, QWORD PTR __Lsinfarray+10h ; s3+s4x2
mulsd xmm1, xmm4 ; s3x4+s4x6
addsd xmm5, QWORD PTR __Lsinfarray ; s1+s2x2
addsd xmm1, xmm5 ; s1+s2x2+s3x4+s4x6
mulsd xmm1, xmm3 ; x3(s1+s2x2+s3x4+s4x6)
addsd xmm0, xmm1 ; x + x3(s1+s2x2+s3x4+s4x6)
jmp Lsinf_sse2_cleanup
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
ALIGN 16
Lsinf_absx_gt_piby4:
; xneg = (ax != ux);
cmp rdx, r10
mov r11d, 0
;; if (xneg) x = -x;
jz Lsinf_sse2_reduce_moderate
mov r11d, 1
subsd xmm2, xmm0
movsd xmm0, xmm2
Lsinf_sse2_reduce_moderate:
;; if (x < 5.0e6)
cmp r10, QWORD PTR L_large_x_sse2
jae Lsinf_sse2_reduce_large
; reduce the argument to be in a range from -pi/4 to +pi/4
; by subtracting multiples of pi/2
movsd xmm2, xmm0
movsd xmm3, QWORD PTR L_twobypi
movsd xmm4, xmm0
movsd xmm5, QWORD PTR L_one_half ; .5
mulsd xmm2, xmm3
;/* How many pi/2 is x a multiple of? */
; xexp = ax >> EXPSHIFTBITS_DP64;
mov r9, r10
shr r9, 52 ; >>EXPSHIFTBITS_DP64
; npi2 = (int)(x * twobypi + 0.5);
addsd xmm2, xmm5 ; npi2
movsd xmm3, QWORD PTR L_piby2_1
cvttpd2dq xmm0, xmm2 ; convert to integer
movsd xmm1, QWORD PTR L_piby2_1tail
cvtdq2pd xmm2, xmm0 ; and back to double.
; /* Subtract the multiple from x to get an extra-precision remainder */
; rhead = x - npi2 * piby2_1;
mulsd xmm3, xmm2
subsd xmm4, xmm3 ; rhead
; rtail = npi2 * piby2_1tail;
mulsd xmm1, xmm2
movd eax, xmm0
; GET_BITS_DP64(rhead-rtail, uy);
; originally only rhead
movsd xmm0, xmm4
subsd xmm0, xmm1
movsd xmm3, QWORD PTR L_piby2_2
movd rcx, xmm0
movsd xmm5, QWORD PTR L_piby2_2tail
; xmm0=r, xmm4=rhead, xmm1=rtail, xmm2=npi2, xmm3=temp for calc, xmm5= temp for calc
; expdiff = xexp - ((uy & EXPBITS_DP64) >> EXPSHIFTBITS_DP64);
shl rcx, 1 ; strip any sign bit
shr rcx, 53 ; >> EXPSHIFTBITS_DP64 +1
sub r9, rcx ; expdiff
;; if (expdiff > 15)
cmp r9, 15
jle Lsinf_sse2_expdiff_le_15
; The remainder is pretty small compared with x, which
; implies that x is a near multiple of pi/2
; (x matches the multiple to at least 15 bits)
; t = rhead;
movsd xmm1, xmm4
; rtail = npi2 * piby2_2;
mulsd xmm3, xmm2
; rhead = t - rtail;
mulsd xmm5, xmm2 ; npi2 * piby2_2tail
subsd xmm4, xmm3 ; rhead
; rtail = npi2 * piby2_2tail - ((t - rhead) - rtail);
subsd xmm1, xmm4 ; t - rhead
subsd xmm1, xmm3 ; -rtail
subsd xmm5, xmm1 ; rtail
; r = rhead - rtail;
movsd xmm0, xmm4
;HARSHA
;xmm1=rtail
movsd xmm1, xmm5
subsd xmm0, xmm5
; xmm0=r, xmm4=rhead, xmm1=rtail
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
Lsinf_sse2_expdiff_le_15:
cmp rcx, 03f2h ; is r < 2^-13 ?
jge Lsinf_sse2_calc_sincosf_piby4 ; use taylor series if not
cmp rcx, 03deh ; if r really small.
jle Lsinf_sse2_r_very_small ; then sinf(r) ~ r or 1
movsd xmm2, xmm0
mulsd xmm2, xmm0 ; xmm2 <-- r^2
;; if region is 0 or 2 do a sinf calc.
and r8d, eax
jnz Lsinf_sse2_small_calc_sin
; region 0 or 2 do a sinf calculation
; use simply polynomial
; x - x*x*x*0.166666666666666666;
movsd xmm3, QWORD PTR L_one_sixth
mulsd xmm3, xmm0 ; * x
mulsd xmm3, xmm2 ; * x^2
subsd xmm0, xmm3 ; xs
jmp Lsinf_sse2_adjust_region
ALIGN 16
Lsinf_sse2_small_calc_sin:
; region 1 or 3 do a cosf calculation
; use simply polynomial
; 1.0 - x*x*0.5;
movsd xmm0, QWORD PTR L_one ; 1.0
mulsd xmm2, QWORD PTR L_one_half ; 0.5 *x^2
subsd xmm0, xmm2 ; xc
jmp Lsinf_sse2_adjust_region
ALIGN 16
Lsinf_sse2_r_very_small:
;; if region is 0 or 2 do a sinf calc. (sinf ~ x)
and r8d, eax
jz Lsinf_sse2_adjust_region
movsd xmm0, QWORD PTR L_one ; cosf(r) is a 1
jmp Lsinf_sse2_adjust_region
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
ALIGN 16
Lsinf_sse2_reduce_large:
; Reduce x into range [-pi/4, pi/4]
; __remainder_piby2d2f_forC(x, &r, ®ion);
mov QWORD PTR p_temp[rsp], r11
lea rdx, QWORD PTR r[rsp]
lea r8, QWORD PTR region[rsp]
movd rcx, xmm0
call __remainder_piby2d2f_forC
mov r11, QWORD PTR p_temp[rsp]
mov r8d, 1 ; for determining region later on
movsd xmm1, QWORD PTR r[rsp] ; x
mov eax, DWORD PTR region[rsp] ; region
; xmm0 = x, xmm4 = xx, r8d = 1, eax= region
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; perform taylor series to calc sinfx, cosfx
Lsinf_sse2_calc_sincosf_piby4:
; x2 = r * r;
movsd xmm2, xmm0
mulsd xmm2, xmm0 ; x2
;; if region is 1 or 3, do a cosf calc.
and r8d, eax
jnz Lsinf_sse2_do_cosf_calc
; region is 0 or 2: do a sinf calc.
; zs = x + x3((s1 + x2 * s2) + x4(s3 + x2 * s4));
Lsinf_sse2_do_sinf_calc:
movsd xmm1, QWORD PTR __Lsinfarray+18h ; s4
mulsd xmm1, xmm2 ; s4x2
movsd xmm4, xmm2 ; move for x4
mulsd xmm4, xmm2 ; x4
movsd xmm5, QWORD PTR __Lsinfarray+8h ; s2
mulsd xmm5, xmm2 ; s2x2
movsd xmm3, xmm0 ; move for x3
mulsd xmm3, xmm2 ; x3
addsd xmm1, QWORD PTR __Lsinfarray+10h ; s3+s4x2
mulsd xmm1, xmm4 ; s3x4+s4x6
addsd xmm5, QWORD PTR __Lsinfarray ; s1+s2x2
addsd xmm1, xmm5 ; s1+s2x2+s3x4+s4x6
mulsd xmm1, xmm3 ; x3(s1+s2x2+s3x4+s4x6)
addsd xmm0, xmm1 ; x + x3(s1+s2x2+s3x4+s4x6)
jmp Lsinf_sse2_adjust_region
ALIGN 16
Lsinf_sse2_do_cosf_calc:
; region 1 or 3 - do a cosf calculation
; zc = 1-0.5*x2+ c1*x4 +c2*x6 +c3*x8;
; zc = 1-0.5*x2+ c1*x4 +c2*x6 +c3*x8 + c4*x10 for a higher precision
movsd xmm1, QWORD PTR __Lcosfarray+20h ; c4
movsd xmm4, xmm2 ; move for x4
mulsd xmm1, xmm2 ; c4x2
movsd xmm3, QWORD PTR __Lcosfarray+10h ; c2
mulsd xmm4, xmm2 ; x4
movsd xmm0, QWORD PTR __Lcosfarray ; c0
mulsd xmm3, xmm2 ; c2x2
mulsd xmm0, xmm2 ; c0x2 (=-0.5x2)
addsd xmm1, QWORD PTR __Lcosfarray+18h ; c3+c4x2
mulsd xmm1, xmm4 ; c3x4 + c4x6
addsd xmm3, QWORD PTR __Lcosfarray+8h ; c1+c2x2
addsd xmm1, xmm3 ; c1 + c2x2 + c3x4 + c4x6
mulsd xmm1, xmm4 ; c1x4 + c2x6 + c3x8 + c4x10
addsd xmm0, QWORD PTR L_one ; 1 - 0.5x2
addsd xmm0, xmm1 ; 1 - 0.5x2 + c1x4 + c2x6 + c3x8 + c4x10
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
Lsinf_sse2_adjust_region:
; positive or negative
; switch (region)
shr eax, 1
mov ecx, eax
and eax, r11d
not ecx
not r11d
and ecx, r11d
or eax, ecx
and eax, 1
jnz Lsinf_sse2_cleanup
;; if the original region 0, 1 and arg is negative, then we negate the result.
;; if the original region 2, 3 and arg is positive, then we negate the result.
movsd xmm2, xmm0
xorpd xmm0, xmm0
subsd xmm0, xmm2
Lsinf_sse2_cleanup:
cvtsd2ss xmm0, xmm0
StackDeallocate stack_size
ret
ALIGN 16
Lsinf_sse2_naninf:
call fname_special
StackDeallocate stack_size
ret
ALIGN 16
Lsinf_fma3:
vmovd eax,xmm0
mov r8d,L_inf_mask_32
and eax,r8d
cmp eax, r8d
jz Lsinf_fma3_naninf
vcvtss2sd xmm5,xmm0,xmm0
vmovq r9,xmm5
btr r9,63 ; r9 <-- |x|
cmp r9,L_piby4
jg Lsinf_fma3_range_reduce
cmp r9,L_mask_3f8
jge Lsinf_fma3_compute_sinf_piby_4
cmp r9,L_mask_3f2
jge Lsinf_fma3_compute_x_xxx_0_1666
; Here |x| < 2^-13; just return sin x ~ x
StackDeallocate stack_size
ret
ALIGN 16
Lsinf_fma3_compute_x_xxx_0_1666:
; Here |x| < 2^-7; return sin x ~ x + 1/6 x^3
vmulsd xmm1,xmm5,xmm5
vmulsd xmm0,xmm1,xmm5 ; xmm1 <-- x^3
vfnmadd132sd xmm0,xmm5,L_one_sixth ; x - x*x*x*0.166666666666666666
jmp Lsinf_fma3_return_sinf_s
ALIGN 16
Lsinf_fma3_compute_sinf_piby_4:
vmovapd xmm0,xmm5
vmovsd xmm1,__Lsinfarray+010h
vmulsd xmm3,xmm0,xmm0 ; xmm3 <-- x^2
vfmadd231sd xmm1,xmm3,__Lsinfarray+018h
vfmadd213sd xmm1,xmm3,__Lsinfarray+08h
vfmadd213sd xmm1,xmm3,__Lsinfarray
vmulsd xmm3,xmm0,xmm3 ; xmm3 <-- x^3
vfmadd231sd xmm0,xmm1,xmm3
jmp Lsinf_fma3_return_sinf_s
ALIGN 16
Lsinf_fma3_range_reduce:
vmovq xmm0,r9 ; xmm0 <-- |x|
cmp r9,L_large_x_fma3
jge Lsinf_fma3_reduce_large
Lsinf_fma3_sinf_reduce_moderate:
vandpd xmm1,xmm0,L_sign_mask ; xmm1 <-- |x| mov should suffice WAT
vmovapd xmm2,L_twobypi
vfmadd213sd xmm2,xmm1,L_one_half
vcvttpd2dq xmm2,xmm2
vpmovsxdq xmm1,xmm2
vandpd xmm4,xmm1,L_int_three ; xmm4 <-- region
vshufps xmm1 ,xmm1,xmm1,8
vcvtdq2pd xmm1,xmm1
vmovdqa xmm2,xmm0
vfnmadd231sd xmm2,xmm1,L_piby2_1 ; xmm2 <-- rhead
vmulsd xmm3,xmm1,L_piby2_1tail ; xmm3 <-- rtail
vsubsd xmm0,xmm2,xmm3 ; xmm0 <-- r_1
vsubsd xmm2,xmm2,xmm0
vsubsd xmm1,xmm2,xmm3 ; xmm4 <-- rr_1
jmp Lsinf_fma3_exit_s
ALIGN 16
Lsinf_fma3_reduce_large:
lea r9,__L_2_by_pi_bits
;xexp = (x >> 52) 1023
vmovq r11,xmm0
mov rcx,r11
shr r11,52
sub r11,1023 ; r11 <-- xexp = exponent of input x
;calculate the last byte from which to start multiplication
;last = 134 (xexp >> 3)
mov r10,r11
shr r10,3
sub r10,134 ;r10 = last
neg r10 ;r10 = last
;load 64 bits of 2_by_pi
mov rax,[r9+r10]
;mantissa of x = ((x << 12) >> 12) | implied bit
shl rcx,12
shr rcx,12 ;rcx = mantissa part of input x
bts rcx,52 ;add the implied bit as well
;load next 128 bits of 2_by_pi
add r10,8 ;increment to next 8 bytes of 2_by_pi
vmovdqu xmm0,XMMWORD PTR[r9+r10]
;do three 64bit multiplications with mant of x
mul rcx
mov r8,rax ; r8 <-- last 64 bits of mul = res1[2]
mov r10,rdx ; r10 <-- carry
vmovq rax,xmm0
mul rcx
;resexp = xexp & 7
and r11,7 ; r11 <-- resexp = last 3 bits
psrldq xmm0,8
add rax,r10 ; add the previous carry
adc rdx,0
mov r9,rax ; r9 <-- next 64 bits of mul = res1[1]
mov r10,rdx ; r10 <-- carry
vmovq rax,xmm0
mul rcx
add r10,rax ; r10 = most sig 64 bits = res1[0]
;find the region
;last three bits ltb = most sig bits >> (54 resexp))
; decimal point in last 18 bits == 8 lsb's in first 64 bits
; and 8 msb's in next 64 bits
;point_five = ltb & 01h;
;region = ((ltb >> 1) + point_five) & 3;
mov rcx,54
mov rax,r10
sub rcx,r11
xor rdx,rdx ;rdx = sign of x(i.e first part of x * 2bypi)
shr rax,cl
jnc Lsinf_fma3_no_point_five_f
;;if there is carry.. then negate the result of multiplication
not r10
not r9
not r8
mov rdx,08000000000000000h
Lsinf_fma3_no_point_five_f:
adc rax,0
and rax,3
vmovd xmm4,eax ;store region to xmm4
;calculate the number of integer bits and zero them out
mov rcx,r11
add rcx,10 ; rcx <-- no. of integer bits
shl r10,cl
shr r10,cl ; r10 contains only mant bits
sub rcx,64 ; form the exponent
mov r11,rcx
;find the highest set bit
bsr rcx,r10
jnz Lsinf_fma3_form_mantissa_f
mov r10,r9
mov r9,r8
mov r8,0
bsr rcx,r10 ; rcx <-- hsb
sub r11,64
Lsinf_fma3_form_mantissa_f:
add r11,rcx ;for exp of x
sub rcx,52 ;rcx = no. of bits to shift in r10
cmp rcx,0
jl Lsinf_fma3_hsb_below_52_f
je Lsinf_fma3_form_numbers_f
;hsb above 52
mov r8,r10 ; previous contents of r8 not required
shr r10,cl ; r10 = mantissa of x with hsb at 52
shr r9,cl ; make space for bits from r10
sub rcx,64
neg rcx
shl r8,cl
or r9,r8 ; r9 = mantissa bits of xx
jmp Lsinf_fma3_form_numbers_f
ALIGN 16
Lsinf_fma3_hsb_below_52_f:
neg rcx
mov rax,r9
shl r10,cl
shl r9,cl
sub rcx,64
neg rcx
shr rax,cl
or r10,rax
shr r8,cl
or r9,r8
ALIGN 16
Lsinf_fma3_form_numbers_f:
add r11,1023
btr r10,52 ; remove the implied bit
mov rcx,r11
or r10,rdx ; put the sign
shl rcx,52
or r10,rcx ; r10 <-- x
vmovq xmm0,r10 ; xmm0 <-- x
vmulsd xmm0,xmm0,L_piby2_lead
Lsinf_fma3_exit_s:
vmovq rax,xmm4
and rax,01h
cmp rax,01h
jz Lsinf_fma3_cos_piby4_compute
Lsinf_fma3_sin_piby4_compute:
;; vmovapd xmm1,__Lsinfarray+010h
vmovsd xmm1,__Lsinfarray+010h
vmulsd xmm3,xmm0,xmm0
vfmadd231sd xmm1,xmm3,__Lsinfarray+018h
vfmadd213sd xmm1,xmm3,__Lsinfarray+008h
vfmadd213sd xmm1,xmm3,__Lsinfarray
vmulsd xmm3,xmm0,xmm3 ; xmm3 <-- x^3
vfmadd231sd xmm0,xmm1,xmm3
jmp Lsinf_fma3_exit_s_1
ALIGN 16
Lsinf_fma3_cos_piby4_compute:
vmovapd xmm2,L_one
vmulsd xmm3,xmm0,xmm0
vfmadd231sd xmm2,xmm3,__Lcosfarray ; xmm2 <-- 1 + c0 x^2
; would simple Horner's be slower?
vmovsd xmm1,__Lcosfarray+018h ; xmm1 <-- c3
vfmadd231sd xmm1,xmm3,__Lcosfarray+020h ; xmm1 <-- c4 x^2+ c3
vfmadd213sd xmm1,xmm3,__Lcosfarray+010h ; xmm1 <-- (c4 x^2+ c3)x^2 + c2
vfmadd213sd xmm1,xmm3,__Lcosfarray+008h ; xmm1 <-- ((c4 x^2+ c3)x^2 + c2)x^2 + c1
vmulsd xmm3,xmm3,xmm3 ; xmm3 <-- x^4
vmovdqa xmm0,xmm2
vfmadd231sd xmm0,xmm1,xmm3
Lsinf_fma3_exit_s_1:
; assuming FMA3 ==> AVX ==> SSE4.1
vpcmpeqq xmm2,xmm4,XMMWORD PTR L_int_two
vpcmpeqq xmm3,xmm4,XMMWORD PTR L_int_three
vorpd xmm3,xmm2,xmm3
vandnpd xmm3,xmm3,L_signbit
vxorpd xmm0,xmm0,xmm3
vandnpd xmm1,xmm5,L_signbit
vxorpd xmm0,xmm1,xmm0
Lsinf_fma3_return_sinf_s:
vcvtsd2ss xmm0,xmm0,xmm0
StackDeallocate stack_size
ret
Lsinf_fma3_naninf:
call fname_special
StackDeallocate stack_size
ret
fname endp
END