-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathevaluate.py
69 lines (51 loc) · 2.06 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
from typing import List, Dict
import torch
import logging
import numpy as np
from transformers import PreTrainedTokenizer
from arguments import DataTrainingArguments
from datasets import load_dataset
def get_avg_results(results: List[dict]) -> dict:
"""
Compute average results and standard deviation from many episodes.
"""
aggregate_results = {'num_episodes': len(results)}
for key in results[0]:
try:
numbers = np.array([res[key] for res in results])
aggregate_results[key] = (numbers.mean(), numbers.std())
except:
pass
return aggregate_results
def print_results(results: dict):
for key, value in results.items():
s = f'{key.replace("_", " "):26} '
if isinstance(value, (list, tuple)):
mean, std = value
s += f'{mean:.6f} ± {std:.6f}'
elif isinstance(value, float):
s += f'{value:.6f}'
else:
s += f'{value}'
logging.info(s)
def evaluate(model, dataset_name: str, data_args: DataTrainingArguments, tokenizer: PreTrainedTokenizer, split: str,
seed: int, gpu: int, batch_size: int) -> Dict[str, float]:
"""
Evaluate a model on some dataset.
"""
model.eval()
device = torch.device("cuda", gpu)
model.to(device)
logging.info(f'Batch size: {batch_size}')
logging.info(f'Num beams: {data_args.num_beams}')
logging.info(f'Max input length for evaluation: {data_args.max_seq_length_eval}')
logging.info(f'Max output length for evaluation: {data_args.max_output_seq_length_eval}')
test_dataset = load_dataset(
dataset_name, data_args,
max_input_length=data_args.max_seq_length_eval,
max_output_length=data_args.max_output_seq_length_eval,
tokenizer=tokenizer, split=split, seed=seed, shuffle=False, is_eval=True,
)
return test_dataset.evaluate_dataset(data_args=data_args, model=model, device=device, batch_size=batch_size)