forked from RiemannGraph/MotifRGC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
backbone.py
77 lines (65 loc) · 3.32 KB
/
backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, GATConv, SAGEConv
from torch_geometric.utils import dropout_edge
class GCN(nn.Module):
def __init__(self, n_layers, in_features, hidden_features, out_features, drop_edge=0.5, drop_feats=0.5):
super(GCN, self).__init__()
self.layers = nn.ModuleList()
self.layers.append(GCNConv(in_features, hidden_features))
for _ in range(n_layers - 2):
self.layers.append(GCNConv(hidden_features, hidden_features))
self.layers.append(GCNConv(hidden_features, out_features))
self.drop_edge = drop_edge
self.drop = nn.Dropout(drop_feats)
def forward(self, x, edge_index):
edge = dropout_edge(edge_index, self.drop_edge, training=self.training)[0]
for layer in self.layers[:-1]:
x = self.drop(F.relu(layer(x, edge)))
x = self.layers[-1](x, edge)
return x
class GAT(nn.Module):
def __init__(self, n_layers, in_features, hidden_features, out_features, heads, drop_edge=0.5, drop_feats=0.5):
super(GAT, self).__init__()
self.layers = nn.ModuleList()
self.layers.append(GATConv(in_features, hidden_features, heads, dropout=drop_feats, concat=False))
for _ in range(n_layers - 2):
self.layers.append(GATConv(hidden_features, hidden_features, heads, dropout=drop_feats, concat=False))
self.layers.append(GATConv(hidden_features, out_features, heads, dropout=drop_feats, concat=False))
self.drop_edge = drop_edge
self.drop = nn.Dropout(drop_feats)
def forward(self, x, edge_index):
edge = dropout_edge(edge_index, self.drop_edge, training=self.training)[0]
for layer in self.layers:
x = layer(x, edge)
return x
class GraphSAGE(nn.Module):
def __init__(self, n_layers, in_features, hidden_features, out_features, drop_edge=0.5, drop_feats=0.5):
super().__init__()
self.layers = nn.ModuleList()
self.layers.append(SAGEConv(in_features, hidden_features))
for _ in range(n_layers - 2):
self.layers.append(SAGEConv(hidden_features, hidden_features))
self.layers.append(SAGEConv(hidden_features, out_features))
self.drop = nn.Dropout(drop_feats)
self.dropout_edge = drop_edge
def forward(self, x, edge_index):
edge = dropout_edge(edge_index, self.dropout_edge, training=self.training)[0]
for layer in self.layers[: -1]:
x = self.drop(F.relu(layer(x, edge)))
x = self.layers[-1](x, edge)
return x
class GNNClassifier(nn.Module):
def __init__(self, backbone, n_layers, in_features, hidden_features, out_features, n_heads, drop_edge, drop_node):
super(GNNClassifier, self).__init__()
if backbone == 'gcn':
self.encoder = GCN(n_layers, in_features, hidden_features, out_features, drop_edge, drop_node)
elif backbone == 'gat':
self.encoder = GAT(n_layers, in_features, hidden_features, out_features, n_heads, drop_edge, drop_node)
elif backbone == 'sage':
self.encoder = GraphSAGE(n_layers, in_features, hidden_features, out_features, drop_edge, drop_node)
else:
raise NotImplementedError
def forward(self, x, edge_index):
return self.encoder(x, edge_index)