This repository has been archived by the owner on Jul 30, 2024. It is now read-only.
forked from harvitronix/five-video-classification-methods
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata.py
284 lines (227 loc) · 9.17 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
"""
Class for managing our data.
"""
import csv
import numpy as np
import random
import glob
import os.path
import sys
import operator
import threading
from processor import process_image
from keras.utils import to_categorical
class threadsafe_iterator:
def __init__(self, iterator):
self.iterator = iterator
self.lock = threading.Lock()
def __iter__(self):
return self
def __next__(self):
with self.lock:
return next(self.iterator)
def threadsafe_generator(func):
"""Decorator"""
def gen(*a, **kw):
return threadsafe_iterator(func(*a, **kw))
return gen
class DataSet():
def __init__(self, seq_length=80, class_limit=None, image_shape=(224, 224, 3)):
"""Constructor.
seq_length = (int) the number of frames to consider
class_limit = (int) number of classes to limit the data to.
None = no limit.
"""
self.seq_length = seq_length
self.class_limit = class_limit
self.sequence_path = os.path.join('data', 'sequences')
self.max_frames = 800 # max number of frames a video can have for us to use it
# Get the data.
self.data = self.get_data()
# Get the classes.
self.classes = self.get_classes()
# Now do some minor data cleaning.
self.data = self.clean_data()
self.image_shape = image_shape
@staticmethod
def get_data():
"""Load our data from file."""
with open(os.path.join('data', 'data_file.csv'), 'r') as fin:
reader = csv.reader(fin)
data = list(reader)
return data
def clean_data(self):
"""Limit samples to greater than the sequence length and fewer
than N frames. Also limit it to classes we want to use."""
data_clean = []
for item in self.data:
if int(item[3]) >= self.seq_length and int(item[3]) <= self.max_frames \
and item[1] in self.classes:
data_clean.append(item)
return data_clean
def get_classes(self):
"""Extract the classes from our data. If we want to limit them,
only return the classes we need."""
classes = []
for item in self.data:
if item[1] not in classes:
classes.append(item[1])
# Sort them.
classes = sorted(classes)
# Return.
if self.class_limit is not None:
return classes[:self.class_limit]
else:
return classes
def get_class_one_hot(self, class_str):
"""Given a class as a string, return its number in the classes
list. This lets us encode and one-hot it for training."""
# Encode it first.
label_encoded = self.classes.index(class_str)
# Now one-hot it.
label_hot = to_categorical(label_encoded, len(self.classes))
assert len(label_hot) == len(self.classes)
return label_hot
def split_train_test(self):
"""Split the data into train and test groups."""
train = []
test = []
for item in self.data:
if item[0] == 'train':
train.append(item)
else:
test.append(item)
return train, test
def get_all_sequences_in_memory(self, train_test, data_type):
"""
This is a mirror of our generator, but attempts to load everything into
memory so we can train way faster.
"""
# Get the right dataset.
train, test = self.split_train_test()
data = train if train_test == 'train' else test
print("Loading %d samples into memory for %sing." % (len(data), train_test))
X, y = [], []
for row in data:
if data_type == 'images':
frames = self.get_frames_for_sample(row)
frames = self.rescale_list(frames, self.seq_length)
# Build the image sequence
sequence = self.build_image_sequence(frames)
else:
sequence = self.get_extracted_sequence(data_type, row)
if sequence is None:
print("Can't find sequence. Did you generate them?")
raise
X.append(sequence)
y.append(self.get_class_one_hot(row[1]))
return np.array(X), np.array(y)
@threadsafe_generator
def frame_generator(self, batch_size, train_test, data_type):
"""Return a generator that we can use to train on. There are
a couple different things we can return:
data_type: 'features', 'images'
"""
# Get the right dataset for the generator.
train, test = self.split_train_test()
data = train if train_test == 'train' else test
print("Creating %s generator with %d samples." % (train_test, len(data)))
while 1:
X, y = [], []
# Generate batch_size samples.
for _ in range(batch_size):
# Reset to be safe.
sequence = None
# Get a random sample.
sample = random.choice(data)
# Check to see if we've already saved this sequence.
if data_type is "images":
# Get and resample frames.
frames = self.get_frames_for_sample(sample)
frames = self.rescale_list(frames, self.seq_length)
# Build the image sequence
sequence = self.build_image_sequence(frames)
else:
# Get the sequence from disk.
sequence = self.get_extracted_sequence(data_type, sample)
if sequence is None:
raise ValueError("Can't find sequence. Did you generate them?")
X.append(sequence)
y.append(self.get_class_one_hot(sample[1]))
yield np.array(X), np.array(y)
def build_image_sequence(self, frames):
"""Given a set of frames (filenames), build our sequence."""
return [process_image(x, self.image_shape) for x in frames]
def get_extracted_sequence(self, data_type, sample):
"""Get the saved extracted features."""
filename = sample[2]
path = os.path.join(self.sequence_path, filename + '-' + str(self.seq_length) + \
'-' + data_type + '.npy')
if os.path.isfile(path):
return np.load(path)
else:
return None
def get_frames_by_filename(self, filename, data_type):
"""Given a filename for one of our samples, return the data
the model needs to make predictions."""
# First, find the sample row.
sample = None
for row in self.data:
if row[2] == filename:
sample = row
break
if sample is None:
raise ValueError("Couldn't find sample: %s" % filename)
if data_type == "images":
# Get and resample frames.
frames = self.get_frames_for_sample(sample)
frames = self.rescale_list(frames, self.seq_length)
# Build the image sequence
sequence = self.build_image_sequence(frames)
else:
# Get the sequence from disk.
sequence = self.get_extracted_sequence(data_type, sample)
if sequence is None:
raise ValueError("Can't find sequence. Did you generate them?")
return sequence
@staticmethod
def get_frames_for_sample(sample):
"""Given a sample row from the data file, get all the corresponding frame
filenames."""
path = os.path.join('data', sample[0], sample[1])
filename = sample[2]
images = sorted(glob.glob(os.path.join(path, filename + '*jpg')))
return images
@staticmethod
def get_filename_from_image(filename):
parts = filename.split(os.path.sep)
return parts[-1].replace('.jpg', '')
@staticmethod
def rescale_list(input_list, size):
"""Given a list and a size, return a rescaled/samples list. For example,
if we want a list of size 5 and we have a list of size 25, return a new
list of size five which is every 5th element of the origina list."""
assert len(input_list) >= size
# Get the number to skip between iterations.
skip = len(input_list) // size
# Build our new output.
output = [input_list[i] for i in range(0, len(input_list), skip)]
# Cut off the last one if needed.
return output[:size]
def print_class_from_prediction(self, predictions, nb_to_return=5):
"""Given a prediction, print the top classes."""
# Get the prediction for each label.
label_predictions = {}
for i, label in enumerate(self.classes):
label_predictions[label] = predictions[i]
# Now sort them.
sorted_lps = sorted(
label_predictions.items(),
key=operator.itemgetter(1),
reverse=True
)
# And return the top N.
for i, class_prediction in enumerate(sorted_lps):
if i > nb_to_return - 1 or class_prediction[1] == 0.0:
break
print("%s: %.2f" % (class_prediction[0], class_prediction[1]))