We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
got an error while running method BoundingBoxUtils.convert
BoundingBoxUtils.convert
E/flutter ( 8045): [ERROR:flutter/runtime/dart_isolate.cc(1097)] Unhandled exception: E/flutter ( 8045): Invalid argument(s): Size of bounding box dimBouBoxension 1 is not 4. Got 25 in shape [1, 25] E/flutter ( 8045): #0 SupportPreconditions.checkArgument (package:tflite_flutter_helper_plus/src/common/support_preconditions.dart:16:7) E/flutter ( 8045): #1 BoundingBoxUtils.convert (package:tflite_flutter_helper_plus/src/image/bounding_box_utils.dart:74:26) E/flutter ( 8045): #2 TfliteClassifier.predict (package:etlesigap/utils/object_detection/tflite_clasifier.dart:219:45) E/flutter ( 8045): #3 IsolateimageClasifier.entryPoint (package:etlesigap/utils/object_detection/isolate_image_clasifier.dart:62:32) E/flutter ( 8045): <asynchronous suspension>
this is my output shapes
[ [1,25], [1,25,4], [1], [1,25] ]
and this is how i used
TensorBuffer outputLocations = TensorBufferFloat(_outputShapes[0]); TensorBuffer outputClasses = TensorBufferFloat(_outputShapes[1]); TensorBuffer outputScores = TensorBufferFloat(_outputShapes[2]); TensorBuffer numLocations = TensorBufferFloat(_outputShapes[3]); // Outputs map Map<int, Object> outputs = { 0: outputLocations.buffer, 1: outputClasses.buffer, 2: outputScores.buffer, 3: numLocations.buffer, }; var inferenceTimeStart = DateTime.now().millisecondsSinceEpoch; // run inference _interpreter.runForMultipleInputs([inputImage.buffer], outputs); // _interpreter.runForMultipleInputs([inputImage.buffer.asUint8List()], outputs); var inferenceTimeElapsed = DateTime.now().millisecondsSinceEpoch - inferenceTimeStart; // Maximum number of results to show int resultsCount = min(numResults, numLocations.getIntValue(0)); // Using labelOffset = 1 as ??? at index 0 int labelOffset = 1; // Using bounding box utils for easy conversion of tensorbuffer to List<Rect> List<Rect> locations = BoundingBoxUtils.convert( // tensor: outputClasses, tensor: outputLocations, // valueIndex: [1, 0, 3, 2], valueIndex: [1, 3, 0, 2], boundingBoxAxis: 1, // boundingBoxAxis: 2, boundingBoxType: BoundingBoxType.boundaries, coordinateType: CoordinateType.ratio, height: inputSize, width: inputSize, );
The text was updated successfully, but these errors were encountered:
my model props
Sorry, something went wrong.
No branches or pull requests
got an error while running method
BoundingBoxUtils.convert
this is my output shapes
and this is how i used
The text was updated successfully, but these errors were encountered: