-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathPlot_Graph.py
145 lines (129 loc) · 3.82 KB
/
Plot_Graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import pandas as pd
import matplotlib.pyplot as plt
def data_2013():
i = 0
main_avg = []
for a in pd.read_csv('PM2.5/aqm2013.csv', chunksize=24):
add = 0
avg = 0.0
data = []
df = pd.DataFrame(data=a)
for index, row in df.iterrows():
data.append(row['PM2.5'])
for pm in data:
if type(pm) is long or type(pm) is float or type(pm) is int:
var = pm
add = add + var
elif type(pm) is str:
if pm != 'NoData' and pm != 'PwrFail':
var = float(pm)
add = add + var
avg = add/24
i += 1
# if avg == 0.0:
# print "No Data", i
# else:
# print round(avg,2),i
main_avg.append(avg)
# new1 = pd.DataFrame(main_avg)
# new1.columns = ['2013']
return main_avg
def data_2014():
i = 0
main_avg = []
for a in pd.read_csv('PM2.5/aqm2014.csv', chunksize=24):
add = 0
avg = 0.0
data = []
df = pd.DataFrame(data=a)
for index, row in df.iterrows():
data.append(row['PM2.5'])
for pm in data:
if type(pm) is long or type(pm) is float or type(pm) is int:
var = pm
add = add + var
elif type(pm) is str:
if pm != 'NoData' and pm != 'PwrFail':
var = float(pm)
add = add + var
avg = add/24
i += 1
# if avg == 0.0:
# print "No Data", i
# else:
# print round(avg,2),i
main_avg.append(avg)
# new2 = pd.DataFrame(main_avg)
# new2.columns = ['2014']
return main_avg
def data_2015():
i = 0
main_avg = []
for a in pd.read_csv('PM2.5/aqm2015.csv', chunksize=24):
add = 0
avg = 0.0
data = []
df = pd.DataFrame(data=a)
for index, row in df.iterrows():
data.append(row['PM2.5'])
for pm in data:
if type(pm) is long or type(pm) is float or type(pm) is int:
var = pm
add = add + var
elif type(pm) is str:
if pm != 'NoData' and pm != '---' and pm != 'InVld' and pm != 'PwrFail':
var = float(pm)
add = add + var
avg = add/24
i += 1
# if avg == 0.0:
# print "No Data", i
# else:
# print round(avg,2),i
main_avg.append(avg)
# new3 = pd.DataFrame(main_avg)
# new3.columns = ['2015']
return main_avg
def data_2016():
i = 0
main_avg = []
for a in pd.read_csv('PM2.5/aqm2016.csv', chunksize=24):
add = 0
avg = 0.0
data = []
df = pd.DataFrame(data=a)
for index, row in df.iterrows():
data.append(row['PM2.5'])
for pm in data:
if type(pm) is long or type(pm) is float or type(pm) is int:
var = pm
add = add + var
elif type(pm) is str:
if pm != 'NoData' and pm != '---' and pm != 'InVld' and pm != 'PwrFail':
var = float(pm)
add = add + var
avg = add/24
i += 1
# if avg == 0.0:
# print "No Data", i
# else:
# print round(avg,2),i
main_avg.append(avg)
# new3 = pd.DataFrame(main_avg)
# new3.columns = ['2015']
return main_avg
if __name__ == "__main__":
a = []
b = []
a = data_2013()
b = data_2014()
c = data_2015()
d = data_2016()
plt.plot(xrange(0, 365), a, label='2013')
plt.plot(xrange(0, 364), b, label='2014')
plt.plot(xrange(0, 365), c, label='2015')
plt.plot(xrange(0, 31), d, label='2016')
plt.xlabel('Day')
plt.ylabel('PM 2.5')
plt.legend(loc='upper right')
plt.show()