-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
executable file
·183 lines (146 loc) · 5.74 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import time
from typing import List, Optional
import edgeiq
import numpy as np
from config import InferenceMode, load_config, VideoMode
def object_enters(object_id, prediction):
print("{}: {} enters".format(object_id, prediction.label))
def object_exits(object_id, prediction):
print("{} exits".format(prediction.label))
def get_video_stream(mode, arg: str | int) -> edgeiq.VideoStream:
if mode == VideoMode.FILE:
return edgeiq.FileVideoStream(arg)
elif mode == VideoMode.USB:
return edgeiq.WebcamVideoStream(arg)
elif mode == VideoMode.IP:
return edgeiq.IPVideoStream(arg)
else:
raise ValueError(f'Unsupported mode {mode}!')
def get_inference(
mode: InferenceMode,
model_id: str,
annotations_file_paths: Optional[List[str]]
) -> edgeiq.ObjectDetection:
if mode == InferenceMode.INFERENCE:
obj_detect = edgeiq.ObjectDetection(model_id=model_id)
if (edgeiq.is_jetson() or edgeiq.find_nvidia_gpu()) \
and obj_detect.model_config.tensor_rt_support:
engine = edgeiq.Engine.TENSOR_RT
elif obj_detect.model_config.dnn_support:
engine = edgeiq.Engine.DNN
else:
raise ValueError(f'Model {obj_detect.model_id} not supported on this device!')
obj_detect.load(engine)
return obj_detect
elif mode == InferenceMode.ANNOTATIONS:
annotation_results = [
edgeiq.load_analytics_results(file_path) for file_path in annotations_file_paths
]
return edgeiq.ObjectDetectionAnalytics(
annotations=annotation_results,
model_id=model_id
)
else:
raise ValueError(f'Unsupported mode {mode}!')
class NoVideoWriter(edgeiq.VideoWriter):
def __init__(self):
pass
def write_frame(self, frame: np.ndarray):
pass
def close(self):
pass
def get_video_writer(enable: bool, *args, **kwargs) -> edgeiq.VideoWriter:
if enable:
return edgeiq.VideoWriter(*args, **kwargs)
else:
return NoVideoWriter()
def main():
cfg = load_config()
print(f'Configuration:\n{cfg}')
video_stream = get_video_stream(
mode=cfg.video_stream.mode,
arg=cfg.video_stream.arg
)
# Select the last model in the app configuration models list
# Currently supports Tensor RT and DNN
model_id_list = edgeiq.AppConfig().model_id_list
if len(model_id_list) == 0:
raise RuntimeError('No models in model ID list!')
model_id = model_id_list[-1]
obj_detect = get_inference(
mode=cfg.inference.mode,
model_id=model_id,
annotations_file_paths=cfg.inference.annotations_file_paths
)
print(f'Engine: {obj_detect.engine}')
print(f'Accelerator: {obj_detect.accelerator}\n')
print(f'Model:\n{obj_detect.model_id}\n')
print(f'Labels:\n{obj_detect.labels}\n')
tracker = edgeiq.KalmanTracker(
max_distance=cfg.tracker.max_distance,
deregister_frames=cfg.tracker.deregister_frames,
min_inertia=cfg.tracker.min_inertia,
enter_cb=object_enters,
exit_cb=object_exits
)
video_writer = get_video_writer(
enable=cfg.video_writer.enable,
output_path=cfg.video_writer.output_path,
fps=cfg.video_writer.fps,
codec=cfg.video_writer.codec,
chunk_duration_s=cfg.video_writer.chunk_duration_s
)
fps = edgeiq.FPS()
try:
with edgeiq.Streamer() as streamer:
video_stream.start()
# Allow camera stream to warm up
time.sleep(2.0)
fps.start()
while True:
frame = video_stream.read()
results = obj_detect.detect_objects(
frame,
confidence_level=cfg.inference.confidence,
overlap_threshold=cfg.inference.overlap_threshold
)
predictions = edgeiq.filter_predictions_by_label(
predictions=results.predictions,
label_list=cfg.inference.labels
) if cfg.inference.labels else results.predictions
# Generate text to display on streamer
text = [f'Model: {obj_detect.model_id}']
text.append(f'Loaded to {obj_detect.engine}:{obj_detect.accelerator}')
text.append('Inference time: {:1.3f} s'.format(results.duration))
text.append('Objects:')
objects = tracker.update(predictions)
# Update the label to reflect the object ID
tracked_predictions = []
for object_id, prediction in objects.items():
# Use the original class label instead of the prediction
# label to avoid iteratively adding the ID to the label
class_label = obj_detect.labels[prediction.index]
prediction.label = f'{object_id}: {class_label}'
text.append(f'{prediction.label}')
tracked_predictions.append(prediction)
frame = edgeiq.markup_image(
frame,
tracked_predictions,
show_labels=True,
show_confidences=False,
colors=obj_detect.colors
)
streamer.send_data(frame, text)
video_writer.write_frame(frame)
fps.update()
if streamer.check_exit():
break
finally:
fps.stop()
video_stream.stop()
video_writer.close()
print('elapsed time: {:.2f}'.format(fps.get_elapsed_seconds()))
print('approx. FPS: {:.2f}'.format(fps.compute_fps()))
print('Program Ending')
if __name__ == '__main__':
main()