-
Notifications
You must be signed in to change notification settings - Fork 7
/
utils.py
153 lines (122 loc) · 4.66 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import time
import json
import numpy as np
import math
from contextlib import contextmanager
import torch
import torch.nn as nn
import torch.nn.functional as F
def calculate_model_losses(args, model, bbox, bbox_pred, angles, angles_pred, mu=None, logvar=None, KL_weight=None):
dtype_f = bbox_pred.data.type()
total_loss = 0.0
losses = {}
loss_bbox = F.l1_loss(bbox_pred, bbox)
total_loss = add_loss(total_loss, loss_bbox, losses, 'bbox_pred', 1)
loss_angle = F.nll_loss(angles_pred, angles)
total_loss = add_loss(total_loss, loss_angle, losses, 'angle_pred', 1)
if not args.use_AE:
try:
loss_gauss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) / mu.size(0)
except:
print("blowup!!!")
print("logvar", torch.sum(logvar.data), torch.sum(torch.abs(logvar.data)), torch.max(logvar.data),
torch.min(logvar.data))
print("mu", torch.sum(mu.data), torch.sum(torch.abs(mu.data)), torch.max(mu.data), torch.min(mu.data))
return total_loss, losses
total_loss = add_loss(total_loss, loss_gauss, losses, 'KLD_Gauss', KL_weight)
return total_loss, losses
def compute_rel(box1, box2, name1, name2):
center1 = np.array([(box1[0] + box1[3]) / 2, (box1[1] + box1[4]) / 2, (box1[2] + box1[5]) / 2])
center2 = np.array([(box2[0] + box2[3]) / 2, (box2[1] + box2[4]) / 2, (box2[2] + box2[5]) / 2])
if name2 == "__room__":
p = "__in_room__"
else:
# "on" relationship
p = None
if center1[0] >= box2[0] and center1[0] <= box2[3]:
if center1[2] >= box2[2] and center1[2] <= box2[5]:
delta1 = center1[1] - center2[1]
delta2 = (box1[4] - box1[1] + box2[4] - box2[1]) / 2
if abs(delta1 - delta2) < 0.05:
p = 'on'
return p
# random relationship
sx0, sy0, sz0, sx1, sy1, sz1 = box1
ox0, oy0, oz0, ox1, oy1, oz1 = box2
d = center1 - center2
theta = math.atan2(d[2], d[0]) # range -pi to pi
area_s = (sx1 - sx0) * (sz1 - sz0)
area_o = (ox1 - ox0) * (oz1 - oz0)
ix0, ix1 = max(sx0, ox0), min(sx1, ox1)
iz0, iz1 = max(sz0, oz0), min(sz1, oz1)
area_i = max(0, ix1 - ix0) * max(0, iz1 - iz0)
iou = area_i / (area_s + area_o - area_i)
touching = 0.0001 < iou < 0.5
if sx0 < ox0 and sx1 > ox1 and sz0 < oz0 and sz1 > oz1:
p = 'surrounding'
elif sx0 > ox0 and sx1 < ox1 and sz0 > oz0 and sz1 < oz1:
p = 'inside'
elif theta >= 3 * math.pi / 4 or theta <= -3 * math.pi / 4:
p = 'right touching' if touching else 'left of'
elif -3 * math.pi / 4 <= theta < -math.pi / 4:
p = 'behind touching' if touching else 'behind'
elif -math.pi / 4 <= theta < math.pi / 4:
p = 'left touching' if touching else 'right of'
elif math.pi / 4 <= theta < 3 * math.pi / 4:
p = 'front touching' if touching else 'in front of'
return p
def load_json(json_file):
with open(json_file, 'r') as f:
var = json.load(f)
return var
def write_json(json_file, data):
with open(json_file, 'w') as f:
json.dump(data, f)
def int_tuple(s):
return tuple(int(i) for i in s.split(','))
def float_tuple(s):
return tuple(float(i) for i in s.split(','))
def str_tuple(s):
return tuple(s.split(','))
def bool_flag(s):
if s == '1':
return True
elif s == '0':
return False
msg = 'Invalid value "%s" for bool flag (should be 0 or 1)'
raise ValueError(msg % s)
def tensor_aug(tensors, volatile=False, use_gpu=True):
var_list = []
for tensor in tensors:
if use_gpu:
var = tensor.cuda()
else:
var = tensor
if volatile:
var.requires_grad = False
var_list.append(var)
return tuple(var_list)
@contextmanager
def timeit(msg, should_time=True):
if should_time:
torch.cuda.synchronize()
t0 = time.time()
yield
if should_time:
torch.cuda.synchronize()
t1 = time.time()
duration = (t1 - t0) * 1000.0
print('%s: %.2f ms' % (msg, duration))
def add_loss(total_loss, curr_loss, loss_dict, loss_name, weight=1):
curr_loss_weighted = curr_loss * weight
loss_dict[loss_name] = curr_loss_weighted.item()
if total_loss is not None:
return total_loss + curr_loss_weighted
else:
return curr_loss_weighted
return 0
def get_model_attr(_object, attr):
if isinstance(_object, nn.DataParallel):
return getattr(_object.module, attr)
else:
return getattr(_object, attr)