forked from pathak22/pyflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
54 lines (48 loc) · 1.69 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Author: Deepak Pathak (c) 2016
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# from __future__ import unicode_literals
import numpy as np
from PIL import Image
import time
import argparse
import pyflow
parser = argparse.ArgumentParser(
description='Demo for python wrapper of Coarse2Fine Optical Flow')
parser.add_argument(
'-viz', dest='viz', action='store_true',
help='Visualize (i.e. save) output of flow.')
args = parser.parse_args()
im1 = np.array(Image.open('examples/car1.jpg'))
im2 = np.array(Image.open('examples/car2.jpg'))
im1 = im1.astype(float) / 255.
im2 = im2.astype(float) / 255.
# Flow Options:
alpha = 0.012
ratio = 0.75
minWidth = 20
nOuterFPIterations = 7
nInnerFPIterations = 1
nSORIterations = 30
colType = 0 # 0 or default:RGB, 1:GRAY (but pass gray image with shape (h,w,1))
s = time.time()
u, v, im2W = pyflow.coarse2fine_flow(
im1, im2, alpha, ratio, minWidth, nOuterFPIterations, nInnerFPIterations,
nSORIterations, colType)
e = time.time()
print('Time Taken: %.2f seconds for image of size (%d, %d, %d)' % (
e - s, im1.shape[0], im1.shape[1], im1.shape[2]))
flow = np.concatenate((u[..., None], v[..., None]), axis=2)
np.save('examples/outFlow.npy', flow)
if args.viz:
import cv2
hsv = np.zeros(im1.shape, dtype=np.uint8)
hsv[:, :, 0] = 255
hsv[:, :, 1] = 255
mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1])
hsv[..., 0] = ang * 180 / np.pi / 2
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
cv2.imwrite('examples/outFlow_new.png', rgb)
cv2.imwrite('examples/car2Warped_new.jpg', im2W[:, :, ::-1] * 255)