-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathfbpn_sr_rbpn_v2_ref.py
69 lines (58 loc) · 2.68 KB
/
fbpn_sr_rbpn_v2_ref.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import torch.nn as nn
import torch.optim as optim
from base_networks import *
from torchvision.transforms import *
import torch.nn.functional as F
from rbpn import Net as RBPN
from autoencoder_v4 import UNet
from torch.autograd import Variable
from fbpn_sr_rbpn_v2 import Net as FBPNSR_RBPN_V2
class Net(nn.Module):
def __init__(self, base_filter, feat, num_stages, n_resblock, scale_factor, pretrained=False, freeze=False):
super(Net, self).__init__()
if scale_factor == 2:
kernel = 6
stride = 2
padding = 2
elif scale_factor == 4:
kernel = 8
stride = 4
padding = 2
elif scale_factor == 8:
kernel = 12
stride = 8
padding = 2
self.model = FBPNSR_RBPN_V2(base_filter=base_filter, feat = feat, num_stages=num_stages, n_resblock=n_resblock, scale_factor=scale_factor)
self.flow_net = UNet(8,2)
if pretrained:
#self.model.load_state_dict(torch.load("weights/pretrained/FBPNSR_RBPN_V1_STAR-T.pth", map_location=lambda storage, loc: storage))
self.flow_net.load_state_dict(torch.load("weights/pretrained/flow_refinement.pth", map_location=lambda storage, loc: storage))
if freeze:
self.freeze_model(self.model)
def freeze_model(self, model):
for child in model.children():
for param in child.parameters():
param.requires_grad = False
def forward(self, t_im1, t_im2, t_flow_f, t_flow_b, train=True, flowRefine= True, noise=False):
##flow refinement
if flowRefine:
if noise:
t_flow_f = t_flow_f + Variable(torch.randn(t_flow_f.size()).cuda() * 0.1)
t_flow_b = t_flow_b + Variable(torch.randn(t_flow_b.size()).cuda() * 0.1)
t_flow_f = t_flow_f + (self.flow_net(torch.cat((t_flow_f,t_im1, t_im2),1)))
t_flow_b = t_flow_b + (self.flow_net(torch.cat((t_flow_b,t_im2, t_im1),1)))
pred_ht, pred_h1, pred_h2, pred_l = self.model(t_im1, t_im2, t_flow_f, t_flow_b, train=train)
if train:
if flowRefine:
return pred_ht, pred_h1, pred_h2, pred_l, t_flow_f, t_flow_b
else:
return pred_ht, pred_h1, pred_h2, pred_l
else:
return pred_ht, pred_h1, pred_h2, pred_l
class FeatureExtractor(nn.Module):
def __init__(self, cnn, feature_layer=35):
super(FeatureExtractor, self).__init__()
self.features = nn.Sequential(*list(cnn.features.children())[:(feature_layer+1)])
def forward(self, x):
return self.features(x)