-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathfbpn_sr_rbpn_v2.py
182 lines (150 loc) · 7.33 KB
/
fbpn_sr_rbpn_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import torch.nn as nn
import torch.optim as optim
from base_networks import *
from torchvision.transforms import *
import torch.nn.functional as F
from rbpn import Net as RBPN
from autoencoder_v4 import UNet
from torch.autograd import Variable
class Net(nn.Module):
def __init__(self, base_filter, feat, num_stages, n_resblock, scale_factor, pretrained=True, freeze=False):
super(Net, self).__init__()
if scale_factor == 2:
kernel = 6
stride = 2
padding = 2
elif scale_factor == 4:
kernel = 8
stride = 4
padding = 2
elif scale_factor == 8:
kernel = 12
stride = 8
padding = 2
#Initial Feature Extraction
self.motion_feat = ConvBlock(4, base_filter, 3, 1, 1, activation='lrelu', norm=None)
###INTERPOLATION
#Interp_block
motion_net = [
ResnetBlock(base_filter, kernel_size=3, stride=1, padding=1, bias=True, activation='lrelu', norm=None) \
for _ in range(2)]
motion_net.append(ConvBlock(base_filter, feat, 3, 1, 1, activation='lrelu', norm=None))
self.motion = nn.Sequential(*motion_net)
t_net2 = [ConvBlock(feat*3, feat, 1, 1, 0, bias=True, activation='lrelu', norm=None)]
t_net2.append(PyramidModule(feat,activation='lrelu'))
t_net2.append(ConvBlock(feat, feat, 3, 1, 1, activation='lrelu', norm=None))
self.t_net_hr = nn.Sequential(*t_net2)
self.upsample_layer = nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=True)
interp_b = [
ResnetBlock(feat*5, kernel_size=3, stride=1, padding=1, bias=True, activation='lrelu', norm=None) \
for _ in range(n_resblock)]
interp_b.append(DeconvBlock(feat*5, feat, kernel, stride, padding, activation='lrelu', norm=None))
self.interp_block = nn.Sequential(*interp_b)
###ITERATIVE REFINEMENT
#Motion Up FORWARD
modules_up_f = [
ResnetBlock(feat*5, kernel_size=3, stride=1, padding=1, bias=True, activation='lrelu', norm=None) \
for _ in range(n_resblock)]
modules_up_f.append(DeconvBlock(feat*5, feat, kernel, stride, padding, activation='lrelu', norm=None))
self.motion_up_f = nn.Sequential(*modules_up_f)
#Motion Up BACKWARD
modules_up_b = [
ResnetBlock(feat*5, kernel_size=3, stride=1, padding=1, bias=True, activation='lrelu', norm=None) \
for _ in range(n_resblock)]
modules_up_b.append(DeconvBlock(feat*5, feat, kernel, stride, padding, activation='lrelu', norm=None))
self.motion_up_b = nn.Sequential(*modules_up_b)
#Motion Down
modules_down = [
ResnetBlock(feat, kernel_size=3, stride=1, padding=1, bias=True, activation='lrelu', norm=None) \
for _ in range(2)]
modules_down.append(ConvBlock(feat, feat*2, kernel, stride, padding, activation='lrelu', norm=None))
self.motion_down = nn.Sequential(*modules_down)
self.relu_bp = torch.nn.LeakyReLU(negative_slope=0.1, inplace=True)#torch.nn.PReLU()
#Reconstruction
self.reconstruction_l = ConvBlock(feat*2, 3, 3, 1, 1, activation=None, norm=None)
self.reconstruction_h = ConvBlock(feat, 3, 3, 1, 1, activation=None, norm=None)
####ALIGNMENT
###RBPN
self.RBPN = RBPN(num_channels=3, base_filter=base_filter, feat = feat, num_stages=num_stages, n_resblock=5, nFrames=2, scale_factor=scale_factor)
for m in self.modules():
classname = m.__class__.__name__
if classname.find('Conv2d') != -1:
torch.nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
m.bias.data.zero_()
elif classname.find('ConvTranspose2d') != -1:
torch.nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
m.bias.data.zero_()
if pretrained:
if scale_factor == 4:
self.RBPN.load_state_dict(torch.load("weights/pretrained/rbpn_pretrained_F2_4x.pth", map_location=lambda storage, loc: storage))
elif scale_factor == 2:
self.RBPN.load_state_dict(torch.load("weights/pretrained/rbpn_pretrained_F2_2x.pth", map_location=lambda storage, loc: storage))
if freeze:
self.freeze_model(self.RBPN)
def freeze_model(self, model):
for child in model.children():
for param in child.parameters():
param.requires_grad = False
def forward(self, t_im1, t_im2, t_flow_f, t_flow_b, train=True):
result_l = []
result_h1 = []
result_ht = []
result_h2 = []
###ALIGNMENT
aux_H1, H1 = self.RBPN(t_im1,[t_im2],[t_flow_f])
aux_H2, H2 = self.RBPN(t_im2,[t_im1],[t_flow_b])
L1 = self.motion_down(H1)
L2 = self.motion_down(H2)
###MOTION & DEPTH
motion_feat0 = self.motion_feat(torch.cat((t_flow_f, t_flow_b),1))
M = self.motion(motion_feat0)
motion_feat1 = self.motion_feat(torch.cat((t_flow_f/2.0, t_flow_b/2.0),1))
M_half = self.motion(motion_feat1)
###INTERPOLATION
Ht = self.interp_block(torch.cat((L1,L2,M),1))
Ht = Ht + self.relu_bp(Ht - self.t_net_hr(torch.cat((H1,H2,self.upsample_layer(M)),1)))
L = self.motion_down(Ht)
aux_Ht = self.reconstruction_h(Ht)
aux_L = self.reconstruction_l(L)
result_l.append(aux_L)
result_h1.append(aux_H1)
result_ht.append(aux_Ht)
result_h2.append(aux_H2)
####Projection
backward1 = torch.cat((L1, L, M_half),1)
H_b = self.motion_up_b(backward1)
H1 = H1 + self.relu_bp(H1 - H_b)
L1 = L1 + self.relu_bp(L1 - self.motion_down(H_b))
forwardd2 = torch.cat((L, L2, M_half),1)
H_f = self.motion_up_f(forwardd2)
H2 = H2 + self.relu_bp(H2 - H_f)
L2 = L2 + self.relu_bp(L2 - self.motion_down(H_f))
forwardd = torch.cat((L1, L, M_half),1)
H_t_f = self.motion_up_f(forwardd)
Ht = Ht + self.relu_bp(Ht - H_t_f)
L = L + self.relu_bp(L - self.motion_down(H_t_f))
backward = torch.cat((L, L2, M_half),1)
H_t_b = self.motion_up_b(backward)
Ht = Ht + self.relu_bp(Ht - H_t_b)
L = L + self.relu_bp(L - self.motion_down(H_t_b))
output_ht = self.reconstruction_h(Ht)
output_h1 = self.reconstruction_h(H1)
output_h2 = self.reconstruction_h(H2)
output_l = self.reconstruction_l(L)
result_l.append(output_l)
result_h1.append(output_h1)
result_ht.append(output_ht)
result_h2.append(output_h2)
if train:
return result_ht, result_h1, result_h2, result_l
else:
return output_ht, output_h1, output_h2, output_l
class FeatureExtractor(nn.Module):
def __init__(self, cnn, feature_layer=35):
super(FeatureExtractor, self).__init__()
self.features = nn.Sequential(*list(cnn.features.children())[:(feature_layer+1)])
def forward(self, x):
return self.features(x)