forked from AI-LLM-Bootcamp/b402
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path006-top-k.py
80 lines (46 loc) · 2.26 KB
/
006-top-k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
openai_api_key = os.environ["OPENAI_API_KEY"]
from langchain_openai import ChatOpenAI
chatModel = ChatOpenAI(model="gpt-3.5-turbo-0125")
from langchain_community.document_loaders import TextLoader
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
from langchain_chroma import Chroma
# Load the document, split it into chunks, embed each chunk and load it into the vector store.
loaded_document = TextLoader('./data/state_of_the_union.txt').load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
chunks_of_text = text_splitter.split_documents(loaded_document)
vector_db = Chroma.from_documents(chunks_of_text, OpenAIEmbeddings())
question = "What did the president say about the John Lewis Voting Rights Act?"
response = vector_db.similarity_search(question)
print("\n----------\n")
print("Ask the RAG App: What did the president say about the John Lewis Voting Rights Act?")
print("\n----------\n")
#print(response[0].page_content)
print("\n----------\n")
from langchain_community.document_loaders import TextLoader
loader = TextLoader("./data/state_of_the_union.txt")
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loaded_document = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
chunks_of_text = text_splitter.split_documents(loaded_document)
embeddings = OpenAIEmbeddings()
vector_db = FAISS.from_documents(chunks_of_text, embeddings)
retriever = vector_db.as_retriever()
response = retriever.invoke("what did he say about ketanji brown jackson?")
print("\n----------\n")
print("Ask the RAG App with Retriever: What did he say about ketanji brown jackson?")
print("\n----------\n")
#print(response[0].page_content)
print("\n----------\n")
retriever = vector_db.as_retriever(search_kwargs={"k": 1})
response = retriever.invoke("what did he say about ketanji brown jackson?")
print("\n----------\n")
print("Ask the RAG App with top k=1: What did he say about ketanji brown jackson?")
print("\n----------\n")
print(response[0].page_content)
print("\n----------\n")