-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzip
137 lines (120 loc) · 4.09 KB
/
zip
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import zipfile
# Define the directory structure and files to create
project_name = "aircraft-maintenance-system"
directories = [
"monitoring",
"diagnosis",
"autofix",
"frontend",
"backend",
"digital_twin"
]
files_content = {
"monitoring/monitoring.py": '''# monitoring.py
import random
import time
def simulate_sensor_data():
"""Simulate real-time engine sensor data."""
data = {
"temperature": random.uniform(500, 700), # in Celsius
"pressure": random.uniform(30, 50), # in PSI
"vibration": random.uniform(0.2, 1.5), # in G-force
"exhaust_gas": random.uniform(600, 900), # in ppm
}
return data
def send_data_to_server(data):
"""Send sensor data to central server."""
# Replace with actual HTTP/MQTT logic
print("Sending data:", data)
if __name__ == "__main__":
while True:
sensor_data = simulate_sensor_data()
send_data_to_server(sensor_data)
time.sleep(1) # Simulate 1-second intervals
''',
"diagnosis/diagnosis.py": '''# diagnosis.py
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from joblib import load
# Load pre-trained model
model = load("engine_diagnosis_model.joblib")
def diagnose(data):
"""Diagnose engine status based on sensor data."""
features = np.array([[data["temperature"], data["pressure"], data["vibration"], data["exhaust_gas"]]])
prediction = model.predict(features)
status = "Normal" if prediction[0] == 0 else "Anomaly"
return status
if __name__ == "__main__":
sample_data = {
"temperature": 650,
"pressure": 35,
"vibration": 1.0,
"exhaust_gas": 750,
}
print("Engine Status:", diagnose(sample_data))
''',
"autofix/autofix.py": '''# autofix.py
def simulate_fix(issue):
"""Simulate an automatic fix for a detected issue."""
if issue == "High Temperature":
print("Adjusting cooling system...")
elif issue == "High Pressure":
print("Reducing fuel flow...")
elif issue == "Excess Vibration":
print("Balancing rotating components...")
else:
print("Issue not recognized. Manual intervention required.")
if __name__ == "__main__":
detected_issue = "High Pressure"
simulate_fix(detected_issue)
''',
"backend/backend.py": '''# backend.py
from fastapi import FastAPI
from monitoring.monitoring import simulate_sensor_data
from diagnosis.diagnosis import diagnose
app = FastAPI()
@app.get("/engine-status")
def engine_status():
sensor_data = simulate_sensor_data()
status = diagnose(sensor_data)
return {"sensorData": sensor_data, "status": status}
''',
"digital_twin/digital_twin.py": '''# digital_twin.py
def simulate_engine_behavior(data):
"""Simulate engine behavior under given conditions."""
simulated_data = {
"temperature": data["temperature"] - 10,
"pressure": data["pressure"] - 2,
"vibration": data["vibration"] * 0.9,
"exhaust_gas": data["exhaust_gas"] - 50,
}
return simulated_data
if __name__ == "__main__":
current_data = {
"temperature": 650,
"pressure": 35,
"vibration": 1.0,
"exhaust_gas": 750,
}
print("Simulated Behavior:", simulate_engine_behavior(current_data))
'''
}
# Create project structure and files
base_path = f"/mnt/data/{project_name}"
os.makedirs(base_path, exist_ok=True)
for directory in directories:
os.makedirs(os.path.join(base_path, directory), exist_ok=True)
for file_path, content in files_content.items():
full_path = os.path.join(base_path, file_path)
with open(full_path, "w") as file:
file.write(content)
# Create a zip file for upload
zip_path = f"/mnt/data/{project_name}.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for root, _, files in os.walk(base_path):
for file in files:
file_path = os.path.join(root, file)
arcname = os.path.relpath(file_path, base_path)
zipf.write(file_path, arcname)
zip_path