-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathSMC.ec
233 lines (175 loc) · 5.73 KB
/
SMC.ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
(* Secure Message Communication via a One-time Pad, Formalized
in Ordinary (Non-UC) Real/Ideal Paradigm Style *)
prover [""]. (* no use of smt *)
require import AllCore Distr.
(* minimal axiomatization of bitstrings *)
op n : int. (* length of bitstrings *)
axiom ge0_n : 0 <= n.
type bits. (* type of bit strings of length n *)
op zero : bits. (* the all zero bitstring *)
op (^^) : bits -> bits -> bits. (* pointwise exclusive or *)
axiom xorC (x y : bits) :
x ^^ y = y ^^ x.
axiom xorA (x y z : bits) :
x ^^ y ^^ z = x ^^ (y ^^ z).
axiom xor0_ (x : bits) :
zero ^^ x = x.
lemma xor_0 (x : bits) :
x ^^ zero = x.
proof.
by rewrite xorC xor0_.
qed.
axiom xorK (x : bits) :
x ^^ x = zero.
lemma xor_double_same_right (x y : bits) :
x ^^ y ^^ y = x.
proof.
by rewrite xorA xorK xor_0.
qed.
lemma xor_double_same_left (x y : bits) :
y ^^ y ^^ x = x.
proof.
by rewrite xorK xor0_.
qed.
(* uniform, full and lossless distribution on bitstrings *)
op dbits : bits distr.
(* the following two axioms tell us that the size of
bits is exactly 2 ^ n *)
axiom dbits_ll : is_lossless dbits. (* is a distribution *)
(* every element x of bits has the same weight,
1%r / (2 ^ n)%r *)
axiom dbits1E (x : bits) :
mu1 dbits x = 1%r / (2 ^ n)%r.
(* so we can prove that dbits is full, i.e., every element
of the type has a non-zero weight *)
lemma dbits_fu : is_full dbits.
proof.
move => x.
rewrite /support dbits1E.
by rewrite RField.div1r StdOrder.RealOrder.invr_gt0
lt_fromint StdOrder.IntOrder.expr_gt0.
qed.
(* module type of Adversaries *)
module type ADV = {
(* ask Adversary for message to securely communicate *)
proc get() : bits
(* let Adversary observe encrypted message being communicated *)
proc obs(x : bits) : unit
(* give Adversary decryption of received message, and ask it for its
boolean judgment (the adversary is trying to differentiate the
real and ideal games) *)
proc put(x : bits) : bool
}.
(* Real Game, Parameterized by Adversary *)
module GReal (Adv : ADV) = {
var pad : bits (* one-time pad *)
(* generate the one-time pad, sharing with both parties; we're
assuming Adversary observes nothing when this happens
of course, it's not realistic that a one-time pad can be
generated and shared with the adversary learning nothing *)
proc gen() : unit = {
pad <$ dbits;
}
(* the receiving and sending parties are the same, as encrypting
and decrypting are the same *)
proc party(x : bits) : bits = {
return x ^^ pad;
}
proc main() : bool = {
var b : bool;
var x, y, z : bits;
x <@ Adv.get(); (* get message from Adversary, give to Party 1 *)
gen(); (* generate and share to parties one-time pad *)
y <@ party(x); (* Party 1 encrypts x, yielding y *)
Adv.obs(y); (* y is observed in transit between parties
by Adversary *)
z <@ party(y); (* y is decrypted by Party 2, yielding z *)
b <@ Adv.put(z); (* z is given to Adversary by Party 2, and
Adversary chooses boolean judgment *)
return b; (* return boolean judgment as game's result *)
}
}.
(* module type of Simulators *)
module type SIM = {
(* choose gets no help to simulate encrypted message; we specify
below that choose can't read/write GReal.pad *)
proc choose() : bits
}.
(* Ideal Game, parameterized by both Simulator and Adversary *)
module GIdeal(Sim : SIM, Adv : ADV) = {
proc main() : bool = {
var b : bool;
var x, y : bits;
x <@ Adv.get(); (* get message from Adversary *)
y <@ Sim.choose(); (* simulate message encryption *)
Adv.obs(y); (* encryption simulation is observed by Adversary *)
b <@ Adv.put(x); (* x is given back to Adversary *)
return b; (* return Adversary's boolean judgment *)
}
}.
(* our goal is to prove the following security theorem, saying the
Adversary is completely unable to distinguish the real and ideal
games:
lemma Security (Adv <: ADV{-GReal}) &m :
exists (Sim <: SIM{-GReal}), (* there is a simulator that can't read/write
GReal.pad *)
Pr[GReal(Adv).main() @ &m : res] =
Pr[GIdeal(Sim, Adv).main() @ &m : res].
*)
(* enter section, so Adversary is in scope *)
section.
(* say Adv and GReal don't read/write each other's globals (GIdeal
has no globals) *)
declare module Adv <: ADV{-GReal}.
(* define simulator as a local module, as security theorem won't
depend upon it *)
local module Sim : SIM = {
proc choose() : bits = {
var x : bits;
x <$ dbits;
return x;
}
}.
local lemma GReal_GIdeal :
equiv[GReal(Adv).main ~ GIdeal(Sim, Adv).main :
={glob Adv} ==> ={res}].
proof.
proc.
inline*.
seq 1 1 : (={x, glob Adv}).
call (_ : true). (* because Adv doesn't use oracle, invariant is "true" *)
auto.
seq 1 1 : (={x, glob Adv} /\ x{1} ^^ GReal.pad{1} = x0{2}).
rnd (fun z => x{1} ^^ z).
auto => /> &2.
split => [z _ | _].
by rewrite -xorA xor_double_same_left.
split => [z _ | _ z _].
by rewrite 2!dbits1E.
split => [| _].
apply dbits_fu.
by rewrite -xorA xor_double_same_left.
call (_ : true). (* last statement of each program must be call *)
wp.
call (_ : true).
auto => />.
by rewrite xor_double_same_right.
qed.
lemma Sec &m :
exists (Sim <: SIM{-GReal}),
Pr[GReal(Adv).main() @ &m : res] =
Pr[GIdeal(Sim, Adv).main() @ &m : res].
proof.
exists Sim.
by byequiv GReal_GIdeal.
qed.
end section.
(* security theorem *)
lemma Security (Adv <: ADV{-GReal}) &m :
exists (Sim <: SIM{-GReal}), (* there is a simulator that can't read/write
GReal.pad *)
Pr[GReal(Adv).main() @ &m : res] =
Pr[GIdeal(Sim, Adv).main() @ &m : res].
proof.
apply (Sec Adv &m).
qed.