-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathesrgan_baseline_16S2.yml
205 lines (169 loc) · 4.13 KB
/
esrgan_baseline_16S2.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# General Settings
name: esrgan_baseline_16S2
model_type: SSRESRGANModel
scale: 4
num_gpu: auto
manual_seed: 0
# USM the Ground-Truth
l1_gt_usm: True
percep_gt_usm: True
gan_gt_usm: False
# Feed the discriminator the same low-res images as the generator receives
feed_disc_lr: True
# Dataset and Dataloader Settings
datasets:
train:
name: train
type: S2NAIPDataset
sentinel2_path: /data/piperw/data/ssr_data/train_urban_set/sentinel2
naip_path: /data/piperw/data/ssr_data/train_urban_set/naip
tile_weights: /data/piperw/data/ssr_data/train_tile_weights/urban_set_weights.json
use_shuffle: False # shuffle must be false if using tile_weights
num_worker_per_gpu: 32
batch_size_per_gpu: 128
n_s2_images: 16
s2_bands: [tci]
io_backend:
type: disk
val:
name: validation
type: S2NAIPDataset
sentinel2_path: /data/piperw/data/ssr_data/small_val_set/sentinel2
naip_path: /data/piperw/data/ssr_data/small_val_set/naip
use_shuffle: False
n_s2_images: 16
s2_bands: [tci]
io_backend:
type: disk
test_datasets:
test:
name: test
type: S2NAIPDataset
phase: test
scale: 4
sentinel2_path: /data/piperw/data/ssr_data/small_val_set/sentinel2
naip_path: /data/piperw/data/ssr_data/small_val_set/naip
use_shuffle: False
n_s2_images: 16
io_backend:
type: disk
# Network Structures
network_g:
type: SSR_RRDBNet
num_in_ch: 48 # number of Sentinel2 images * 3 channels (RGB)
num_out_ch: 3
num_feat: 64
num_block: 23
num_grow_ch: 32
network_d:
type: SSR_UNetDiscriminatorSN
num_in_ch: 51 # RGB of Real/Fake image + [optional] old high-res image + [optional] low-res images
num_feat: 64
skip_connection: True
# Load in existing weights to the generator and discriminator
# Uncomment pretrain_network_g and pretrain_network_d and add paths to your weights
path:
#pretrain_network_g: experiments/sample_net_g.pth
param_key_g: params_ema
strict_load_g: true
#pretrain_network_d: experiments/sample_net_d.pth
param_key_d: params
strict_load_d: true
resume_state: ~
#experiments_root: /results/experiments/
# Training Settings
train:
ema_decay: 0.999
optim_g:
type: Adam
lr: !!float 1e-4
weight_decay: 0
betas: [0.9, 0.99]
optim_d:
type: Adam
lr: !!float 1e-4
weight_decay: 0
betas: [0.9, 0.99]
scheduler:
type: MultiStepLR
milestones: [400000]
gamma: 0.5
total_iter: 100000000
warmup_iter: -1 # no warm up
# Losses
pixel_opt:
type: L1Loss
loss_weight: 1.0
reduction: mean
# Perceptual Loss (content and style losses)
perceptual_opt:
type: PerceptualLoss
layer_weights:
# before relu
'conv1_2': 0.1
'conv2_2': 0.1
'conv3_4': 1
'conv4_4': 1
'conv5_4': 1
vgg_type: vgg19
use_input_norm: true
perceptual_weight: !!float 1.0
style_weight: 0
range_norm: false
criterion: l1
# GAN Loss
gan_opt:
type: GANLoss
gan_type: vanilla
real_label_val: 1.0
fake_label_val: 0.0
loss_weight: !!float 1e-1
net_d_iters: 1
net_d_init_iters: 0
# Validation Settings
val:
val_freq: !!float 5e6
save_img: False
metrics:
psnr:
type: calculate_psnr
crop_border: 4
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 4
test_y_channel: false
# Testing Settings
test:
save_img: True
metrics:
psnr:
type: calculate_psnr
crop_border: 4
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 4
test_y_channel: false
cpsnr:
type: calculate_cpsnr
crop_border: 4
test_y_channel: false
lpips:
type: calculate_lpips
lpips_model: vgg
clipscore:
type: calculate_clipscore
clip_model: clipa-ViT-bigG-14 # see ssr/metrics/clipscore.py for currently supported models
# Logging Settings
logger:
print_freq: 1000
save_checkpoint_freq: !!float 5e3
use_tb_logger: true
wandb:
project: satlas-super-res
resume_id: ~
# Dist Training Settings
dist_params:
backend: nccl
port: 29500