-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathWOA.py
163 lines (106 loc) · 5.46 KB
/
WOA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 27 12:46:20 2019
@author: Ibrahim Aljarah, and Ruba Abu Khurma
"""
import random
import numpy
import math
from solution import solution
import time
import transfer_functions_benchmark
import fitnessFUNs
def WOA(objf,lb,ub,dim,SearchAgents_no,Max_iter,trainInput,trainOutput):
#dim=30
#SearchAgents_no=50
#lb=-100
#ub=100
#Max_iter=500
# initialize position vector and score for the leader
Leader_pos=numpy.zeros(dim)
Leader_score=float("inf") #change this to -inf for maximization problems
#Initialize the positions of search agents
# Positions=numpy.random.uniform(0,1,(SearchAgents_no,dim)) *(ub-lb)+lb #generating continuous individuals
Positions=numpy.random.randint(2, size=(SearchAgents_no,dim))#generating binary individuals
#Initialize convergence
convergence_curve1=numpy.zeros(Max_iter)
convergence_curve2=numpy.zeros(Max_iter)
############################
s=solution()
print("WOA is optimizing \""+objf.__name__+"\"")
timerStart=time.time()
s.startTime=time.strftime("%Y-%m-%d-%H-%M-%S")
############################
t=0 # Loop counter
# Main loop
while t<Max_iter:
for i in range(0,SearchAgents_no):
# Return back the search agents that go beyond the boundaries of the search space
#Positions[i,:]=checkBounds(Positions[i,:],lb,ub)
# Positions[i,:]=numpy.clip(Positions[i,:], lb, ub)
# the following statement insures that at least one feature is selected
#(i.e the randomly generated individual has at least one value 1)
while numpy.sum(Positions[i,:])==0:
Positions[i,:]=numpy.random.randint(2, size=(1,dim))
# Calculate objective function for each search agent
fitness=objf(Positions[i,:],trainInput,trainOutput,dim);
# Update the leader
if fitness<Leader_score: # Change this to > for maximization problem
Leader_score=fitness; # Update alpha
Leader_pos=Positions[i,:].copy() # copy current whale position into the leader position
featurecount=0
for f in range(0,dim):
if Leader_pos[f]==1:
featurecount=featurecount+1
convergence_curve1[t]=Leader_score
convergence_curve2[t]=featurecount
if (t%1==0):
print(['At iteration '+ str(t)+ ' the best fitness on trainig is: '+ str(Leader_score)+'the best number of features: '+str(featurecount)]);
a=2-t*((2)/Max_iter); # a decreases linearly fron 2 to 0 in Eq. (2.3)
# a2 linearly decreases from -1 to -2 to calculate t in Eq. (3.12)
a2=-1+t*((-1)/Max_iter);
# Update the Position of search agents
for i in range(0,SearchAgents_no):
r1=random.random() # r1 is a random number in [0,1]
r2=random.random() # r2 is a random number in [0,1]
A=2*a*r1-a # Eq. (2.3) in the paper
C=2*r2 # Eq. (2.4) in the paper
b=1; # parameters in Eq. (2.5)
l=(a2-1)*random.random()+1 # parameters in Eq. (2.5)
p = random.random() # p in Eq. (2.6)
for j in range(0,dim):
if p<0.5:
if abs(A)>=1:
rand_leader_index = math.floor(SearchAgents_no*random.random());
X_rand = Positions[rand_leader_index, :]
D_X_rand=abs(C*X_rand[j]-Positions[i,j])
Positions[i,j]=X_rand[j]-A*D_X_rand #update statement
Positions[i,j]= transfer_functions_benchmark.v1(Positions[i,j])
elif abs(A)<1:
D_Leader=abs(C*Leader_pos[j]-Positions[i,j])
Positions[i,j]=Leader_pos[j]-A*D_Leader #update statement
ss= transfer_functions_benchmark.s1(Positions[i,j])
if (random.random()<ss):
Positions[i,j]=1;
else:
Positions[i,j]=0;
elif p>=0.5:
distance2Leader=abs(Leader_pos[j]-Positions[i,j])
# Eq. (2.5)
Positions[i,j]=distance2Leader*math.exp(b*l)*math.cos(l*2*math.pi)+Leader_pos[j]
Positions[i,j]= transfer_functions_benchmark.v1(Positions[i,j])
ss= transfer_functions_benchmark.s1(Positions[i,j])
if (random.random()<ss):
Positions[i,j]=1;
else:
Positions[i,j]=0;
t=t+1
timerEnd=time.time()
s.endTime=time.strftime("%Y-%m-%d-%H-%M-%S")
s.executionTime=timerEnd-timerStart
s.bestIndividual=Leader_pos
s.convergence1=convergence_curve1
s.convergence2=convergence_curve2
s.optimizer="WOA"
s.objfname=objf.__name__
return s