-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQCD_report.smk
executable file
·326 lines (263 loc) · 17.3 KB
/
QCD_report.smk
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# Author: Ali Pirani
configfile: "config/config.yaml"
import pandas as pd
import os
import json
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
samples_df = pd.read_csv(config["samples"])
SAMPLE = list(samples_df['sample_id'])
PREFIX = config["prefix"]
SHORTREADS = list(samples_df['sample_id'])
if not os.path.exists("results/" + PREFIX):
os.system("mkdir %s" % "results/" + PREFIX)
# Organize reports directory
prefix = PREFIX
outdir = "results/%s" % prefix
report_dir = outdir + "/%s_Report" % prefix
report_script_dir = report_dir + "/scripts"
report_data_dir = report_dir + "/data"
report_multiqc_dir = report_dir + "/multiqc"
report_fig_dir = report_dir + "/fig"
isExist = os.path.exists(report_dir)
if not isExist:
os.makedirs(report_dir)
isExist = os.path.exists(report_script_dir)
if not isExist:
os.makedirs(report_script_dir)
isExist = os.path.exists(report_data_dir)
if not isExist:
os.makedirs(report_data_dir)
isExist = os.path.exists(report_multiqc_dir)
if not isExist:
os.makedirs(report_multiqc_dir)
isExist = os.path.exists(report_fig_dir)
if not isExist:
os.makedirs(report_fig_dir)
def coverage_report(prefix, outdir):
prefix = prefix.pop()
report_dir = str(outdir.pop()) + "/%s_Report" % prefix
# Generate Coverage report
final_coverage_file = "%s/data/%s_Final_Coverage.txt" % (report_dir, prefix)
f3=open(final_coverage_file, 'w+')
header = "Sample,Total_reads,Total_bp,MeanReadLength,Coverage\n"
f3.write(header)
for sampl in SAMPLE:
coverage_json = "results/%s/%s/raw_coverage/%s_coverage.json" % (prefix, sampl, sampl)
f = open(coverage_json)
data = json.load(f)
# data = json.loads(coverage_json)
f3.write("%s,%s,%s,%s,%s\n" % (sampl, data['qc_stats']['read_total'], data['qc_stats']['total_bp'], data['qc_stats']['read_mean'], data['qc_stats']['coverage']))
f3.close()
Coverage = pd.read_csv(final_coverage_file, sep=',', header=0)
Coverage = Coverage.replace(['_R1.fastq.gz'], '', regex=True)
#print ("Number of Samples in Coverage Report - %s" % len(Coverage))
#Coverage_NEG_CNTL = Coverage[Coverage.Sample.str.match('(.*NEG*)')]
#print ("Number of Negative Control samples %s" % len(Coverage_NEG_CNTL))
#print ("Number of Negative Control samples with > 100X coverage %s" % len(Coverage_NEG_CNTL[Coverage_NEG_CNTL['Coverage'] > 100]))
#Coverage_dist = Coverage.sort_values(by='Coverage',ascending=False).plot(x='Sample_name', y='Coverage', kind="barh", title="Estimated Genome Coverage", figsize=(20, 20), fontsize=40).get_figure()
#Coverage_dist.savefig('%s/%s_Coverage_distribution.pdf' % (report_dir, prefix))
def kraken_report(prefix, outdir):
prefix = prefix.pop()
outdir = outdir.pop()
# Organize reports directory
report_dir = str(outdir) + "/%s_Report" % prefix
report_script_dir = str(outdir) + "/%s_Report/scripts" % prefix
kraken_dir = str(outdir) + "/*/kraken"
kraken_summary_script = open("%s/kraken_summary.sh" % report_script_dir, 'w+')
kraken_summary_script.write("echo \"Sample,Percentage of reads for Species,# of reads for Species, Species\" > %s/data/%s_Kraken_report_final.csv\n" % (report_dir, prefix))
kraken_summary_script.write("for i in results/%s/*/kraken/*_kraken_report.tsv; do grep -w 'S' $i | sort -k1n | tail -n1; done > /tmp/Kraken_report_temp.txt\n" % prefix)
kraken_summary_script.write("ls -d results/%s/*/kraken/*_kraken_report.tsv | awk -F'/' '{print $NF}' | sed 's/_kraken_report.tsv//g' > %s/data/samplenames.txt\n" % (prefix, report_dir))
kraken_summary_script.write("paste %s/data/samplenames.txt /tmp/Kraken_report_temp.txt > /tmp/Kraken_report_combined.txt\n" % (report_dir))
kraken_summary_script.write("awk -F'\\t' 'BEGIN{OFS=\",\"};{print $1, $2, $3, $7}' /tmp/Kraken_report_combined.txt >> %s/data/%s_Kraken_report_final.csv\n" % (report_dir, prefix))
kraken_summary_script.write("sed -i 's/\s//g' %s/data/%s_Kraken_report_final.csv\n" % (report_dir, prefix))
kraken_summary_script.close()
os.system("bash %s/kraken_summary.sh" % report_script_dir)
def summary(prefix, outdir):
prefix = prefix.pop()
outdir = outdir.pop()
# Organize reports directory
report_dir = str(outdir) + "/%s_Report" % prefix
report_script_dir = str(outdir) + "/%s_Report/scripts" % prefix
Coverage = pd.read_csv("results/%s/%s_Report/data/%s_Final_Coverage.txt" % (prefix, prefix, prefix), sep=',', header=0)
Coverage.rename(columns = {'Sample_name':'Sample'}, inplace = True)
kraken = pd.read_csv("results/%s/%s_Report/data/%s_Kraken_report_final.csv" % (prefix, prefix, prefix), sep=',', header=0)
mlst = pd.read_csv("results/%s/%s_Report/data/%s_MLST_results.csv" % (prefix, prefix, prefix), sep='\t', header=0)
mlst = mlst.replace(['_contigs_l1000.fasta'], '', regex=True)
mlst = mlst.replace(['results/.*/spades/'], '', regex=True)
mlst = mlst.replace(['%s' % prefix], '', regex=True)
multiqc_fastqc_summary = pd.read_csv("results/%s/%s_Report/multiqc/%s_QC_report_data/multiqc_fastqc.txt" % (prefix, prefix, prefix), sep='\t', header=0)
patternDel = "_R2"
filter = multiqc_fastqc_summary['Sample'].str.contains(patternDel)
multiqc_fastqc_summary = multiqc_fastqc_summary[~filter]
aftertrim_filter = multiqc_fastqc_summary['Sample'].str.contains("_R1_trim_paired")
raw_multiqc_fastqc_summary = multiqc_fastqc_summary[~aftertrim_filter]
raw_multiqc_fastqc_summary = raw_multiqc_fastqc_summary.replace(['_R1'], '', regex=True)
aftertrim_multiqc_fastqc_summary = multiqc_fastqc_summary[aftertrim_filter]
aftertrim_multiqc_fastqc_summary = aftertrim_multiqc_fastqc_summary.replace(['_R1_trim_paired'], '', regex=True)
aftertrim_multiqc_fastqc_summary = aftertrim_multiqc_fastqc_summary.add_prefix('After_trim_')
aftertrim_multiqc_fastqc_summary.rename(columns = {'After_trim_Sample':'Sample'}, inplace = True)
multiqc_general_stats_summary = pd.read_csv("results/%s/%s_Report/multiqc/%s_QC_report_data/multiqc_general_stats.txt" % (prefix, prefix, prefix), sep='\t', header=0)
quast_filter = multiqc_general_stats_summary['Sample'].str.contains("_contigs_l1000")
multiqc_quast = multiqc_general_stats_summary[quast_filter]
multiqc_quast = multiqc_quast.replace(['_contigs_l1000'], '', regex=True)
if 'QUAST_mqc-generalstats-quast-N50' in multiqc_quast.columns and 'QUAST_mqc-generalstats-quast-Total_length' in multiqc_quast.columns:
multiqc_quast = multiqc_quast[["Sample", "QUAST_mqc-generalstats-quast-N50", "QUAST_mqc-generalstats-quast-Total_length"]]
multiqc_quast = multiqc_quast.rename(columns={"QUAST_mqc-generalstats-quast-N50": "N50", "QUAST_mqc-generalstats-quast-Total_length": "Total length"})
elif 'N50' in multiqc_quast.columns and 'Total length' in multiqc_quast.columns:
multiqc_quast = multiqc_quast[["Sample", "N50", "Total length"]]
#multiqc_quast = multiqc_quast[["Sample", "N50", "Total length"]]
contig_distribution = pd.read_csv("results/%s/%s_Report/multiqc/%s_QC_report_data/mqc_quast_num_contigs_1.txt" % (prefix, prefix, prefix), sep='\t', header=0)
contig_distribution = contig_distribution.replace(['_contigs_l1000'], '', regex=True)
contig_distribution['Total # of contigs'] = contig_distribution.sum(axis=1, numeric_only=True)
contig_distribution = contig_distribution[['Sample', 'Total # of contigs']]
QC_summary_temp1 = pd.merge(Coverage, mlst, on=["Sample", "Sample"], how='left')
QC_summary_temp2 = pd.merge(QC_summary_temp1, kraken, on=["Sample", "Sample"], how='left')
QC_summary_temp3 = pd.merge(QC_summary_temp2, raw_multiqc_fastqc_summary, on=["Sample", "Sample"], how='left')
QC_summary_temp4 = pd.merge(QC_summary_temp3, aftertrim_multiqc_fastqc_summary, on=["Sample", "Sample"], how='left')
QC_summary_temp5 = pd.merge(QC_summary_temp4, multiqc_quast, on=["Sample", "Sample"], how='left')
QC_summary_temp6 = pd.merge(QC_summary_temp5, contig_distribution, on=["Sample", "Sample"], how='left')
QC_summary_temp7 = QC_summary_temp6[["Sample" , "Total_reads" , "Total_bp" , "MeanReadLength" , "Coverage" , "Scheme" , "ST" , "PercentageofreadsforSpecies" , "#ofreadsforSpecies" , "Species" , "After_trim_per_base_sequence_content" , "After_trim_overrepresented_sequences" , "After_trim_%GC" , "After_trim_Total Bases" , "After_trim_Total Sequences" , "After_trim_median_sequence_length" , "After_trim_avg_sequence_length" , "After_trim_total_deduplicated_percentage" , "After_trim_Sequence length" , "After_trim_adapter_content" , "N50" , "Total length" , "Total # of contigs"]]
QC_check_condition = [
(QC_summary_temp7['Total # of contigs'] > config["max_contigs"]),
(QC_summary_temp7['Total # of contigs'] < config["min_contigs"]),
(QC_summary_temp7['Total length'] > config["assembly_length"]),
(QC_summary_temp7['Coverage'] < config["coverage"]),
(QC_summary_temp7['Total # of contigs'].isnull()),
]
status = ['FAIL', 'FAIL', 'FAIL', 'FAIL', "Run FAIL"]
QC_summary_temp7['QC Check'] = np.select(QC_check_condition, status)
QC_summary_temp7.to_csv('results/%s/%s_Report/data/%s_QC_summary.csv' % (prefix, prefix, prefix), index=False)
def plot(prefix, outdir):
prefix = prefix.pop()
outdir = outdir.pop()
# Organize reports directory
report_dir = str(outdir) + "/%s_Report" % prefix
report_script_dir = str(outdir) + "/%s_Report/scripts" % prefix
QC_summary = pd.read_csv('results/%s/%s_Report/data/%s_QC_summary.csv' % (prefix, prefix, prefix), sep=',', header=0)
Coverage = pd.read_csv("results/%s/%s_Report/data/%s_Final_Coverage.txt" % (prefix, prefix, prefix), sep=',', header=0)
Coverage_dist = QC_summary.sort_values(by='Coverage',ascending=False).plot(x='Sample', y='Coverage', kind="barh", title="Estimated Genome Coverage", figsize=(20, 20), fontsize=40).get_figure()
Coverage_dist.savefig('%s/fig/%s_Coverage_distribution.png' % (report_dir, prefix), dpi=600)
ax1 = QC_summary.plot.scatter(x = 'After_trim_total_deduplicated_percentage', y = 'After_trim_Total Sequences', c = 'DarkBlue')
fig = ax1.get_figure()
fig.savefig('%s/fig/%s_raw_dedup_vs_totalsequence.png' % (report_dir, prefix), dpi=600)
ax1 = QC_summary.plot.scatter(x = 'After_trim_total_deduplicated_percentage', y = 'After_trim_Total Sequences', c = 'DarkBlue')
fig = ax1.get_figure()
fig.savefig('%s/fig/%s_aftertrim_dedup_vs_totalsequence.png' % (report_dir, prefix), dpi=600)
ax1.cla()
ax = sns.scatterplot(x=QC_summary['Total # of contigs'], y=QC_summary['After_trim_%GC'], hue=QC_summary['Species'], s=100, style=QC_summary['Species'])
#g.legend(loc='right', bbox_to_anchor=(1.30, 0.5), ncol=1)
#fig2 = g.get_figure()
#fig2.savefig('%s/fig/%s_Assembly_contig_vs_Aftertrim_GC.png' % (report_dir, prefix), dpi=600)
plt.savefig('%s/fig/%s_Assembly_contig_vs_Aftertrim_GC.png' % (report_dir, prefix), dpi=200)
ax.cla()
ax = sns.scatterplot(x=QC_summary['Total length'], y=QC_summary['After_trim_%GC'], hue=QC_summary['Species'], s=100, style=QC_summary['Species'])
#g.legend(loc='right', bbox_to_anchor=(1.30, 0.5), ncol=1)
#fig2 = g.get_figure()
#fig2.savefig('%s/fig/%s_Assembly_contig_vs_Aftertrim_GC.png' % (report_dir, prefix), dpi=600)
plt.savefig('%s/fig/%s_Assembly_length_vs_Aftertrim_GC.png' % (report_dir, prefix), dpi=200)
ax.cla()
ax = sns.scatterplot(x=QC_summary['Total # of contigs'], y=QC_summary['N50'], hue=QC_summary['Species'], s=100, style=QC_summary['Species'])
#g.legend(loc='right', bbox_to_anchor=(1.30, 0.5), ncol=1)
#fig2 = g.get_figure()
#fig2.savefig('%s/fig/%s_Assembly_contig_vs_N50.png' % (report_dir, prefix), dpi=600)
plt.savefig('%s/fig/%s_Assembly_contig_vs_N50.png' % (report_dir, prefix), dpi=200)
ax.cla()
ax = sns.scatterplot(x=QC_summary['Total # of contigs'], y=QC_summary['Coverage'], hue=QC_summary['Species'], s=100, style=QC_summary['Species'])
#g.legend(loc='right', bbox_to_anchor=(1.30, 0.5), ncol=1)
#fig2 = g.get_figure()
#fig2.savefig('%s/fig/%s_Assembly_contig_vs_N50.png' % (report_dir, prefix), dpi=600)
plt.savefig('%s/fig/%s_Assembly_contig_vs_Coverage.png' % (report_dir, prefix), dpi=200)
ax.cla()
ax = sns.scatterplot(x=QC_summary['Total # of contigs'], y=QC_summary['Total length'], hue=QC_summary['Species'], s=100, style=QC_summary['Species'])
#g.legend(loc='right', bbox_to_anchor=(1.30, 0.5), ncol=1)
#fig2 = g.get_figure()
#fig2.savefig('%s/fig/%s_Assembly_contig_vs_N50.png' % (report_dir, prefix), dpi=600)
plt.savefig('%s/fig/%s_Assembly_contig_vs_length.png' % (report_dir, prefix), dpi=200)
ax.cla()
rule all:
input:
coverage_report = expand("results/{prefix}/{prefix}_Report/data/{prefix}_Final_Coverage.txt", prefix=PREFIX),
kraken_report = expand("results/{prefix}/{prefix}_Report/data/{prefix}_Kraken_report_final.csv", prefix=PREFIX),
mlst_report = expand("results/{prefix}/{prefix}_Report/data/{prefix}_MLST_results.csv", prefix=PREFIX),
multiqc_report = expand("results/{prefix}/{prefix}_Report/multiqc/{prefix}_QC_report.html", prefix=PREFIX),
QC_summary = expand("results/{prefix}/{prefix}_Report/data/{prefix}_QC_summary.csv", prefix=PREFIX),
QC_plot = expand("results/{prefix}/{prefix}_Report/fig/{prefix}_Coverage_distribution.png", prefix=PREFIX),
rule coverage_report:
input:
outdir = lambda wildcards: expand(f"results/{wildcards.prefix}/"),
output:
coverage = f"results/{{prefix}}/{{prefix}}_Report/data/{{prefix}}_Final_Coverage.txt",
params:
prefix = "{prefix}",
run:
coverage_report({params.prefix}, {input.outdir})
rule amr_report:
input:
outdir = lambda wildcards: expand(f"results/{wildcards.prefix}/"),
output:
amr_summary = f"results/{{prefix}}/report/{{prefix}}_AMR_minimal_report.csv",
params:
prefix = "{prefix}",
phandango = "--no_tree"
conda:
"envs/ariba.yaml"
shell:
"ariba summary --preset minimal {params.phandango} {input.outdir}/report/{params.prefix}_AMR_minimal_report {input.outdir}/*/ariba_card/report.tsv && ariba summary --preset all {params.phandango} {input.outdir}/report/{params.prefix}_AMR_all_report {input.outdir}/*/ariba_card/report.tsv"
rule kraken_report:
input:
outdir = lambda wildcards: expand(f"results/{wildcards.prefix}/"),
output:
kraken_report = f"results/{{prefix}}/{{prefix}}_Report/data/{{prefix}}_Kraken_report_final.csv",
params:
prefix = "{prefix}",
run:
kraken_report({params.prefix}, {input.outdir})
rule multiqc:
input:
inputdir = lambda wildcards: expand(f"results/{wildcards.prefix}"),
coverage = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/data/{wildcards.prefix}_Final_Coverage.txt"),
kraken = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/data/{wildcards.prefix}_Kraken_report_final.csv"),
mlst = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/data/{wildcards.prefix}_MLST_results.csv"),
output:
multiqc_fastqc_report = f"results/{{prefix}}/{{prefix}}_Report/multiqc/{{prefix}}_QC_report.html",
params:
outdir = "results/{prefix}/{prefix}_Report",
prefix = "{prefix}",
conda:
"envs/multiqc.yaml"
shell:
"multiqc -f --export --outdir {params.outdir}/multiqc -n {params.prefix}_QC_report -i {params.prefix}_QC_report {input.inputdir}/*/quality_aftertrim/*_Forward {input.inputdir}/*/kraken {input.inputdir}/*/prokka {input.inputdir}/*/quast"
rule mlst:
input:
outdir = lambda wildcards: expand(f"results/{wildcards.prefix}/"),
output:
mlst_report = f"results/{{prefix}}/{{prefix}}_Report/data/{{prefix}}_MLST_results.csv",
params:
prefix = "{prefix}",
shell:
"echo \"Sample\tScheme\tST\" > {output.mlst_report} && cut -f1-3 {input.outdir}/*/mlst/report.tsv >> {output.mlst_report}"
rule Summary:
input:
outdir = lambda wildcards: expand(f"results/{wildcards.prefix}/"),
multiqc_fastqc_report = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/multiqc/{wildcards.prefix}_QC_report.html"),
coverage = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/data/{wildcards.prefix}_Final_Coverage.txt"),
kraken = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/data/{wildcards.prefix}_Kraken_report_final.csv"),
mlst = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/data/{wildcards.prefix}_MLST_results.csv"),
output:
QC_summary_report = f"results/{{prefix}}/{{prefix}}_Report/data/{{prefix}}_QC_summary.csv",
params:
prefix = "{prefix}",
run:
summary({params.prefix}, {input.outdir})
rule plot:
input:
outdir = lambda wildcards: expand(f"results/{wildcards.prefix}/"),
QC_summary_report = lambda wildcards: expand(f"results/{wildcards.prefix}/{wildcards.prefix}_Report/data/{wildcards.prefix}_QC_summary.csv"),
output:
QC_summary_report = f"results/{{prefix}}/{{prefix}}_Report/fig/{{prefix}}_Coverage_distribution.png",
params:
prefix = "{prefix}",
run:
plot({params.prefix}, {input.outdir})