-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_smoothmix.py
277 lines (217 loc) · 10.7 KB
/
train_smoothmix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import argparse
import time
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from architectures import ARCHITECTURES
from datasets import DATASETS, get_num_classes
from train_utils import AverageMeter, log, requires_grad_, test
from train_utils import prologue
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('dataset', type=str, choices=DATASETS)
parser.add_argument('arch', type=str, choices=ARCHITECTURES)
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=150, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch', default=256, type=int, metavar='N',
help='batchsize (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
help='initial learning rate', dest='lr')
parser.add_argument('--lr_step_size', type=int, default=50,
help='How often to decrease learning by gamma.')
parser.add_argument('--gamma', type=float, default=0.1,
help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--noise_sd', default=0.0, type=float,
help="standard deviation of Gaussian noise for data augmentation")
parser.add_argument('--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--id', default=None, type=int,
help='experiment id, `randint(10000)` if None')
#####################
# Options added by Salman et al. (2019)
parser.add_argument('--resume', action='store_true',
help='if true, tries to resume training from existing checkpoint')
parser.add_argument('--pretrained-model', type=str, default='',
help='Path to a pretrained model')
#####################
parser.add_argument('--num-noise-vec', default=1, type=int,
help="number of noise vectors. `m` in the paper.")
parser.add_argument('--alpha', default=1.0, type=float, help="step-size for adversarial attacks.")
parser.add_argument('--num-steps', default=8, type=int,
help="number of attack updates. `T` in the paper.")
parser.add_argument('--eta', default=1.0, type=float,
help="hyperparameter to control the relative strength of the mixup loss.")
parser.add_argument('--mix_step', default=0, type=int,
help="which sample to use for the clean side. `1` means to use of one-step adversary.")
parser.add_argument('--maxnorm_s', default=None, type=float)
parser.add_argument('--maxnorm', default=None, type=float)
parser.add_argument('--warmup', default=10, type=int)
args = parser.parse_args()
mode = f"smix_{args.alpha}_{args.num_steps}_m{args.mix_step}"
if args.maxnorm_s:
mode += f'_ms{args.maxnorm_s}'
if args.maxnorm:
mode += f'_max{args.maxnorm}'
args.outdir = f"logs/{args.dataset}/{mode}/eta_{args.eta}/num_{args.num_noise_vec}/noise_{args.noise_sd}"
def main():
train_loader, test_loader, criterion, model, optimizer, scheduler, \
starting_epoch, logfilename, model_path, device, writer = prologue(args)
args.n_classes = get_num_classes(args.dataset)
if args.maxnorm_s is None:
args.maxnorm_s = args.alpha * args.mix_step
attacker = SmoothMix_PGD(steps=args.num_steps, mix_step=args.mix_step,
alpha=args.alpha, maxnorm=args.maxnorm, maxnorm_s=args.maxnorm_s)
for epoch in range(starting_epoch, args.epochs):
args.warmup_v = np.min([1.0, (epoch + 1) / args.warmup])
attacker.maxnorm_s = args.warmup_v * args.maxnorm_s
before = time.time()
train_loss = train(train_loader, model, optimizer, epoch,
args.noise_sd, attacker, device, writer)
test_loss, test_acc = test(test_loader, model, criterion, epoch, args.noise_sd, device, writer, args.print_freq)
after = time.time()
log(logfilename, "{}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}".format(
epoch, after - before,
scheduler.get_lr()[0], train_loss, 0.0, test_loss, test_acc))
# In PyTorch 1.1.0 and later, you should call `optimizer.step()` before `lr_scheduler.step()`.
# See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
scheduler.step(epoch)
torch.save({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, model_path)
def _chunk_minibatch(batch, num_batches):
X, y = batch
batch_size = len(X) // num_batches
for i in range(num_batches):
yield X[i*batch_size : (i+1)*batch_size], y[i*batch_size : (i+1)*batch_size]
def _mixup_data(x1, x2, y1, n_classes):
'''Returns mixed inputs, pairs of targets, and lambda'''
device = x1.device
_eye = torch.eye(n_classes, device=device)
_unif = _eye.mean(0, keepdim=True)
lam = torch.rand(x1.size(0), device=device) / 2
mixed_x = (1 - lam).view(-1, 1, 1, 1) * x1 + lam.view(-1, 1, 1, 1) * x2
mixed_y = (1 - lam).view(-1, 1) * y1 + lam.view(-1, 1) * _unif
return mixed_x, mixed_y
def _avg_softmax(logits):
m = len(logits)
softmax = [F.softmax(logit, dim=1) for logit in logits]
avg_softmax = sum(softmax) / m
return avg_softmax
def train(loader: DataLoader, model, optimizer: Optimizer, epoch: int, noise_sd: float,
attacker, device: torch.device, writer=None):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
losses_reg = AverageMeter()
end = time.time()
# switch to train mode
model.train()
requires_grad_(model, True)
for i, batch in enumerate(loader):
# measure data loading time
data_time.update(time.time() - end)
mini_batches = _chunk_minibatch(batch, args.num_noise_vec)
for inputs, targets in mini_batches:
inputs, targets = inputs.to(device), targets.to(device)
batch_size = inputs.size(0)
noises = [torch.randn_like(inputs) * noise_sd for _ in range(args.num_noise_vec)]
requires_grad_(model, False)
model.eval()
inputs, inputs_adv = attacker.attack(model, inputs, targets, noises=noises)
model.train()
requires_grad_(model, True)
in_clean_c = torch.cat([inputs + noise for noise in noises], dim=0)
logits_c = model(in_clean_c)
targets_c = targets.repeat(args.num_noise_vec)
logits_c_chunk = torch.chunk(logits_c, args.num_noise_vec, dim=0)
clean_avg_sm = _avg_softmax(logits_c_chunk)
loss_xent = F.cross_entropy(logits_c, targets_c, reduction='none')
in_mix, targets_mix = _mixup_data(inputs, inputs_adv, clean_avg_sm, args.n_classes)
in_mix_c = torch.cat([in_mix + noise for noise in noises], dim=0)
targets_mix_c = targets_mix.repeat(args.num_noise_vec, 1)
logits_mix_c = F.log_softmax(model(in_mix_c), dim=1)
_, top1_idx = torch.topk(clean_avg_sm, 1)
ind_correct = (top1_idx[:, 0] == targets).float()
ind_correct = ind_correct.repeat(args.num_noise_vec)
loss_mixup = F.kl_div(logits_mix_c, targets_mix_c, reduction='none').sum(1)
loss = loss_xent.mean() + args.eta * args.warmup_v * (ind_correct * loss_mixup).mean()
losses.update(loss.item(), batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.avg:.3f}\t'
'Data {data_time.avg:.3f}\t'
'Loss {loss.avg:.4f}\t'.format(
epoch, i, len(loader), batch_time=batch_time,
data_time=data_time, loss=losses))
writer.add_scalar('loss/train', losses.avg, epoch)
writer.add_scalar('loss/adv', losses_reg.avg, epoch)
writer.add_scalar('batch_time', batch_time.avg, epoch)
return losses.avg
class SmoothMix_PGD(object):
def __init__(self,
steps: int,
mix_step: int,
alpha: Optional[float] = None,
maxnorm_s: Optional[float] = None,
maxnorm: Optional[float] = None) -> None:
super(SmoothMix_PGD, self).__init__()
self.steps = steps
self.mix_step = mix_step
self.alpha = alpha
self.maxnorm = maxnorm
if maxnorm_s is None:
self.maxnorm_s = alpha * mix_step
else:
self.maxnorm_s = maxnorm_s
def attack(self, model, inputs, labels, noises=None):
if inputs.min() < 0 or inputs.max() > 1: raise ValueError('Input values should be in the [0, 1] range.')
def _batch_l2norm(x):
x_flat = x.reshape(x.size(0), -1)
return torch.norm(x_flat, dim=1)
def _project(x, x0, maxnorm=None):
if maxnorm is not None:
eta = x - x0
eta = eta.renorm(p=2, dim=0, maxnorm=maxnorm)
x = x0 + eta
x = torch.clamp(x, 0, 1)
x = x.detach()
return x
adv = inputs.detach()
init = inputs.detach()
for i in range(self.steps):
if i == self.mix_step:
init = adv.detach()
adv.requires_grad_()
softmax = [F.softmax(model(adv + noise), dim=1) for noise in noises]
avg_softmax = sum(softmax) / len(noises)
logsoftmax = torch.log(avg_softmax.clamp(min=1e-20))
loss = F.nll_loss(logsoftmax, labels, reduction='sum')
grad = torch.autograd.grad(loss, [adv])[0]
grad_norm = _batch_l2norm(grad).view(-1, 1, 1, 1)
grad = grad / (grad_norm + 1e-8)
adv = adv + self.alpha * grad
adv = _project(adv, inputs, self.maxnorm)
init = _project(init, inputs, self.maxnorm_s)
return init, adv
if __name__ == "__main__":
main()