-
Notifications
You must be signed in to change notification settings - Fork 6
/
inference.py
235 lines (181 loc) · 9.94 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
from copy import deepcopy
from argparse import ArgumentParser
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from models import get_model_class, load_redo_model
from data import load_pretrain_datamodule, load_finetune_datamodule, load_segment_datamodule, get_image_ids
from data.transforms import get_normalization, FinetuneTransform
from utils import GradCAM, collect_outputs, accuracy
import utils.box_utils as box_utils
def cli_main():
parser = ArgumentParser()
parser.add_argument("--log_dir", default="logs", type=str, help="log directory")
parser.add_argument('--ckpt_name', default=None, type=str, help='name of checkpoint directory')
parser.add_argument("--ckpt_version", default=0, type=int, help="checkpoint version")
parser.add_argument("--ckpt_epoch", default='last', type=str, help="checkpoint epoch")
parser.add_argument("--seed", default=42, type=int, help="random seed")
parser.add_argument("--mode", default='lineval', type=str, help="inference mode")
parser.add_argument('--clf_type', default='lbfgs', type=str, help="classifier type")
parser.add_argument('--save_path', default=None, type=str, help="save boxes/masks in the path")
parser.add_argument('--cam_score', default='con', type=str, help="CAM score function")
parser.add_argument('--expand_res', default=1, type=int, help="expand resolution for CAM")
parser.add_argument('--cam_iters', default=1, type=int, help="CAM # of iterative refinements")
parser.add_argument('--apply_crf', action='store_true', help="apply CRF for segmentation masks")
parser.add_argument('--box_margin', default=0.2, type=float, help="margin for bounding boxes")
parser.add_argument('--box_threshold', default=None, type=float, help="threshold for bounding boxes")
parser.add_argument('--largest_box_only', action='store_true', help="store only the largest box")
parser.add_argument("--model", default="moco", type=str, help="pre-training model")
parser.add_argument("--normalize", default="coco", type=str, help="mean/std of pre-trained model")
parser.add_argument("--dataset", default="coco", type=str, help="dataset")
parser.add_argument("--batch_size", default=256, type=int, help="batch size per gpu")
parser.add_argument("--num_workers", default=8, type=int, help="num of workers per GPU")
if parser.parse_known_args()[0].model != 'redo':
model_class = get_model_class(parser.parse_known_args()[0].model) # model class
parser = model_class.add_model_specific_args(parser) # model-specific arguments
parser = pl.Trainer.add_argparse_args(parser) # trainer arguments
args = parser.parse_args()
pl.seed_everything(1234)
# load model
if args.model in ['moco', 'byol']:
# compatible with pretrained models
import sys
sys.path.insert(0, './data')
args.ckpt_dir = os.path.join(args.log_dir, args.ckpt_name, 'version_{}'.format(args.ckpt_version))
args.ckpt_path = os.path.join(args.ckpt_dir, 'checkpoints', '{}.ckpt'.format(args.ckpt_epoch))
model = model_class.load_from_checkpoint(args.ckpt_path)
if args.mode in ['seg', 'save_box', 'save_mask']: # use CAM model
model = GradCAM(model.encoder, projector=model.projector, expand_res=args.expand_res)
elif args.model == 'redo':
args.image_size = 128
args.normalize = 'redo'
model = load_redo_model(args.dataset)
else:
raise ValueError('No matching model class')
print('Model: {} Dataset: {} Mode: {}'.format(args.model, args.dataset, args.mode))
if args.mode == 'lineval':
lineval(args, model)
elif args.mode == 'seg':
seg(args, model)
elif args.mode == 'save_box':
save_box(args, model)
elif args.mode == 'save_mask':
save_mask(args, model)
else:
raise ValueError('No matching inference mode')
def lineval(args, model, device='cuda'):
model = model.to(device)
model.eval()
normalize = get_normalization(args.normalize)
t_norm = FinetuneTransform(image_size=args.image_size, normalize=normalize, crop='center')
dm = load_finetune_datamodule(args.dataset, batch_size=args.batch_size, num_workers=args.num_workers,
train_transform=t_norm, test_transform=t_norm)
print('Computing features...')
with torch.no_grad():
X_train, Y_train = collect_outputs(model, dm.train_dataloader())
X_val, Y_val = collect_outputs(model, dm.val_dataloader())
X_test, Y_test = collect_outputs(model, dm.test_dataloader())
# train and evaluate linear classifier
print('Evaluating classifier...')
if args.clf_type == 'sgd':
raise NotImplementedError
elif args.clf_type == 'lbfgs':
def build_step(X, Y, classifier, optimizer, weight):
def step():
optimizer.zero_grad()
loss = F.cross_entropy(classifier(X), Y)
for p in classifier.parameters():
loss = loss + p.pow(2).mean().mul(0.5 * weight)
loss.backward()
return loss
return step
X_train, Y_train = X_train.to(device), Y_train.to(device)
X_val, Y_val = X_val.to(device), Y_val.to(device)
X_test, Y_test = X_test.to(device), Y_test.to(device)
classifier = nn.Linear(model.encoder.feat_dim, dm.num_classes).to(device)
nn.init.normal_(classifier.weight, mean=0.0, std=0.01)
nn.init.normal_(classifier.bias, mean=0.0, std=0.01)
optimizer = torch.optim.LBFGS(classifier.parameters(), max_iter=1000)
best_acc = 0
best_classifier = None
for w in torch.logspace(-6, 5, steps=45).tolist():
optimizer.step(build_step(X_train, Y_train, classifier, optimizer, w))
train_acc = accuracy(X_train, Y_train, classifier)
val_acc = accuracy(X_val, Y_val, classifier)
test_acc = accuracy(X_test, Y_test, classifier)
print('w: {:13.6f} Train acc.: {:.2f} Val acc.:{:.2f} Test acc.:{:.2f}'.format(
w, train_acc * 100, val_acc * 100, test_acc * 100))
if val_acc > best_acc:
best_acc = val_acc
best_classifier = deepcopy(classifier)
test_acc = accuracy(X_test, Y_test, best_classifier)
print('Test acc.:{:.2f}'.format(test_acc * 100))
else:
raise NotImplementedError
with open(os.path.join(args.ckpt_dir, 'lineval.txt'), 'a') as f:
f.write('{}\t{}\te{}\t{:.2f}\n'.format(args.dataset, args.clf_type, args.ckpt_epoch, test_acc * 100))
def seg(args, model, device='cuda'):
model = model.to(device)
model.eval()
normalize = get_normalization(args.normalize)
t_norm = FinetuneTransform(image_size=args.image_size, normalize=normalize, crop='none')
t_orig = FinetuneTransform(image_size=args.image_size, crop='none')
print('Computing masks...')
dm = load_segment_datamodule(args.dataset, batch_size=args.batch_size, num_workers=args.num_workers,
transform=t_norm, target_transform=t_orig)
loader = dm.test_dataloader() # test loader
pred_masks, gt_masks = compute_masks(args, model, loader)
if args.apply_crf:
loader.dataset.transform = t_orig # original images
images = torch.cat([x for x, _ in loader])
pred_masks = box_utils.apply_crf(images, pred_masks)
pred_masks = box_utils.clean_mask(pred_masks)
print('Evaluating segmentation...')
miou = box_utils.compute_mask_miou(gt_masks, pred_masks)
print('Mask mIoU: {:.4f}'.format(miou))
def save_box(args, model, device='cuda'):
model = model.to(device)
model.eval()
normalize = get_normalization(args.normalize)
t_norm = FinetuneTransform(image_size=args.image_size, normalize=normalize, crop='none')
t_orig = FinetuneTransform(image_size=args.image_size, crop='none')
print('Computing masks...')
dm = load_pretrain_datamodule(args.dataset, batch_size=args.batch_size, num_workers=args.num_workers,
train_transform=t_norm, shuffle=False, drop_last=False)
loader = dm.train_dataloader() # train loader
image_ids = get_image_ids(loader.dataset)
pred_masks, _ = compute_masks(args, model, loader)
if args.apply_crf:
loader.dataset.transform = t_orig # original images
images = torch.cat([x for x, _ in loader])
pred_masks = box_utils.apply_crf(images, pred_masks)
pred_masks = box_utils.clean_mask(pred_masks, single=args.single_instance, min_obj_scale=0.01)
pred_boxes = box_utils.extract_boxes(pred_masks, image_size=args.image_size, margin=args.box_margin)
pred_boxes = {img_id: boxes for img_id, boxes in zip(image_ids, pred_boxes)}
box_utils.save_boxes(pred_boxes, args.save_box_path)
def save_mask(args, model, device='cuda'):
model = model.to(device)
model.eval()
normalize = get_normalization(args.normalize)
t_norm = FinetuneTransform(image_size=args.image_size, normalize=normalize, crop='none')
t_orig = FinetuneTransform(image_size=args.image_size, crop='none')
print('Computing masks...')
dm = load_pretrain_datamodule(args.dataset, batch_size=args.batch_size, num_workers=args.num_workers,
train_transform=t_norm, shuffle=False, drop_last=False)
loader = dm.train_dataloader() # train loader
image_ids = get_image_ids(loader.dataset)
pred_masks, _ = compute_masks(args, model, loader)
pred_masks = {img_id: mask for img_id, mask in zip(image_ids, pred_masks)}
box_utils.save_masks(pred_masks, args.save_path, loader.dataset.root)
def compute_masks(args, model, loader):
forward_kwargs = {}
if isinstance(model, GradCAM):
forward_kwargs['score_type'] = args.cam_score
if args.cam_score == 'con':
forward_kwargs['n_iters'] = args.cam_iters
x, y = collect_outputs(model, loader, **forward_kwargs)
return x, y
if __name__ == '__main__':
cli_main()