-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathgradcam_utils.py
263 lines (197 loc) · 9.79 KB
/
gradcam_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
### Adapted from https://github.com/stefannc/GradCAM-Pytorch/blob/07fd6ece5010f7c1c9fbcc8155a60023819111d7/example.ipynb retrieved Mar 3 2021 #####
import cv2
import numpy as np
import torch
def visualize_cam(mask, img):
"""Make heatmap from mask and synthesize GradCAM result image using heatmap and img.
Args:
mask (torch.tensor): mask shape of (1, 1, H, W) and each element has value in range [0, 1]
img (torch.tensor): img shape of (1, 3, H, W) and each pixel value is in range [0, 1]
Return:
heatmap (torch.tensor): heatmap img shape of (3, H, W)
result (torch.tensor): synthesized GradCAM result of same shape with heatmap.
"""
mask = mask.cpu()
heatmap = cv2.applyColorMap(np.uint8(255 * mask.squeeze()), cv2.COLORMAP_JET)
heatmap = torch.from_numpy(heatmap).permute(2, 0, 1).float().div(255)
b, g, r = heatmap.split(1)
heatmap = torch.cat([r, g, b])
result = heatmap+img.cpu()
result = result.div(result.max()).squeeze()
return heatmap, result
def find_resnet_layer(arch, target_layer_name):
"""Find resnet layer to calculate GradCAM and GradCAM++
Args:
arch: default torchvision densenet models
target_layer_name (str): the name of layer with its hierarchical information. please refer to usages below.
target_layer_name = 'conv1'
target_layer_name = 'layer1'
target_layer_name = 'layer1_basicblock0'
target_layer_name = 'layer1_basicblock0_relu'
target_layer_name = 'layer1_bottleneck0'
target_layer_name = 'layer1_bottleneck0_conv1'
target_layer_name = 'layer1_bottleneck0_downsample'
target_layer_name = 'layer1_bottleneck0_downsample_0'
target_layer_name = 'avgpool'
target_layer_name = 'fc'
Return:
target_layer: found layer. this layer will be hooked to get forward/backward pass information.
"""
if 'layer' in target_layer_name:
hierarchy = target_layer_name.split('_')
layer_num = int(hierarchy[0].lstrip('layer'))
if layer_num == 1:
target_layer = arch.layer1
elif layer_num == 2:
target_layer = arch.layer2
elif layer_num == 3:
target_layer = arch.layer3
elif layer_num == 4:
target_layer = arch.layer4
else:
raise ValueError('unknown layer : {}'.format(target_layer_name))
if len(hierarchy) >= 2:
bottleneck_num = int(hierarchy[1].lower().lstrip('bottleneck').lstrip('basicblock'))
target_layer = target_layer[bottleneck_num]
if len(hierarchy) >= 3:
target_layer = target_layer._modules[hierarchy[2]]
if len(hierarchy) == 4:
target_layer = target_layer._modules[hierarchy[3]]
else:
target_layer = arch._modules[target_layer_name]
return target_layer
def find_densenet_layer(arch, target_layer_name):
"""Find densenet layer to calculate GradCAM and GradCAM++
Args:
arch: default torchvision densenet models
target_layer_name (str): the name of layer with its hierarchical information. please refer to usages below.
target_layer_name = 'features'
target_layer_name = 'features_transition1'
target_layer_name = 'features_transition1_norm'
target_layer_name = 'features_denseblock2_denselayer12'
target_layer_name = 'features_denseblock2_denselayer12_norm1'
target_layer_name = 'features_denseblock2_denselayer12_norm1'
target_layer_name = 'classifier'
Return:
target_layer: found layer. this layer will be hooked to get forward/backward pass information.
"""
hierarchy = target_layer_name.split('_')
target_layer = arch._modules[hierarchy[0]]
if len(hierarchy) >= 2:
target_layer = target_layer._modules[hierarchy[1]]
if len(hierarchy) >= 3:
target_layer = target_layer._modules[hierarchy[2]]
if len(hierarchy) == 4:
target_layer = target_layer._modules[hierarchy[3]]
return target_layer
def find_vgg_layer(arch, target_layer_name):
"""Find vgg layer to calculate GradCAM and GradCAM++
Args:
arch: default torchvision densenet models
target_layer_name (str): the name of layer with its hierarchical information. please refer to usages below.
target_layer_name = 'features'
target_layer_name = 'features_42'
target_layer_name = 'classifier'
target_layer_name = 'classifier_0'
Return:
target_layer: found layer. this layer will be hooked to get forward/backward pass information.
"""
hierarchy = target_layer_name.split('_')
if len(hierarchy) >= 1:
target_layer = arch.features
if len(hierarchy) == 2:
# print(f'int(hierarchy[1]) = {int(hierarchy[1])}')
# print(f'target_layer[int(hierarchy[1])] = {target_layer[int(hierarchy[1])]}')
# print(f'vgg type(target_layer) = {type(target_layer)}')
# print(f'vgg target_layer.features = {target_layer.features}')
# print(f'vgg target_layer[int(hierarchy[1])] = {target_layer[int(hierarchy[1])]}')
target_layer = target_layer[int(hierarchy[1])]
return target_layer
def find_vgg_us_layer(arch, target_layer_name):
"""Find vgg layer to calculate GradCAM and GradCAM++. _us refers to integrating with IAIA-BL code structure.
Args:
arch: default torchvision densenet models
target_layer_name (str): the name of layer with its hierarchical information. please refer to usages below.
target_layer_name = 'features'
target_layer_name = 'features_42'
target_layer_name = 'classifier'
target_layer_name = 'classifier_0'
Return:
target_layer: found layer. this layer will be hooked to get forward/backward pass information.
"""
hierarchy = target_layer_name.split('_')
# print(f'arch.classifier = {arch.classifier}')
if len(hierarchy) >= 1:
target_layer = arch.features.features
if len(hierarchy) == 2:
# print(f'6 = {6}')
# print(f'vgg_us type(target_layer) = {type(target_layer)}')
# print(f'vgg_us type(target_layer.features) = {type(target_layer.features)}')
# print(f'vgg_us type(arch.features.features) = {type(arch.features.features)}')
# print(f'vgg_us target_layer = {target_layer}')
# print(f'vgg_us target_layer.features[6] = {target_layer.features[6]}')
target_layer = target_layer[6]
# target_layer = arch.classifier[1]
return target_layer
def find_alexnet_layer(arch, target_layer_name):
"""Find alexnet layer to calculate GradCAM and GradCAM++
Args:
arch: default torchvision densenet models
target_layer_name (str): the name of layer with its hierarchical information. please refer to usages below.
target_layer_name = 'features'
target_layer_name = 'features_0'
target_layer_name = 'classifier'
target_layer_name = 'classifier_0'
Return:
target_layer: found layer. this layer will be hooked to get forward/backward pass information.
"""
hierarchy = target_layer_name.split('_')
if len(hierarchy) >= 1:
target_layer = arch.features
if len(hierarchy) == 2:
target_layer = target_layer[int(hierarchy[1])]
return target_layer
def find_squeezenet_layer(arch, target_layer_name):
"""Find squeezenet layer to calculate GradCAM and GradCAM++
Args:
arch: default torchvision densenet models
target_layer_name (str): the name of layer with its hierarchical information. please refer to usages below.
target_layer_name = 'features_12'
target_layer_name = 'features_12_expand3x3'
target_layer_name = 'features_12_expand3x3_activation'
Return:
target_layer: found layer. this layer will be hooked to get forward/backward pass information.
"""
hierarchy = target_layer_name.split('_')
target_layer = arch._modules[hierarchy[0]]
if len(hierarchy) >= 2:
target_layer = target_layer._modules[hierarchy[1]]
if len(hierarchy) == 3:
target_layer = target_layer._modules[hierarchy[2]]
elif len(hierarchy) == 4:
target_layer = target_layer._modules[hierarchy[2]+'_'+hierarchy[3]]
return target_layer
def denormalize(tensor, mean, std):
if not tensor.ndimension() == 4:
raise TypeError('tensor should be 4D')
mean = torch.FloatTensor(mean).view(1, 3, 1, 1).expand_as(tensor).to(tensor.device)
std = torch.FloatTensor(std).view(1, 3, 1, 1).expand_as(tensor).to(tensor.device)
return tensor.mul(std).add(mean)
def normalize(tensor, mean, std):
if not tensor.ndimension() == 4:
raise TypeError('tensor should be 4D')
mean = torch.FloatTensor(mean).view(1, 3, 1, 1).expand_as(tensor).to(tensor.device)
std = torch.FloatTensor(std).view(1, 3, 1, 1).expand_as(tensor).to(tensor.device)
return tensor.sub(mean).div(std)
class Normalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
return self.do(tensor)
def do(self, tensor):
return normalize(tensor, self.mean, self.std)
def undo(self, tensor):
return denormalize(tensor, self.mean, self.std)
def __repr__(self):
return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)