-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgen_patches.py
95 lines (85 loc) · 4.15 KB
/
gen_patches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
import utils
import argparse
import os
"""
Generate small labeled patches from S2-SHIPS dataset, or generate the whole annotated dataset, given the labels
"""
parser = argparse.ArgumentParser()
parser.add_argument('--save_dir', help='train dataset path')
parser.add_argument('--gen', help='if generating small patches of size 64*64 enter patch')
args = parser.parse_args()
target_names = ['08_mask_brest1', '11_mask_marseille', '09_mask_panama', '12_mask_portsmouth', '01_mask_rome',
'13_mask_rotterdam1', '14_mask_rotterdam2', '15_mask_rotterdam3', '16_mask_southampton',
'02_mask_suez1', '03_mask_suez2', '04_mask_suez3', '05_mask_suez4', '06_mask_suez5', '07_mask_suez6',
'10_mask_toulon']
list_names = ['brest1', 'marseille', 'panama', 'portsmouth', 'rome',
'rotterdam1', 'rotterdam2', 'rotterdam3', 'southampton',
'suez1', 'suez2', 'suez3', 'suez4', 'suez5', 'suez6',
'toulon']
bands = ['B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09', 'B11', 'B12']
count_boats = 0
count_non_boats = 0
if args.gen == 'patch':
# generate small patches
print('generating small patches with labels')
save_dir_path = args.save_dir + '/s2ships/patches_64_boats_only/'
if not os.path.exists(save_dir_path):
print('creating result directory...')
os.makedirs(save_dir_path)
for i in range(len(list_names)):
name = list_names[i]
target_name = target_names[i]
z = 0
img_list = utils.get_band(bands, args.save_dir + '/s2ships/' + name)
target = np.load(args.save_dir + '/s2ships/s2ships_labels_npy/' + target_name + '_rgb.png.npy')
m, n = img_list[0].shape
patch_size = 64
final_img = np.zeros((patch_size, patch_size, 12)) # last channel for labels
print(target.shape[-1])
final_label = np.zeros((patch_size, patch_size, target.shape[-1]))
pix = [0, 0]
step = 32
while pix[0] <= m - patch_size:
while pix[1] <= n - patch_size:
i = 0
for image in img_list:
c_img = image[pix[0]:pix[0] + patch_size, pix[1]:pix[1] + patch_size]
final_img[:, :, i] = c_img
i += 1
final_label = target[pix[0]:pix[0] + patch_size, pix[1]:pix[1] + patch_size, :]
if np.count_nonzero(final_label[:, :, 0] == 1) > 5: # if there is at least 5 boat pixel,
# we keep the patch for the training set and save the img and the label(s) in a dictionary
if target.shape[-1] == 2:
save_dict = {"data": final_img, "label": final_label[:, :, 0] + 2 * final_label[:, :, 1]}
if target.shape[-1] == 1:
save_dict = {"data": final_img, "label": final_label}
np.save(save_dir_path + name + '_boat_patch_' + str(z) + '.npy', save_dict)
z += 1
pix[1] += step
pix[0] += step
pix[1] = 0
else:
# dataset (full img+labels into dictionary), full size image
print('generating full sized dataset with labels')
save_dir_path = args.save_dir + '/s2ships/dataset_full/'
if not os.path.exists(save_dir_path):
print('creating result directory...')
os.makedirs(save_dir_path)
for i in range(len(list_names)):
name = list_names[i]
target_name = target_names[i]
img_list = utils.get_band(bands, args.save_dir + '/s2ships/' + name)
target = np.load(args.save_dir + '/s2ships/s2ships_labels_npy/' + target_name + '_rgb.png.npy')
print('id', int(target_name[:2]))
m, n = img_list[0].shape
final_img = np.zeros((m, n, 12)) # last channel for labels
i = 0
for image in img_list:
final_img[:, :, i] = image
i += 1
if target.shape[-1] == 2:
save_dict = {"data": final_img, "label": target[:, :, 0] + 2 * target[:, :, 1]}
if target.shape[-1] == 1:
save_dict = {"data": final_img, "label": target}
np.save(save_dir_path + target_name + '.npy', save_dict)