forked from ctallec/world-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraincontroller.py
214 lines (175 loc) · 7.3 KB
/
traincontroller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"""
Training a linear controller on latent + recurrent state
with CMAES.
This is a bit complex. num_workers slave threads are launched
to process a queue filled with parameters to be evaluated.
"""
import argparse
import sys
from os.path import join, exists
from os import mkdir, unlink, listdir, getpid
from time import sleep
from torch.multiprocessing import Process, Queue
import torch
import cma
from models import Controller
from tqdm import tqdm
import numpy as np
from utils.misc import RolloutGenerator, ASIZE, RSIZE, LSIZE
from utils.misc import load_parameters
from utils.misc import flatten_parameters
# parsing
parser = argparse.ArgumentParser()
parser.add_argument('--logdir', type=str, help='Where everything is stored.')
parser.add_argument('--n-samples', type=int, help='Number of samples used to obtain '
'return estimate.')
parser.add_argument('--pop-size', type=int, help='Population size.')
parser.add_argument('--target-return', type=float, help='Stops once the return '
'gets above target_return')
parser.add_argument('--display', action='store_true', help="Use progress bars if "
"specified.")
parser.add_argument('--max-workers', type=int, help='Maximum number of workers.',
default=32)
args = parser.parse_args()
# Max number of workers. M
# multiprocessing variables
n_samples = args.n_samples
pop_size = args.pop_size
num_workers = min(args.max_workers, n_samples * pop_size)
time_limit = 1000
# create tmp dir if non existent and clean it if existent
tmp_dir = join(args.logdir, 'tmp')
if not exists(tmp_dir):
mkdir(tmp_dir)
else:
for fname in listdir(tmp_dir):
unlink(join(tmp_dir, fname))
# create ctrl dir if non exitent
ctrl_dir = join(args.logdir, 'ctrl')
if not exists(ctrl_dir):
mkdir(ctrl_dir)
################################################################################
# Thread routines #
################################################################################
def slave_routine(p_queue, r_queue, e_queue, p_index):
""" Thread routine.
Threads interact with p_queue, the parameters queue, r_queue, the result
queue and e_queue the end queue. They pull parameters from p_queue, execute
the corresponding rollout, then place the result in r_queue.
Each parameter has its own unique id. Parameters are pulled as tuples
(s_id, params) and results are pushed as (s_id, result). The same
parameter can appear multiple times in p_queue, displaying the same id
each time.
As soon as e_queue is non empty, the thread terminate.
When multiple gpus are involved, the assigned gpu is determined by the
process index p_index (gpu = p_index % n_gpus).
:args p_queue: queue containing couples (s_id, parameters) to evaluate
:args r_queue: where to place results (s_id, results)
:args e_queue: as soon as not empty, terminate
:args p_index: the process index
"""
# init routine
gpu = p_index % torch.cuda.device_count()
device = torch.device('cuda:{}'.format(gpu) if torch.cuda.is_available() else 'cpu')
# redirect streams
sys.stdout = open(join(tmp_dir, str(getpid()) + '.out'), 'a')
sys.stderr = open(join(tmp_dir, str(getpid()) + '.err'), 'a')
with torch.no_grad():
r_gen = RolloutGenerator(args.logdir, device, time_limit)
while e_queue.empty():
if p_queue.empty():
sleep(.1)
else:
s_id, params = p_queue.get()
r_queue.put((s_id, r_gen.rollout(params)))
################################################################################
# Define queues and start workers #
################################################################################
p_queue = Queue()
r_queue = Queue()
e_queue = Queue()
for p_index in range(num_workers):
Process(target=slave_routine, args=(p_queue, r_queue, e_queue, p_index)).start()
################################################################################
# Evaluation #
################################################################################
def evaluate(solutions, results, rollouts=100):
""" Give current controller evaluation.
Evaluation is minus the cumulated reward averaged over rollout runs.
:args solutions: CMA set of solutions
:args results: corresponding results
:args rollouts: number of rollouts
:returns: minus averaged cumulated reward
"""
index_min = np.argmin(results)
best_guess = solutions[index_min]
restimates = []
for s_id in range(rollouts):
p_queue.put((s_id, best_guess))
print("Evaluating...")
for _ in tqdm(range(rollouts)):
while r_queue.empty():
sleep(.1)
restimates.append(r_queue.get()[1])
return best_guess, np.mean(restimates), np.std(restimates)
################################################################################
# Launch CMA #
################################################################################
controller = Controller(LSIZE, RSIZE, ASIZE) # dummy instance
# define current best and load parameters
cur_best = None
ctrl_file = join(ctrl_dir, 'best.tar')
print("Attempting to load previous best...")
if exists(ctrl_file):
state = torch.load(ctrl_file, map_location={'cuda:0': 'cpu'})
cur_best = - state['reward']
controller.load_state_dict(state['state_dict'])
print("Previous best was {}...".format(-cur_best))
parameters = controller.parameters()
es = cma.CMAEvolutionStrategy(flatten_parameters(parameters), 0.1,
{'popsize': pop_size})
epoch = 0
log_step = 3
while not es.stop():
if cur_best is not None and - cur_best > args.target_return:
print("Already better than target, breaking...")
break
r_list = [0] * pop_size # result list
solutions = es.ask()
# push parameters to queue
for s_id, s in enumerate(solutions):
for _ in range(n_samples):
p_queue.put((s_id, s))
# retrieve results
if args.display:
pbar = tqdm(total=pop_size * n_samples)
for _ in range(pop_size * n_samples):
while r_queue.empty():
sleep(.1)
r_s_id, r = r_queue.get()
r_list[r_s_id] += r / n_samples
if args.display:
pbar.update(1)
if args.display:
pbar.close()
es.tell(solutions, r_list)
es.disp()
# evaluation and saving
if epoch % log_step == log_step - 1:
best_params, best, std_best = evaluate(solutions, r_list)
print("Current evaluation: {}".format(best))
if not cur_best or cur_best > best:
cur_best = best
print("Saving new best with value {}+-{}...".format(-cur_best, std_best))
load_parameters(best_params, controller)
torch.save(
{'epoch': epoch,
'reward': - cur_best,
'state_dict': controller.state_dict()},
join(ctrl_dir, 'best.tar'))
if - best > args.target_return:
print("Terminating controller training with value {}...".format(best))
break
epoch += 1
es.result_pretty()
e_queue.put('EOP')