-
Notifications
You must be signed in to change notification settings - Fork 265
/
Copy path074 Search a 2D Matrix.py
64 lines (52 loc) · 1.53 KB
/
074 Search a 2D Matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
"""
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted from left to right.
The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
Given target = 3, return true.
"""
__author__ = 'Danyang'
class Solution(object):
def searchMatrix(self, mat, target):
"""
binary search. Two exactly the same binary search algorithm
:param mat: a list of lists of integers
:param target: an integer
:return: a boolean
"""
if not mat:
return False
m = len(mat)
n = len(mat[0])
# binary search
lo = 0
hi = m # [0, m)
while lo < hi:
mid = (lo+hi)/2
if mat[mid][0] == target:
return True
elif mat[mid][0] < target:
lo = mid+1
else:
hi = mid
lst = mat[lo-1] # <=
# binary search
lo = 0
hi = n # [0, n)
while lo < hi:
mid = (lo+hi)/2
if lst[mid] == target:
return True
elif lst[mid] < target:
lo = mid+1
else:
hi = mid
return False
if __name__ == "__main__":
assert Solution().searchMatrix([[1], [3]], 3) == True