forked from floydhub/dl-docker
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Dockerfile.gpu
171 lines (149 loc) · 4.94 KB
/
Dockerfile.gpu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
FROM nvidia/cuda:8.0-cudnn5-devel
ARG TENSORFLOW_VERSION=0.10
ARG TENSORFLOW_ARCH=gpu
RUN apt-get update && apt-get install -y --no-install-recommends \
bc \
build-essential \
cmake \
curl \
g++ \
gfortran \
git \
libhdf5-dev \
libjpeg-dev \
liblcms2-dev \
libopenblas-dev \
liblapack-dev \
libopenjpeg2 \
libpng12-dev \
libssl-dev \
libtiff5-dev \
libwebp-dev \
libzmq3-dev \
nano \
pkg-config \
python \
python-dev \
rsync \
software-properties-common \
swig \
unzip \
vim \
wget \
zip \
zlib1g-dev \
&& \
apt-get clean && \
apt-get autoremove && \
rm -rf /var/lib/apt/lists/* && \
# Link BLAS library to use OpenBLAS using the alternatives mechanism (https://www.scipy.org/scipylib/building/linux.html#debian-ubuntu)
update-alternatives --set libblas.so.3 /usr/lib/openblas-base/libblas.so.3
# Install pip
RUN curl -fSsL -O https://bootstrap.pypa.io/get-pip.py && \
python get-pip.py && \
rm get-pip.py
# Add SNI support to Python
RUN pip --no-cache-dir install \
pyopenssl \
ndg-httpsclient \
pyasn1
RUN apt-get update && apt-get install -y \
python-pip \
python-setuptools \
&& \
apt-get clean && \
apt-get autoremove && \
rm -rf /var/lib/apt/lists/*
# Install other useful Python packages using pip
RUN pip --no-cache-dir install --upgrade ipython && \
pip --no-cache-dir install \
Cython \
numpy \
scipy \
nose \
h5py \
scikit-image \
matplotlib \
pandas \
scikit-learn \
sympy \
ipykernel \
jupyter \
path.py \
Pillow \
plotly \
pygments \
seaborn \
six \
sphinx \
wheel \
zmq \
&& \
python -m ipykernel.kernelspec
# Set up our notebook config.
COPY jupyter_notebook_config.py /root/.jupyter/
# Jupyter has issues with being run directly:
# https://github.com/ipython/ipython/issues/7062
# We just add a little wrapper script.
COPY run_jupyter.sh /
# Set up Bazel.
# We need to add a custom PPA to pick up JDK8, since trusty doesn't
# have an openjdk8 backport. openjdk-r is maintained by a reliable contributor:
# Matthias Klose (https://launchpad.net/~doko). It will do until
# we either update the base image beyond 14.04 or openjdk-8 is
# finally backported to trusty; see e.g.
# https://bugs.launchpad.net/trusty-backports/+bug/1368094
RUN add-apt-repository -y ppa:openjdk-r/ppa && \
apt-get update && \
apt-get install -y --no-install-recommends openjdk-8-jdk openjdk-8-jre-headless && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Running bazel inside a `docker build` command causes trouble, cf:
# https://github.com/bazelbuild/bazel/issues/134
# The easiest solution is to set up a bazelrc file forcing --batch.
RUN echo "startup --batch" >>/root/.bazelrc
# Similarly, we need to workaround sandboxing issues:
# https://github.com/bazelbuild/bazel/issues/418
RUN echo "build --spawn_strategy=standalone --genrule_strategy=standalone" \
>>/root/.bazelrc
ENV BAZELRC /root/.bazelrc
# Install the most recent bazel release.
ENV BAZEL_VERSION 0.3.1
WORKDIR /
RUN mkdir /bazel && \
cd /bazel && \
curl -fSsL -O https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-installer-linux-x86_64.sh && \
curl -fSsL -o /bazel/LICENSE.txt https://raw.githubusercontent.com/bazelbuild/bazel/master/LICENSE.txt && \
chmod +x bazel-*.sh && \
./bazel-$BAZEL_VERSION-installer-linux-x86_64.sh && \
cd / && \
rm -f /bazel/bazel-$BAZEL_VERSION-installer-linux-x86_64.sh
# Download and build TensorFlow.
RUN git clone -b r${TENSORFLOW_VERSION} --recursive --recurse-submodules https://github.com/tensorflow/tensorflow.git && \
cd tensorflow && \
git checkout r${TENSORFLOW_VERSION}
WORKDIR /tensorflow
# Configure the build for our CUDA configuration.
ENV CUDA_PATH /usr/local/cuda
ENV CUDA_TOOLKIT_PATH /usr/local/cuda
ENV CUDNN_INSTALL_PATH /usr/local/cuda
ENV LD_LIBRARY_PATH /usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/nvidia/lib64
ENV TF_NEED_CUDA 1
ENV TF_CUDA_COMPUTE_CAPABILITIES=3.0,3.5,5.2,6.1
RUN ./configure && \
bazel build -c opt --config=cuda tensorflow/tools/pip_package:build_pip_package && \
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/pip && \
pip install --upgrade /tmp/pip/tensorflow-*.whl
# Install Keras
ARG KERAS_VERSION=1.1.0
ENV KERAS_BACKEND=tensorflow
RUN pip --no-cache-dir install git+git://github.com/fchollet/keras.git@${KERAS_VERSION}
WORKDIR /root
# Uncomment the following two lines if you're using windows
# COPY run_jupyter.sh /root/
# COPY demo/ /root/demo/
# TensorBoard
EXPOSE 6006
# IPython
EXPOSE 8888
RUN ["/bin/bash"]