forked from karpathy/minGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
374 lines (340 loc) · 15.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
"""
Full definition of a GPT Language Model, all of it in this single file.
References:
1) the official GPT-2 TensorFlow implementation released by OpenAI:
https://github.com/openai/gpt-2/blob/master/src/model.py
2) huggingface/transformers PyTorch implementation:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
"""
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
from mingpt.activation import NewGELU
from mingpt.attention import CausalSelfAttention
from mingpt.logger import logger
from mingpt.utils import CfgNode as CN
class Block(nn.Module):
"""an unassuming Transformer block"""
def __init__(self, config: CN):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = nn.ModuleDict(
dict(
c_fc=nn.Linear(config.n_embd, 4 * config.n_embd),
c_proj=nn.Linear(4 * config.n_embd, config.n_embd),
act=NewGELU(),
dropout=nn.Dropout(config.resid_pdrop),
)
)
m = self.mlp
self.mlpf = lambda x: m.dropout(m.c_proj(m.act(m.c_fc(x)))) # MLP forward
def forward(self, x: torch.Tensor, use_kv_cache: bool = False, start_pos: int = 0):
x = x + self.attn(self.ln_1(x), use_kv_cache=use_kv_cache, start_pos=start_pos)
x = x + self.mlpf(self.ln_2(x))
return x
class GPT(nn.Module):
"""GPT Language Model"""
@staticmethod
def get_default_config():
C = CN()
# either model_type or (n_layer, n_head, n_embd) must be given in the config
C.model_type = "gpt"
C.n_layer = None
C.n_head = None
C.n_embd = None
C.n_kv_heads = None # for GQA, where None indicates to use MHA rather than GQA
# these options must be filled in externally
C.vocab_size = None
C.block_size = None
# dropout hyperparameters
C.embd_pdrop = 0.1
C.resid_pdrop = 0.1
C.attn_pdrop = 0.1
# maximum batch size for decoding (used for kv-cache creation)
C.max_batch_size = 64
return C
def __init__(self, config: CN):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.block_size = config.block_size
type_given = config.model_type is not None
params_given = all(
[
config.n_layer is not None,
config.n_head is not None,
config.n_embd is not None,
]
)
assert type_given ^ params_given # exactly one of these (XOR)
if type_given:
# translate from model_type to detailed configuration
config.merge_from_dict(
{
# names follow the huggingface naming conventions
# GPT-1
"openai-gpt": dict(
n_layer=12, n_head=12, n_embd=768
), # 117M params
# GPT-2 configs
"gpt2": dict(n_layer=12, n_head=12, n_embd=768), # 124M params
"gpt2-medium": dict(
n_layer=24, n_head=16, n_embd=1024
), # 350M params
"gpt2-large": dict(
n_layer=36, n_head=20, n_embd=1280
), # 774M params
"gpt2-xl": dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
# Gophers
"gopher-44m": dict(n_layer=8, n_head=16, n_embd=512),
# (there are a number more...)
# I made these tiny models up
"gpt-mini": dict(n_layer=6, n_head=6, n_embd=192),
"gpt-micro": dict(n_layer=4, n_head=4, n_embd=128),
"gpt-nano": dict(n_layer=3, n_head=3, n_embd=48),
# created by us (Turing) for our implementations with GQA
"gpt-debug": dict(n_layer=1, n_head=1, n_embd=6),
"gpt-turing": dict(n_layer=6, n_head=8, n_embd=256),
}[config.model_type]
)
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
drop=nn.Dropout(config.embd_pdrop),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=nn.LayerNorm(config.n_embd),
)
)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# init all weights, and apply a special scaled init to the residual projections, per GPT-2 paper
self.apply(self._init_weights)
for pn, p in self.named_parameters():
if pn.endswith("c_proj.weight"):
torch.nn.init.normal_(
p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer)
)
# report number of parameters (note we don't count the decoder parameters in lm_head)
n_params = sum(p.numel() for p in self.transformer.parameters())
logger.info("number of parameters: %.2fM" % (n_params / 1e6,))
def _init_weights(self, module: nn.Module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
torch.nn.init.zeros_(module.bias)
torch.nn.init.ones_(module.weight)
@classmethod
def from_pretrained(cls, model_type: str):
"""
Initialise a pretrained GPT model by copying over the weights
from a huggingface/transformers checkpoint.
"""
assert model_type in {"gpt2", "gpt2-medium", "gpt2-large", "gpt2-xl"}
from transformers import GPT2LMHeadModel
# create a from-scratch initialised minGPT model
config = cls.get_default_config()
config.model_type = model_type
config.vocab_size = 50257 # openai's model vocabulary
config.block_size = 1024 # openai's model block_size
model = GPT(config)
sd = model.state_dict()
# init a huggingface/transformers model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# copy while ensuring all of the parameters are aligned and match in names and shapes
keys = [k for k in sd_hf if not k.endswith("attn.masked_bias")] # ignore these
transposed = [
"attn.c_attn.weight",
"attn.c_proj.weight",
"mlp.c_fc.weight",
"mlp.c_proj.weight",
]
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla nn.Linear.
# this means that we have to transpose these weights when we import them
assert len(keys) == len(sd)
for k in keys:
if any(k.endswith(w) for w in transposed):
# special treatment for the Conv1D weights we need to transpose
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
# vanilla copy over the other parameters
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
return model
def configure_optimizers(self, train_config: CN):
"""
This long function is unfortunately doing something very simple and is being very defensive:
We are separating out all parameters of the model into two buckets: those that will experience
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
We are then returning the PyTorch optimizer object.
"""
# separate out all parameters to those that will and won't experience regularizing weight decay
decay = set()
no_decay = set()
whitelist_weight_modules = (torch.nn.Linear,)
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
for mn, m in self.named_modules():
for pn, p in m.named_parameters():
fpn = "%s.%s" % (mn, pn) if mn else pn # full param name
# random note: because named_modules and named_parameters are recursive
# we will see the same tensors p many many times. but doing it this way
# allows us to know which parent module any tensor p belongs to...
if pn.endswith("bias"):
# all biases will not be decayed
no_decay.add(fpn)
elif pn.endswith("weight") and isinstance(m, whitelist_weight_modules):
# weights of whitelist modules will be weight decayed
decay.add(fpn)
elif pn.endswith("weight") and isinstance(m, blacklist_weight_modules):
# weights of blacklist modules will NOT be weight decayed
no_decay.add(fpn)
# validate that we considered every parameter
param_dict = {pn: p for pn, p in self.named_parameters()}
inter_params = decay & no_decay
union_params = decay | no_decay
assert (
len(inter_params) == 0
), "parameters %s made it into both decay/no_decay sets!" % (str(inter_params),)
assert (
len(param_dict.keys() - union_params) == 0
), "parameters %s were not separated into either decay/no_decay set!" % (
str(param_dict.keys() - union_params),
)
# create the pytorch optimizer object
optim_groups = [
{
"params": [param_dict[pn] for pn in sorted(list(decay))],
"weight_decay": train_config.weight_decay,
},
{
"params": [param_dict[pn] for pn in sorted(list(no_decay))],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(
optim_groups, lr=train_config.learning_rate, betas=train_config.betas
)
return optimizer
def forward(
self,
idx: torch.Tensor,
targets: torch.Tensor | None = None,
use_kv_cache: bool = False,
start_pos: int = 0,
):
device = idx.device
b, t = idx.size()
assert (
t <= self.block_size
), f"Cannot forward sequence of length {t}, block size is only {self.block_size}"
if use_kv_cache:
# need to add the correct position embedding for the token we're generating
pos = torch.tensor(
[start_pos + i for i in range(t)], dtype=torch.long, device=device
).unsqueeze(
0
) # shape (1, t)
else:
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(
0
) # shape (1, t)
# forward the GPT model itself
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
pos_emb = self.transformer.wpe(
pos
) # position embeddings of shape (1, t, n_embd)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
x = block(x, use_kv_cache=use_kv_cache, start_pos=start_pos)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
# if we are given some desired targets also calculate the loss
loss = None
if targets is not None:
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1
)
return logits, loss
@torch.no_grad()
def generate(
self,
idx: torch.Tensor,
max_new_tokens: int,
use_kv_cache: bool = False,
temperature: float = 1.0,
do_sample: bool = False,
top_k: int | None = None,
):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
if use_kv_cache:
prev_pos = 0
assert idx.size(1) < self.block_size
if idx.size(1) + max_new_tokens > self.block_size:
max_new_tokens = self.block_size - idx.size(1)
logger.warning(
"Input length + max_new_tokens is larger than block_size, truncating to block_size. "
f"Only generating {max_new_tokens} tokens."
)
# pass in idx to start generating
for cur_pos in range(idx.size(1), idx.size(1) + max_new_tokens):
# forward the model to get the logits for the index in the sequence
logits, _ = self(
idx[:, prev_pos:cur_pos], use_kv_cache=True, start_pos=prev_pos
)
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, top_k)
logits[logits < v[:, [-1]]] = -float("Inf")
# apply softmax to convert logits to (normalised) probabilities
probs = F.softmax(logits, dim=-1)
# either sample from the distribution or take the most likely element
if do_sample:
idx_next = torch.multinomial(probs, num_samples=1)
else:
_, idx_next = torch.topk(probs, k=1, dim=-1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
# update the previous position
prev_pos = cur_pos
else:
for _ in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = (
idx
if idx.size(1) <= self.block_size
else idx[:, -self.block_size :]
)
# forward the model to get the logits for the index in the sequence
logits, _ = self(idx_cond, use_kv_cache=False)
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, top_k)
logits[logits < v[:, [-1]]] = -float("Inf")
# apply softmax to convert logits to (normalised) probabilities
probs = F.softmax(logits, dim=-1)
# either sample from the distribution or take the most likely element
if do_sample:
idx_next = torch.multinomial(probs, num_samples=1)
else:
_, idx_next = torch.topk(probs, k=1, dim=-1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
return idx