-
Notifications
You must be signed in to change notification settings - Fork 289
/
convnet.py
289 lines (242 loc) · 14.1 KB
/
convnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# Copyright 2014 Google Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as n
import numpy.random as nr
import random as r
from python_util.util import *
from python_util.data import *
from python_util.options import *
from python_util.gpumodel import *
import sys
import math as m
import layer as lay
from convdata import ImageDataProvider, CIFARDataProvider, DummyConvNetLogRegDataProvider
from os import linesep as NL
import copy as cp
import os
class Driver(object):
def __init__(self, convnet):
self.convnet = convnet
def on_start_batch(self, batch_data, train):
pass
def on_finish_batch(self):
pass
class GradCheckDriver(Driver):
def on_start_batch(self, batch_data, train):
data = batch_data[2]
self.convnet.libmodel.checkGradients(data)
class TrainingDriver(Driver):
def on_start_batch(self, batch_data, train):
data = batch_data[2]
self.convnet.libmodel.startBatch(data, self.convnet.get_progress(), not train)
class MultiviewTestDriver(TrainingDriver):
def on_start_batch(self, batch_data, train):
self.write_output = False
if train:
TrainingDriver.on_start_batch(self, batch_data, train)
else:
data = batch_data[2]
num_views = self.convnet.test_data_provider.num_views
if self.convnet.test_out != "" and self.convnet.logreg_name != "":
self.write_output = True
self.test_file_name = os.path.join(self.convnet.test_out, 'test_preds_%d' % batch_data[1])
self.probs = n.zeros((data[0].shape[1]/num_views, self.convnet.test_data_provider.get_num_classes()), dtype=n.single)
self.convnet.libmodel.startMultiviewTest(data, num_views, self.probs, self.convnet.logreg_name)
else:
self.convnet.libmodel.startMultiviewTest(data, num_views)
def on_finish_batch(self):
if self.write_output:
if not os.path.exists(self.convnet.test_out):
os.makedirs(self.convnet.test_out)
pickle(self.test_file_name, {'data': self.probs,
'note': 'generated from %s' % self.convnet.save_file})
class FeatureWriterDriver(Driver):
def __init__(self, convnet):
Driver.__init__(self, convnet)
self.last_batch = convnet.test_batch_range[-1]
def on_start_batch(self, batch_data, train):
if train:
raise ModelStateException("FeatureWriter must be used in conjunction with --test-only=1. It writes test data features.")
self.batchnum, self.data = batch_data[1], batch_data[2]
if not os.path.exists(self.convnet.feature_path):
os.makedirs(self.convnet.feature_path)
self.num_ftrs = self.convnet.layers[self.convnet.write_features]['outputs']
self.ftrs = n.zeros((self.data[0].shape[1], self.num_ftrs), dtype=n.single)
self.convnet.libmodel.startFeatureWriter(self.data, [self.ftrs], [self.convnet.write_features])
def on_finish_batch(self):
path_out = os.path.join(self.convnet.feature_path, 'data_batch_%d' % self.batchnum)
pickle(path_out, {'data': self.ftrs, 'labels': self.data[1]})
print "Wrote feature file %s" % path_out
if self.batchnum == self.last_batch:
pickle(os.path.join(self.convnet.feature_path, 'batches.meta'), {'source_model':self.convnet.load_file,
'num_vis':self.num_ftrs,
'batch_size': self.convnet.test_data_provider.batch_meta['batch_size']})
class ConvNet(IGPUModel):
def __init__(self, op, load_dic, dp_params={}):
filename_options = []
for v in ('color_noise', 'multiview_test', 'inner_size', 'scalar_mean', 'minibatch_size'):
dp_params[v] = op.get_value(v)
IGPUModel.__init__(self, "ConvNet", op, load_dic, filename_options, dp_params=dp_params)
def import_model(self):
lib_name = "cudaconvnet._ConvNet"
print "========================="
print "Importing %s C++ module" % lib_name
self.libmodel = __import__(lib_name,fromlist=['_ConvNet'])
def init_model_lib(self):
self.libmodel.initModel(self.layers,
self.device_ids,
self.minibatch_size,
self.conserve_mem)
def init_model_state(self):
ms = self.model_state
layers = ms['layers'] if self.loaded_from_checkpoint else {}
ms['layers'] = lay.LayerParser.parse_layers(os.path.join(self.layer_path, self.layer_def),
os.path.join(self.layer_path, self.layer_params), self, layers=layers)
self.do_decouple_conv()
self.do_unshare_weights()
self.op.set_value('conv_to_local', [], parse=False)
self.op.set_value('unshare_weights', [], parse=False)
self.set_driver()
def do_decouple_conv(self):
# Convert convolutional layers to local
if len(self.op.get_value('conv_to_local')) > 0:
for lname in self.op.get_value('conv_to_local'):
if self.model_state['layers'][lname]['type'] == 'conv':
lay.LocalLayerParser.conv_to_local(self.model_state['layers'], lname)
def do_unshare_weights(self):
# Decouple weight matrices
if len(self.op.get_value('unshare_weights')) > 0:
for name_str in self.op.get_value('unshare_weights'):
if name_str:
name = lay.WeightLayerParser.get_layer_name(name_str)
if name is not None:
name, idx = name[0], name[1]
if name not in self.model_state['layers']:
raise ModelStateException("Layer '%s' does not exist; unable to unshare" % name)
layer = self.model_state['layers'][name]
lay.WeightLayerParser.unshare_weights(layer, self.model_state['layers'], matrix_idx=idx)
else:
raise ModelStateException("Invalid layer name '%s'; unable to unshare." % name_str)
def set_driver(self):
if self.op.get_value('check_grads'):
self.driver = GradCheckDriver(self)
elif self.op.get_value('multiview_test'):
self.driver = MultiviewTestDriver(self)
elif self.op.get_value('write_features'):
self.driver = FeatureWriterDriver(self)
else:
self.driver = TrainingDriver(self)
def fill_excused_options(self):
if self.op.get_value('check_grads'):
self.op.set_value('save_path', '')
self.op.set_value('train_batch_range', '0')
self.op.set_value('test_batch_range', '0')
self.op.set_value('data_path', '')
# Make sure the data provider returned data in proper format
def parse_batch_data(self, batch_data, train=True):
if max(d.dtype != n.single for d in batch_data[2]):
raise DataProviderException("All matrices returned by data provider must consist of single-precision floats.")
return batch_data
def start_batch(self, batch_data, train=True):
self.driver.on_start_batch(batch_data, train)
def finish_batch(self):
ret = IGPUModel.finish_batch(self)
self.driver.on_finish_batch()
return ret
def print_iteration(self):
print "%d.%d (%.2f%%)..." % (self.epoch, self.batchnum, 100 * self.get_progress()),
def print_train_time(self, compute_time_py):
print "(%.3f sec)" % (compute_time_py)
def print_costs(self, cost_outputs):
costs, num_cases = cost_outputs[0], cost_outputs[1]
children = set()
for errname in costs:
if sum(errname in self.layers[z]['children'] for z in costs) == 0:
# print self.layers[errname]['children']
for child in set(self.layers[errname]['children']) & set(costs.keys()):
costs[errname] = [v + u for v, u in zip(costs[errname], costs[child])]
children.add(child)
filtered_costs = eval(self.layers[errname]['outputFilter'])(costs[errname], num_cases)
print "%s: " % errname,
if 'outputFilterFormatter' not in self.layers[errname]:
print ", ".join("%.6f" % v for v in filtered_costs),
else:
print eval(self.layers[errname]['outputFilterFormatter'])(self,filtered_costs),
if m.isnan(filtered_costs[0]) or m.isinf(filtered_costs[0]):
print "<- error nan or inf!"
sys.exit(1)
for c in children:
del costs[c]
def print_train_results(self):
self.print_costs(self.train_outputs[-1])
def print_test_status(self):
pass
def print_test_results(self):
print NL + "======================Test output======================"
self.print_costs(self.test_outputs[-1])
if not self.test_only:
print NL + "----------------------Averages-------------------------"
self.print_costs(self.aggregate_test_outputs(self.test_outputs[-len(self.test_batch_range):]))
print NL + "-------------------------------------------------------",
for name,val in sorted(self.layers.items(), key=lambda x: x[1]['id']): # This is kind of hacky but will do for now.
l = self.layers[name]
if 'weights' in l:
wscales = [(l['name'], i, n.mean(n.abs(w)), n.mean(n.abs(wi))) for i,(w,wi) in enumerate(zip(l['weights'],l['weightsInc']))]
print ""
print NL.join("Layer '%s' weights[%d]: %e [%e] [%e]" % (s[0], s[1], s[2], s[3], s[3]/s[2] if s[2] > 0 else 0) for s in wscales),
print "%sLayer '%s' biases: %e [%e]" % (NL, l['name'], n.mean(n.abs(l['biases'])), n.mean(n.abs(l['biasesInc']))),
print ""
def conditional_save(self):
self.save_state()
def aggregate_test_outputs(self, test_outputs):
test_outputs = cp.deepcopy(test_outputs)
num_cases = sum(t[1] for t in test_outputs)
for i in xrange(1 ,len(test_outputs)):
for k,v in test_outputs[i][0].items():
for j in xrange(len(v)):
test_outputs[0][0][k][j] += test_outputs[i][0][k][j]
return (test_outputs[0][0], num_cases)
@classmethod
def get_options_parser(cls):
op = IGPUModel.get_options_parser()
op.add_option("mini", "minibatch_size", IntegerOptionParser, "Minibatch size", default=128)
op.add_option("layer-def", "layer_def", StringOptionParser, "Layer definition file", set_once=False)
op.add_option("layer-params", "layer_params", StringOptionParser, "Layer parameter file")
op.add_option("layer-path", "layer_path", StringOptionParser, "Layer file path prefix", default="")
op.add_option("check-grads", "check_grads", BooleanOptionParser, "Check gradients and quit?", default=0, excuses=['data_path','save_path', 'save_file_override', 'train_batch_range','test_batch_range'])
op.add_option("multiview-test", "multiview_test", BooleanOptionParser, "Cropped DP: test on multiple patches?", default=0)
op.add_option("inner-size", "inner_size", IntegerOptionParser, "Cropped DP: crop size (0 = don't crop)", default=0, set_once=True)
op.add_option("conv-to-local", "conv_to_local", ListOptionParser(StringOptionParser), "Convert given conv layers to unshared local", default=[])
op.add_option("unshare-weights", "unshare_weights", ListOptionParser(StringOptionParser), "Unshare weight matrices in given layers", default=[])
op.add_option("conserve-mem", "conserve_mem", BooleanOptionParser, "Conserve GPU memory (slower)?", default=0)
op.add_option("color-noise", "color_noise", FloatOptionParser, "Add PCA noise to color channels with given scale", default=0.0)
op.add_option("test-out", "test_out", StringOptionParser, "Output test case predictions to given path", default="", requires=['logreg_name', 'multiview_test'])
op.add_option("logreg-name", "logreg_name", StringOptionParser, "Logreg cost layer name (for --test-out)", default="")
op.add_option("scalar-mean", "scalar_mean", FloatOptionParser, "Subtract this scalar from image (-1 = don't)", default=-1)
op.add_option("write-features", "write_features", StringOptionParser, "Write test data features from given layer", default="", requires=['feature-path'])
op.add_option("feature-path", "feature_path", StringOptionParser, "Write test data features to this path (to be used with --write-features)", default="")
op.delete_option('max_test_err')
op.options["testing_freq"].default = 57
op.options["num_epochs"].default = 50000
op.options['dp_type'].default = None
DataProvider.register_data_provider('dummy-lr-n', 'Dummy ConvNet logistic regression', DummyConvNetLogRegDataProvider)
DataProvider.register_data_provider('image', 'JPEG-encoded image data provider', ImageDataProvider)
DataProvider.register_data_provider('cifar', 'CIFAR-10 data provider', CIFARDataProvider)
return op
if __name__ == "__main__":
# nr.seed(6)
op = ConvNet.get_options_parser()
op, load_dic = IGPUModel.parse_options(op)
model = ConvNet(op, load_dic)
model.start()