-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRandomTreesEmbedding.py
46 lines (42 loc) · 1.95 KB
/
RandomTreesEmbedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
<<<<<<< HEAD
from sklearn.ensemble import RandomTreesEmbedding
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import average_precision_score
from sklearn.metrics import roc_auc_score
import numpy as np
def RandomTreesEmbeddingAlgo(x_train_vft, y_train, x_test_vft, y_test, vec):
print("Random Trees Embedding")
rte = RandomTreesEmbedding(n_jobs=2, random_state=0)
rte.fit(x_train_vft, y_train)
y_predict_class = rte.predict(x_test_vft)
print("Confusion Matrix")
print(confusion_matrix(np.array(y_test), np.array(y_predict_class)))
print('Accuracy Score :', accuracy_score(y_test, y_predict_class))
print('ROC(Receiver Operating Characteristic) and AUC(Area Under Curve)', roc_auc_score(y_test, y_predict_class))
print('Average Precision Score:', average_precision_score(y_test, y_predict_class))
if rte.predict(vec) == [1]:
return "Positive"
else:
=======
from sklearn.ensemble import RandomTreesEmbedding
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import average_precision_score
from sklearn.metrics import roc_auc_score
import numpy as np
def RandomTreesEmbeddingAlgo(x_train_vft, y_train, x_test_vft, y_test, vec):
print("Random Trees Embedding")
rte = RandomTreesEmbedding(n_jobs=2, random_state=0)
rte.fit(x_train_vft, y_train)
y_predict_class = rte.predict(x_test_vft)
print("Confusion Matrix")
print(confusion_matrix(np.array(y_test), np.array(y_predict_class)))
print('Accuracy Score :', accuracy_score(y_test, y_predict_class))
print('ROC(Receiver Operating Characteristic) and AUC(Area Under Curve)', roc_auc_score(y_test, y_predict_class))
print('Average Precision Score:', average_precision_score(y_test, y_predict_class))
if rte.predict(vec) == [1]:
return "Positive"
else:
>>>>>>> a8eac8957e283fe23b26e99d32eac0ba302a4a04
return "Negative"