-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcharacter-frequency.py
41 lines (35 loc) · 1.12 KB
/
character-frequency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import re
import nltk
import os
from sklearn.feature_extraction.text import CountVectorizer
import matplotlib.pyplot as plt
import numpy as np
import wordcloud
from load_texts import read_text_files
corpus = read_text_files()[0]
print(len(corpus), "atas")
numberOfChars = 25
for i in range(1, 5):
print(i, "characters")
charCountVect = CountVectorizer(
analyzer='char', ngram_range=(i, i), lowercase=False)
charCountVect.fit(corpus)
bagOfChar = charCountVect.transform(corpus)
sumChars = bagOfChar.sum(axis=0)
charsFreq = [(char, sumChars[0, idx])
for char, idx in charCountVect.vocabulary_.items()]
charsFreq = sorted(charsFreq, key=lambda x: x[1], reverse=True)
print(charsFreq[:50])
yPos = np.arange(numberOfChars)
objects = []
performance = []
for i in range(numberOfChars):
aux = charsFreq[i]
objects.append(aux[0])
performance.append(aux[1])
plt.barh(yPos, performance, align='center', alpha=0.5)
plt.yticks(yPos, objects)
plt.xlabel('Frequency')
plt.ylabel('Characters')
plt.title('Character Frequency')
plt.show()