-
Notifications
You must be signed in to change notification settings - Fork 241
/
Copy pathmodeling.py
56 lines (44 loc) · 2.14 KB
/
modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss
import torch.nn.functional as F
import config as Conf
from transformers import ElectraModel
from transformers.modeling_electra import ElectraPreTrainedModel
class ElectraForTokenClassification(ElectraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.electra = ElectraModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
def forward(self, input_ids, attention_mask=None,labels=None, token_type_ids=None,
position_ids=None, head_mask=None, inputs_embeds=None):
discriminator_hidden_states = self.electra(
input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds
)
discriminator_sequence_output = discriminator_hidden_states[0]
discriminator_sequence_output = self.dropout(discriminator_sequence_output)
logits = self.classifier(discriminator_sequence_output)
output = (logits,)
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.config.num_labels)[active_loss]
active_labels = labels.view(-1)[active_loss]
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
output = (loss,) + output
output += discriminator_hidden_states[1:]
return output # (loss), scores, (hidden_states), (attentions)
def ElectraForTokenClassificationAdaptorTraining(batch, model_outputs):
return {'losses':(model_outputs[0],)}
def ElectraForTokenClassificationAdaptor(batch, model_outputs):
return {'logits':(model_outputs[1],),
'hidden':model_outputs[2],
'input_mask':batch[1],
'logits_mask':batch[1]}