-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch_genetic.py
257 lines (216 loc) · 10.1 KB
/
search_genetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python3
# genetic search to find vulnerable architectures.
r"""
CUDA_VISIBLE_DEVICES=1 python ./search_genetic.py --color --verbose 1 --model nats_bench --attack input_aware_dynamic --validate_interval 1 --train_mask_epochs 10 --epochs 10 --lr 1e-2 --natural --total_resume --save_suffix 1
""" # noqa: E501
import trojanvision
import argparse
from trojanzoo.utils.model import init_weights
from trojanzoo.utils.output import ansi, output_iter
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import numpy as np
import os
import pickle
import random
from typing import Any
from trojanvision.models import NATSbench
from trojanvision.attacks import InputAwareDynamic
from torch.nn.utils import _stateless
import functools
class Generator(nn.Module):
def __init__(self, mark_generator: nn.Module, mask_generator: nn.Module) -> None:
super().__init__()
self.mark_generator = mark_generator
self.mask_generator = mask_generator
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
mark = self.get_mark(x)
mask = self.get_mask(x)
return x + mask * (mark - x)
def get_mark(self, _input: torch.Tensor) -> torch.Tensor:
raw_output: torch.Tensor = self.mark_generator(_input)
return raw_output.tanh() / 2 + 0.5
def get_mask(self, _input: torch.Tensor) -> torch.Tensor:
raw_output: torch.Tensor = self.mask_generator(_input)
return raw_output.tanh().mul(10).tanh() / 2 + 0.5
def get_ntk_score(module: nn.Module, parameters: dict[str, nn.Parameter], loader: DataLoader) -> float:
names, values = zip(*parameters.items())
def func(*params: torch.Tensor, _input: torch.Tensor = None):
_output: torch.Tensor = _stateless.functional_call(
module, {n: p for n, p in zip(names, params)}, _input)
return _output # (N, C)
ntk_list: list[torch.Tensor] = []
for data in loader:
_input, _label = model.get_data(data)
batch_grads: tuple[torch.Tensor] = torch.autograd.functional.jacobian(
functools.partial(func, _input=_input), values)
batch_grad = torch.cat([g.flatten(2).detach() for g in batch_grads], dim=-1) # (N, C, sum(D))
ntk_list.append((batch_grad @ batch_grad.transpose(1, 2)).mean(0)) # (C, C)
break
ntk = torch.stack(ntk_list).mean(0) # (C, C)
eigs: torch.Tensor = torch.linalg.eigvalsh(ntk)
eigs_clipped = eigs.nan_to_num(nan=1e5, posinf=1e7, neginf=-1e7)
return (eigs_clipped[-1] / eigs_clipped[0]).nan_to_num(nan=1e5).item()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
trojanvision.environ.add_argument(parser)
trojanvision.datasets.add_argument(parser)
trojanvision.models.add_argument(parser)
trojanvision.trainer.add_argument(parser)
trojanvision.marks.add_argument(parser)
trojanvision.attacks.add_argument(parser)
parser.add_argument('--save_suffix', default='0')
parser.add_argument('--total_resume', action='store_true')
parser.add_argument('--total_epoch', type=int, default=4000)
parser.add_argument('--sample_freq', type=int, default=10)
kwargs = parser.parse_args().__dict__
save_suffix: str = kwargs['save_suffix']
total_resume: bool = kwargs['total_resume']
total_epoch: int = kwargs['total_epoch']
sample_freq: int = kwargs['sample_freq']
env = trojanvision.environ.create(**kwargs)
dataset = trojanvision.datasets.create(**kwargs)
model: NATSbench = trojanvision.models.create(dataset=dataset, **kwargs)
trainer = trojanvision.trainer.create(dataset=dataset, model=model, **kwargs)
mark = trojanvision.marks.create(dataset=dataset, **kwargs)
attack: InputAwareDynamic = trojanvision.attacks.create(dataset=dataset, model=model, mark=mark, **kwargs)
train_args = dict(**trainer)
train_args['verbose'] = False
if env['verbose']:
trojanvision.summary(env=env, dataset=dataset, model=model, mark=mark, attack=attack)
generator = Generator(attack.mark_generator, attack.mask_generator)
attack_model = nn.Sequential(generator, model._model)
atoms = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
weights = [1, 2, 3, 3, 1]
def mutate(model_index: int) -> int:
arch: str = model.api.get_net_config(model_index, 'cifar10')['arch_str']
# |skip_connect~0|+|skip_connect~0|skip_connect~1|+|skip_connect~0|skip_connect~1|skip_connect~2|
arch_list: list[str] = []
for a in arch.split('+'):
arch_list.extend(a[1:-1].split('|'))
idx = random.randint(0, len(arch_list) - 1)
atoms_copy = atoms.copy()
weights_copy = weights.copy()
atom_idx = atoms_copy.index(arch_list[idx][:-2])
atoms_copy.pop(atom_idx)
weights_copy.pop(atom_idx)
probs = np.array(weights_copy) / np.sum(weights_copy)
arch_list[idx] = np.random.choice(atoms_copy, p=probs) + arch_list[idx][-2:]
new_arch = '+'.join(['|{}|'.format('|'.join(a)) for a in [arch_list[0:1], arch_list[1:3], arch_list[3:]]])
return model.api.query_index_by_arch(new_arch)
def get_score(model_index: int) -> float:
config: dict[str, Any] = model.api.get_net_config(model_index, dataset.name)
network = model.get_cell_based_tiny_net(config)
model._model.load_model(network)
model.model_index = model_index
model._model.to(env['device'])
model_params = {name: param for name, param in model.named_parameters(prefix='1') if 'weight' in name}
# generator_params = dict(generator.named_parameters(prefix='0'))
scores = []
for _ in range(3):
init_weights(model._model)
init_weights(attack_model)
score = get_ntk_score(attack_model, model_params, dataset.loader['train'])
scores.append(score)
return np.median(scores)
result_path = './result/nas_backdoor/nats_bench_ntk.pickle'
result: list[list[dict[str, float]]] = []
if os.path.isfile(result_path):
with open(result_path, mode='rb') as f:
result = pickle.load(f)
score_result: list[float] = []
index_result: list[int] = []
sample_size = 10
pool_size = 50
epochs = total_epoch
import time
import os
torch.manual_seed(int(time.time() * 1000))
file_path = f'./result/nas_backdoor/search_genetic_{save_suffix}.npz'
if total_resume and os.path.isfile(file_path):
prev_result: dict = np.load(file_path, allow_pickle=True)
ages: torch.Tensor = prev_result['ages']
pool: torch.Tensor = prev_result['pool']
scores: torch.Tensor = prev_result['scores']
_epoch: int = prev_result['_epoch']
score_result = prev_result['score'].tolist()
index_result = prev_result['index'].tolist()
best_element = int(pool[scores.argmin()])
best_score = float(scores.min())
asr: dict[int, float] = prev_result['asr']
acc: dict[int, float] = prev_result['acc']
else:
ages = torch.zeros(pool_size, dtype=torch.int)
pool = torch.randperm(10000)[:pool_size]
scores = []
for element in pool:
scores.append(get_score(element))
scores = torch.tensor(scores)
_epoch = 0
best_element = int(pool[scores.argmin()])
best_score = float(scores.min())
score_result.append(best_score)
index_result.append(best_element)
asr: dict[int, float] = {}
acc: dict[int, float] = {}
for i in range(_epoch, epochs):
sample = torch.randperm(len(scores))[:sample_size]
mutate_idx = int(scores[sample].argmin())
old_idx = int(ages.argmax())
removed_element = int(pool[old_idx])
removed_score = float(scores[old_idx])
new_element = mutate(pool[mutate_idx])
pool[old_idx] = new_element
new_score = get_score(new_element)
scores[old_idx] = new_score
print(output_iter(i + 1, epochs))
print(' {green}Add {yellow}score{reset}:'.format(**ansi),
'{:15.4f}'.format(new_score),
'{yellow}arch{reset}:'.format(**ansi),
model.api.get_net_config(new_element, dataset.name)['arch_str']
)
print(' {green}Del {yellow}score{reset}:'.format(**ansi),
'{:15.4f}'.format(removed_score),
'{yellow}arch{reset}:'.format(**ansi),
model.api.get_net_config(removed_element, dataset.name)['arch_str']
)
score_result.append(new_score)
index_result.append(new_element)
if new_score < best_score:
print('{green}Best Result Updated!!!{reset}'.format(**ansi))
print(f'previous: {best_score:10.3f} new: {new_score:10.3f}')
best_element = new_element
best_score = new_score
ages += 1
ages[old_idx] = 0
if i % sample_freq == 0:
asr_list: list[float] = []
acc_list: list[float] = []
model.model_index = new_element
config: dict[str, Any] = model.api.get_net_config(new_element, dataset.name)
network = model.get_cell_based_tiny_net(config)
model._model.load_model(network)
for model_seed in [777, 888, 999]:
model.model_seed = model_seed
try:
model.load('official')
model._model.to(env['device'])
except ValueError:
continue
init_weights(attack.mask_generator)
init_weights(attack.mark_generator)
attack.attack(**train_args)
current_asr, current_acc = attack.validate_fn(indent=4)
asr_list.append(current_asr)
acc_list.append(current_acc)
asr[i] = np.median(asr_list)
acc[i] = np.median(acc_list)
np.savez(file_path,
score=score_result, index=index_result,
best_model_index=best_element,
pool=pool, scores=scores, ages=ages, _epoch=i + 1,
asr=asr, acc=acc)
print()
print(f'best model index: {best_element}')
print(f'best score: {best_score}')