diff --git a/test/integration/pipelines/tuning/test_pipeline_tuning.py b/test/integration/pipelines/tuning/test_pipeline_tuning.py index 015e9366d9..0d052c0c75 100644 --- a/test/integration/pipelines/tuning/test_pipeline_tuning.py +++ b/test/integration/pipelines/tuning/test_pipeline_tuning.py @@ -12,7 +12,7 @@ from hyperopt.pyll.stochastic import sample as hp_sample from examples.simple.time_series_forecasting.ts_pipelines import ts_complex_ridge_smoothing_pipeline, \ - ts_ets_pipeline + ts_polyfit_ridge_pipeline from fedot.core.data.data import InputData from fedot.core.data.data_split import train_test_data_setup from fedot.core.operations.evaluation.operation_implementations.models.ts_implementations.statsmodels import \ @@ -128,7 +128,7 @@ def get_class_pipelines(): def get_ts_forecasting_pipelines(): - pipelines = [ts_ets_pipeline(), ts_complex_ridge_smoothing_pipeline()] + pipelines = [ts_polyfit_ridge_pipeline(2), ts_complex_ridge_smoothing_pipeline()] return pipelines @@ -169,7 +169,7 @@ def get_not_default_search_space(): 'lgbmreg': { 'learning_rate': { 'hyperopt-dist': hp.loguniform, - 'sampling-scope': [0.05, 0.1], + 'sampling-scope': [0.03, 0.1], 'type': 'continuous'}, 'colsample_bytree': { 'hyperopt-dist': hp.uniform, @@ -271,7 +271,6 @@ def run_node_tuner(train_data, @pytest.mark.parametrize('data_fixture', ['classification_dataset']) -@pytest.mark.skip('Memory error') def test_custom_params_setter(data_fixture, request): data = request.getfixturevalue(data_fixture) pipeline = get_complex_class_pipeline() @@ -291,8 +290,7 @@ def test_custom_params_setter(data_fixture, request): ('multi_classification_dataset', get_class_pipelines(), get_class_losses()), ('ts_forecasting_dataset', get_ts_forecasting_pipelines(), get_regr_losses()), ('multimodal_dataset', get_multimodal_pipelines(), get_class_losses())]) -@pytest.mark.parametrize('tuner', [SimultaneousTuner, SequentialTuner, IOptTuner, OptunaTuner]) -@pytest.mark.skip('Memory error') +@pytest.mark.parametrize('tuner', [SimultaneousTuner, SequentialTuner, OptunaTuner]) def test_pipeline_tuner_correct(data_fixture, pipelines, loss_functions, request, tuner): """ Test all tuners for pipeline """ data = request.getfixturevalue(data_fixture) @@ -313,7 +311,6 @@ def test_pipeline_tuner_correct(data_fixture, pipelines, loss_functions, request @pytest.mark.parametrize('tuner', [SimultaneousTuner, SequentialTuner, IOptTuner, OptunaTuner]) -@pytest.mark.skip('Memory error') def test_pipeline_tuner_with_no_parameters_to_tune(classification_dataset, tuner): pipeline = get_pipeline_with_no_params_to_tune() pipeline_tuner, tuned_pipeline = run_pipeline_tuner(tuner=tuner, @@ -327,8 +324,7 @@ def test_pipeline_tuner_with_no_parameters_to_tune(classification_dataset, tuner assert not tuned_pipeline.is_fitted -@pytest.mark.parametrize('tuner', [SimultaneousTuner, SequentialTuner, IOptTuner, OptunaTuner]) -@pytest.mark.skip('Memory error') +@pytest.mark.parametrize('tuner', [SimultaneousTuner, SequentialTuner, OptunaTuner]) def test_pipeline_tuner_with_initial_params(classification_dataset, tuner): """ Test all tuners for pipeline with initial parameters """ # a model @@ -352,8 +348,7 @@ def test_pipeline_tuner_with_initial_params(classification_dataset, tuner): ('multi_classification_dataset', get_class_pipelines(), get_class_losses()), ('ts_forecasting_dataset', get_ts_forecasting_pipelines(), get_regr_losses()), ('multimodal_dataset', get_multimodal_pipelines(), get_class_losses())]) -@pytest.mark.parametrize('tuner', [SimultaneousTuner, SequentialTuner, IOptTuner, OptunaTuner]) -@pytest.mark.skip('Memory error') +@pytest.mark.parametrize('tuner', [SimultaneousTuner, SequentialTuner, OptunaTuner]) def test_pipeline_tuner_with_custom_search_space(data_fixture, pipelines, loss_functions, request, tuner): """ Test tuners with different search spaces """ data = request.getfixturevalue(data_fixture) @@ -376,7 +371,6 @@ def test_pipeline_tuner_with_custom_search_space(data_fixture, pipelines, loss_f ('multi_classification_dataset', get_class_pipelines(), get_class_losses()), ('ts_forecasting_dataset', get_ts_forecasting_pipelines(), get_regr_losses()), ('multimodal_dataset', get_multimodal_pipelines(), get_class_losses())]) -@pytest.mark.skip('Memory error') def test_certain_node_tuning_correct(data_fixture, pipelines, loss_functions, request): """ Test SequentialTuner for particular node based on hyperopt library """ data = request.getfixturevalue(data_fixture) @@ -400,7 +394,6 @@ def test_certain_node_tuning_correct(data_fixture, pipelines, loss_functions, re ('multi_classification_dataset', get_class_pipelines(), get_class_losses()), ('ts_forecasting_dataset', get_ts_forecasting_pipelines(), get_regr_losses()), ('multimodal_dataset', get_multimodal_pipelines(), get_class_losses())]) -@pytest.mark.skip('Memory error') def test_certain_node_tuner_with_custom_search_space(data_fixture, pipelines, loss_functions, request): """ Test SequentialTuner for particular node with different search spaces """ data = request.getfixturevalue(data_fixture) @@ -418,7 +411,6 @@ def test_certain_node_tuner_with_custom_search_space(data_fixture, pipelines, lo @pytest.mark.parametrize('n_steps', [100, 133, 217, 300]) @pytest.mark.parametrize('tuner', [SimultaneousTuner, SequentialTuner, IOptTuner, OptunaTuner]) -@pytest.mark.skip('Memory error') def test_ts_pipeline_with_stats_model(n_steps, tuner): """ Tests tuners for time series forecasting task with AR model """ train_data, test_data = get_ts_data(n_steps=n_steps, forecast_length=5) @@ -438,7 +430,6 @@ def test_ts_pipeline_with_stats_model(n_steps, tuner): @pytest.mark.parametrize('data_fixture', ['tiny_classification_dataset']) -@pytest.mark.skip('Memory error') def test_early_stop_in_tuning(data_fixture, request): data = request.getfixturevalue(data_fixture) train_data, test_data = train_test_data_setup(data=data) @@ -470,7 +461,6 @@ def test_early_stop_in_tuning(data_fixture, request): assert time() - start_node_tuner < 1 -@pytest.mark.skip('Memory error') def test_search_space_correctness_after_customization(): default_search_space = PipelineSearchSpace() @@ -499,7 +489,6 @@ def test_search_space_correctness_after_customization(): assert default_params['0 || gbr | max_depth'] != custom_with_replace_params['0 || gbr | max_depth'] -@pytest.mark.skip('Memory error') def test_search_space_get_operation_parameter_range(): default_search_space = PipelineSearchSpace() gbr_operations = ['loss', 'learning_rate', 'max_depth', 'min_samples_split', @@ -523,7 +512,6 @@ def test_search_space_get_operation_parameter_range(): assert custom_with_replace_operations == ['max_depth'] -@pytest.mark.skip('Memory error') def test_complex_search_space(): space = PipelineSearchSpace() for i in range(20): @@ -535,7 +523,6 @@ def test_complex_search_space(): # TODO: (YamLyubov) add IOptTuner when it will support nested parameters. @pytest.mark.parametrize('tuner', [SimultaneousTuner, SequentialTuner, OptunaTuner]) -@pytest.mark.skip('Memory error') def test_complex_search_space_tuning_correct(tuner): """ Tests Tuners for time series forecasting task with GLM model that has a complex glm search space""" train_data, test_data = get_ts_data(n_steps=700, forecast_length=20) @@ -559,8 +546,7 @@ def test_complex_search_space_tuning_correct(tuner): ('multi_classification_dataset', get_class_pipelines(), get_class_losses()), ('ts_forecasting_dataset', get_ts_forecasting_pipelines(), get_regr_losses()), ('multimodal_dataset', get_multimodal_pipelines(), get_class_losses())]) -@pytest.mark.skip('Memory error') -@pytest.mark.parametrize('tuner', [OptunaTuner, IOptTuner]) +@pytest.mark.parametrize('tuner', [OptunaTuner]) def test_multiobj_tuning(data_fixture, pipelines, loss_functions, request, tuner): """ Test multi objective tuning is correct """ data = request.getfixturevalue(data_fixture)