-
Notifications
You must be signed in to change notification settings - Fork 56
/
vgg.py
43 lines (32 loc) · 1.1 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Copyright 2020 by Andrey Ignatov. All Rights Reserved.
from torchvision import models
import torch.nn as nn
import torch
CONTENT_LAYER = 'relu_16'
def vgg_19(device):
vgg_19 = models.vgg19(pretrained=True).features
model = nn.Sequential()
i = 0
for layer in vgg_19.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
model.add_module(name, layer)
if name == CONTENT_LAYER:
break
model = model.to(device)
model = torch.nn.DataParallel(model)
for param in model.parameters():
param.requires_grad = False
for param in vgg_19.parameters():
param.requires_grad = False
return model