-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrui.tex
58 lines (54 loc) · 4.58 KB
/
rui.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
\begin{table*}[!htbp]
\centering
\footnotesize
\caption{An example list of studies of malicious software detectors using machine learning.}
\begin{tabular}{|c|c|l|c|l|}
\hline
\textbf{Citation} & \textbf{Year} & \multicolumn{1}{c|}{\textbf{Scenario}} & \textbf{Adversarial Attack} & \multicolumn{1}{c|}{\textbf{Brief Description}} \\ \hline
~\cite{canali2011prophiler} & 2011 & Malicious URL Detection & Model Evasion & Build classifier to examine a web page for malicious content. \\ \hline
~\cite{eshete2012binspect} & 2013 & Malicious Web Page & - & Apply supervised
learning in detecting malicious web pages. \\ \hline
~\cite{biggio2010multiple} & 2010 & Spam Email Detection & Model Evasion & Construct multiple classifier systems to classify spam emails.\\ \hline
~\cite{xu2016automatically} & 2016 & Malicious PDF Detection & Model Evasion & Build classifiers to detect malicious PDF files. \\ \hline
~\cite{grosse2017adversarial} & 2017 & Android Malware Detection & Model Evasion & Apply machine learning to detect Android malwares. \\ \hline
~\cite{liu2017robust} & 2017 & Http Log Classification & Data Poisoning & Design supervised learning algorithm to classify http logs. \\ \hline
~\cite{munoz2017towards} & 2017 & Ransomware Detection & Data Poisoning & Design machine learning models to classify Ransomware. \\ \hline
~\cite{hendler2018detecting} & 2018 & Malicious Commands Detection & - & Detect malicious PowerShell commands using deep neural networks. \\ \hline
\end{tabular}
\end{table*}
% \begin{table*}[!htbp]
% \centering
% \footnotesize
% \caption{Category of adversarial attacks.}
% \begin{tabular}{|l|l|l|l|l|}
% \hline
% & \textbf{Standard} & \textbf{Adaptive} & \textbf{Transfer} & \textbf{WGB} \\ \hline
% Model Poisoning & add noise & manipulate training data & use a surrogate classifier & Greybox \\ \hline
% Model Evasion & \begin{tabular}[c]{@{}l@{}}Find examples on the hyperspace \\ boundary that confuse the detection\end{tabular} & manipulate testing data & use a surrogate classifier & Whitebox \\ \hline
% Model Extraction & Privacy attack, steal model information & \begin{tabular}[c]{@{}l@{}}Build surrogate model and then \\ produce adversarial examples in \\ surrogate model\end{tabular} & use a surrogate classifier & \begin{tabular}[c]{@{}l@{}}Blackbox, \\ Greybox,\\ Whitebox\end{tabular} \\ \hline
% \end{tabular}
% \end{table*}
% \begin{table*}[!htbp]
% \centering
% \footnotesize
% \caption{A list of security datasets.}
% \begin{tabular}{|l|l|c|c|c|c|c|}
% \hline
% \multicolumn{1}{|c|}{\textbf{Dataset}} & \multicolumn{1}{c|}{\textbf{Description}} & \textbf{No Adversarial} & \textbf{Standard} & \textbf{Adaptive} & \textbf{Transferbility} & \textbf{Available} \\ \hline
% \begin{tabular}[c]{@{}l@{}}2007 TREC Public \\ Spam Corpus\end{tabular} & Spam Emails Detection & - & ~\cite{biggio2010multiple} & - & - & Public \\ \hline
% Contagio PDF dataset & Malicious PDF Detection & - & \begin{tabular}[c]{@{}l@{}}~\cite{smutz2012malicious}~\cite{biggio2013evasion}~\cite{laskov2014practical}\\ ~\cite{xu2016automatically} ~\cite{dang2017evading}\end{tabular} & - & - & Public \\ \hline
% Spambase Data Set & Spam Emails Detection & & ~\cite{zhou2012adversarial}~\cite{munoz2017towards} & & & Public \\ \hline
% Drebin Android Malware & Android Malware Detection & ~\cite{arp2014drebin} & ~\cite{grosse2017statistical}~\cite{grosse2017adversarial}~\cite{tramer2017space} & & & On Request \\ \hline
% MalwareDB & Malware Detection & & ~\cite{khasawneh2017rhmd} & & & Public \\ \hline
% HTTP Logs & Malicious Traffic Detection & & ~\cite{liu2017robust} & & & On Request \\ \hline
% Ransomware Data & Malware Detection & & ~\cite{munoz2017towards}~\cite{sgandurra2016automated} & & & On Request \\ \hline
% Portable Execution Files & Malware Detection & & ~\cite{al2018adversarial} & & & On Request \\ \hline
% Enron Spam Emails & Spam Email Detection & & ~\cite{gao2018black}~\cite{metsis2006spam} & & & Public \\ \hline
% Powershell commands & Malicious Commands Deteection & & ~\cite{hendler2018detecting} & & & On Request \\ \hline
% KDD-CUP-1999 & Malicious Traffic Detection & & ~\cite{chen2019few} & & & On Request \\ \hline
% CIC-IDS-2017 & Malicious Traffic Detection & & ~\cite{chen2019few}~\cite{hashemi2019towards} & & & On Request \\ \hline
% CICAndMal2017 & Android Malware Detection & & ~\cite{taheri2019extensible} & & & On Request \\ \hline
% NSL-KDD & Malicious Traffic Detection & & ~\cite{alhajjar2020adversarial} & & & On Request \\ \hline
% UNSW-NB15 & Malicious Traffic Detection & & ~\cite{alhajjar2020adversarial} & & & On Request \\ \hline
% \end{tabular}
% \end{table*}