-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.bbl
396 lines (330 loc) · 15.7 KB
/
main.bbl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
\begin{thebibliography}{10}
\bibitem{van2017automatic}
Dana Van~Aken, Andrew Pavlo, Geoffrey~J Gordon, and Bohan Zhang.
\newblock Automatic database management system tuning through large-scale
machine learning.
\newblock In {\em International Conference on Management of Data}. ACM, 2017.
\bibitem{herodotou2011starfish}
Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,
Fatma~Bilgen Cetin, and Shivnath Babu.
\newblock Starfish: A self-tuning system for big data analytics.
\newblock In {\em Conference on Innovative Data Systems Research}, 2011.
\bibitem{xu2015hey}
Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and Rukma
Talwadker.
\newblock Hey, you have given me too many knobs!: understanding and dealing
with over-designed configuration in system software.
\newblock In {\em Foundations of Software Engineering}, 2015.
\bibitem{zhu2017optimized}
Han Zhu, Junqi Jin, Chang Tan, Fei Pan, Yifan Zeng, Han Li, and Kun Gai.
\newblock Optimized cost per click in taobao display advertising.
\newblock {\em arXiv preprint}, 2017.
\bibitem{alipourfard2017cherrypick}
Omid Alipourfard, Hongqiang~Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang.
\newblock Cherrypick: Adaptively unearthing the best cloud configurations for
big data analytics.
\newblock In {\em Symposium on Networked Systems Design and Implementation},
2017.
\bibitem{snoek2012practical}
Jasper Snoek, Hugo Larochelle, and Ryan~P Adams.
\newblock Practical bayesian optimization of machine learning algorithms.
\newblock In {\em Advances in neural information processing systems}, 2012.
\bibitem{brochu2010tutorial}
Eric Brochu, Vlad~M Cora, and Nando De~Freitas.
\newblock A tutorial on bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical reinforcement learning.
\newblock {\em arXiv preprint}, 2010.
\bibitem{guo2013variability}
Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wasowski.
\newblock Variability-aware performance prediction: A statistical learning
approach.
\newblock In {\em Automated Software Engineering}, 2013.
\bibitem{sarkar2015cost}
Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof Czarnecki.
\newblock Cost-efficient sampling for performance prediction of configurable
systems (t).
\newblock In {\em Automated Software Engineering}, 2015.
\bibitem{nair17}
Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel.
\newblock Faster discovery of faster system configurations with spectral
learning.
\newblock {\em Automated Software Engineering}, 2017.
\bibitem{nair2017using}
Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel.
\newblock Using bad learners to find good configurations.
\newblock In {\em Foundations of Software Engineering}. ACM, 2017.
\bibitem{guo2017data}
Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar, Pavel
Valov, Krzysztof Czarnecki, Andrzej Wasowski, and Huiqun Yu.
\newblock Data-efficient performance learning for configurable systems.
\newblock {\em Empirical Software Engineering}, pages 1--42, 2017.
\bibitem{zuluaga2016varepsilon}
Marcela Zuluaga, Andreas Krause, and Markus P{\"u}schel.
\newblock $\varepsilon$-pal: an active learning approach to the multi-objective
optimization problem.
\newblock {\em Journal of Machine Learning Research}, 2016.
\bibitem{wang2016bayesian}
Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de~Feitas.
\newblock Bayesian optimization in a billion dimensions via random embeddings.
\newblock {\em Journal of Artificial Intelligence Research}, 2016.
\bibitem{jamshidi2016uncertainty}
Pooyan Jamshidi and Giuliano Casale.
\newblock An uncertainty-aware approach to optimal configuration of stream
processing systems.
\newblock In {\em Modeling, Analysis and Simulation of Computer and
Telecommunication Systems}, 2016.
\bibitem{siegmund2012predicting}
Norbert Siegmund, Sergiy~S Kolesnikov, Christian K{\"a}stner, Sven Apel, Don
Batory, Marko Rosenm{\"u}ller, and Gunter Saake.
\newblock Predicting performance via automated feature-interaction detection.
\newblock In {\em International Conference on Software Engineering}, 2012.
\bibitem{wang2013searching}
Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke.
\newblock Searching for better configurations: a rigorous approach to clone
evaluation.
\newblock In {\em Foundations of Software Engineering}, 2013.
\bibitem{zuluaga2013active}
Marcela Zuluaga, Guillaume Sergent, Andreas Krause, and Markus P{\"u}schel.
\newblock Active learning for multi-objective optimization.
\newblock {\em International Conference of Machine Learning}, 2013.
\bibitem{chen2016sampling}
Jianfeng Chen, Vivek Nair, Rahul Krishna, and Tim Menzies.
\newblock Is sampling better than evolution for search-based software
engineering?
\newblock {\em arXiv preprint}, 2016.
\bibitem{henard2015combining}
Christopher Henard, Mike Papadakis, Mark Harman, and Yves Le~Traon.
\newblock Combining multi-objective search and constraint solving for
configuring large software product lines.
\newblock In {\em International Conference on Software Engineering}, 2015.
\bibitem{bergstra2013making}
James Bergstra, Daniel Yamins, and David Cox.
\newblock Making a science of model search: Hyperparameter optimization in
hundreds of dimensions for vision architectures.
\newblock In {\em International Conference on Machine Learning}, 2013.
\bibitem{fu2016tuning}
Wei Fu, Tim Menzies, and Xipeng Shen.
\newblock Tuning for software analytics: Is it really necessary?
\newblock {\em Information and Software Technology}, 2016.
\bibitem{fufse17}
Wei Fu and Tim Menzies.
\newblock Easy over hard: A case study on deep learning.
\newblock In {\em Foundations of Software Engineering}. ACM, 2017.
\bibitem{fu2016differential}
Wei Fu, Vivek Nair, and Tim Menzies.
\newblock Why is differential evolution better than grid search for tuning
defect predictors?
\newblock {\em arXiv preprint arXiv:1609.02613}, 2016.
\bibitem{tantithamthavorn2016automated}
Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed~E Hassan, and Kenichi
Matsumoto.
\newblock Automated parameter optimization of classification techniques for
defect prediction models.
\newblock In {\em International Conference on Software Engineering}. IEEE,
2016.
\bibitem{agrawal2016wrong}
Amritanshu Agrawal, Wei Fu, and Tim Menzies.
\newblock What is wrong with topic modeling?(and how to fix it using
search-based se).
\newblock {\em arXiv preprint}, 2016.
\bibitem{venkataraman2016ernest}
Shivaram Venkataraman, Zongheng Yang, Michael~J Franklin, Benjamin Recht, and
Ion Stoica.
\newblock Ernest: Efficient performance prediction for large-scale advanced
analytics.
\newblock In {\em Symposium on Networked Systems Design and Implementation},
2016.
\bibitem{yadwadkar2017selecting}
Neeraja~J. Yadwadkar, Bharath Hariharan, Joseph~E. Gonzalez, Burton Smith, and
Randy~H. Katz.
\newblock Selecting the best vm across multiple public clouds: A data-driven
performance modeling approach.
\newblock In {\em Symposium on Cloud Computing}. ACM, 2017.
\bibitem{Zhu:2017:BTP:3127479.3128605}
Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue Liu,
Kunpeng Song, and Yingchun Yang.
\newblock Bestconfig: Tapping the performance potential of systems via
automatic configuration tuning.
\newblock In {\em Symposium on Cloud Computing}. ACM, 2017.
\bibitem{dalibard2017boat}
Valentin Dalibard, Michael Schaarschmidt, and Eiko Yoneki.
\newblock Boat: Building auto-tuners with structured bayesian optimization.
\newblock In {\em Proceedings of the 26th International Conference on World
Wide Web}. International World Wide Web Conferences Steering Committee, 2017.
\bibitem{biedermann2014hot}
Sebastian Biedermann, Stefan Katzenbeisser, and Jakub Szefer.
\newblock Hot-hardening: getting more out of your security settings.
\newblock In {\em Computer Security Applications Conference}. ACM, 2014.
\bibitem{biedermann2014leveraging}
Sebastian Biedermann, Stefan Katzenbeisser, and Jakub Szefer.
\newblock Leveraging virtual machine introspection for hot-hardening of
arbitrary cloud-user applications.
\newblock In {\em HotCloud}, 2014.
\bibitem{drabik2003method}
John Drabik.
\newblock Method and apparatus for automatic configuration and management of a
virtual private network, October~8 2003.
\newblock US Patent App. 10/460,518.
\bibitem{security1}
Hpe security research.
\newblock \url{http://files.asset.microfocus.com/4aa5-0858/en/4aa5-0858.pdf},
2015.
\newblock [Online; accessed 10-Nov-2017].
\bibitem{security2}
Real-world access control.
\newblock
\url{https://www.schneier.com/blog/archives/2009/09/real-world_acce.html},
2009.
\newblock [Online; accessed 10-Nov-2017].
\bibitem{hill2017efficient}
Daniel~N Hill, Houssam Nassif, Yi~Liu, Anand Iyer, and SVN Vishwanathan.
\newblock An efficient bandit algorithm for realtime multivariate optimization.
\newblock In {\em SIGKDD International Conference on Knowledge Discovery and
Data Mining}. ACM, 2017.
\bibitem{wang2016beyond}
Yue Wang, Dawei Yin, Luo Jie, Pengyuan Wang, Makoto Yamada, Yi~Chang, and
Qiaozhu Mei.
\newblock Beyond ranking: Optimizing whole-page presentation.
\newblock In {\em International Conference on Web Search and Data Mining}. ACM,
2016.
\bibitem{Siegmund2015}
Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian K\"{a}stner.
\newblock Performance-influence models for highly configurable systems.
\newblock In {\em Foundations of Software Engineering}. ACM, 2015.
\bibitem{shen2006fast}
Yirong Shen, Matthias Seeger, and Andrew~Y Ng.
\newblock Fast gaussian process regression using kd-trees.
\newblock In {\em Advances in neural information processing systems}, 2006.
\bibitem{krall2015gale}
Joseph Krall, Tim Menzies, and Misty Davies.
\newblock Gale: Geometric active learning for search-based software
engineering.
\newblock {\em IEEE Transactions on Software Engineering}, 2015.
\bibitem{breiman1984classification}
Leo Breiman, Jerome~H Friedman, Richard~A Olshen, and Charles~J Stone.
\newblock {\em Classification and regression trees}.
\newblock Wadsworth \& Brooks/Cole Advanced Books \& Software, 1984.
\bibitem{zhang2007moea}
Qingfu Zhang and Hui Li.
\newblock Moea/d: A multiobjective evolutionary algorithm based on
decomposition.
\newblock {\em IEEE Transactions on Evolutionary Computation}, 2007.
\bibitem{hoffman2014modular}
Matthew~W Hoffman and Bobak Shahriari.
\newblock Modular mechanisms for bayesian optimization.
\newblock In {\em NIPS Workshop on Bayesian Optimization}, pages 1--5.
Citeseer, 2014.
\bibitem{bergstra2011algorithms}
James~S Bergstra, R{\'e}mi Bardenet, Yoshua Bengio, and Bal{\'a}zs K{\'e}gl.
\newblock Algorithms for hyper-parameter optimization.
\newblock In {\em Advances in Neural Information Processing Systems}, 2011.
\bibitem{harman2009search}
Mark Harman, S~Afshin Mansouri, and Yuanyuan Zhang.
\newblock Search based software engineering: A comprehensive analysis and
review of trends techniques and applications.
\newblock {\em Department of Computer Science, King’s College London, Tech.
Rep. TR-09-03}, 2009.
\bibitem{sarro2016multi}
Federica Sarro, Alessio Petrozziello, and Mark Harman.
\newblock Multi-objective software effort estimation.
\newblock In {\em Proceedings of the 38th International Conference on Software
Engineering}, pages 619--630. ACM, 2016.
\bibitem{chen2017beyond}
Jianfeng Chen, Vivek Nair, and Tim Menzies.
\newblock Beyond evolutionary algorithms for search-based software engineering.
\newblock {\em arXiv preprint}, 2017.
\bibitem{golovin2017google}
Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro,
and D~Sculley.
\newblock Google vizier: A service for black-box optimization.
\newblock In {\em International Conference on Knowledge Discovery and Data
Mining}. ACM, 2017.
\bibitem{shahriari2016taking}
Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan~P Adams, and Nando De~Freitas.
\newblock Taking the human out of the loop: A review of bayesian optimization.
\newblock {\em Proceedings of the IEEE}, 104(1):148--175, 2016.
\bibitem{rasmussen2004gaussian}
Carl~Edward Rasmussen.
\newblock Gaussian processes in machine learning.
\newblock In {\em Advanced lectures on machine learning}, pages 63--71.
Springer, 2004.
\bibitem{su2006fast}
Jiang Su and Harry Zhang.
\newblock A fast decision tree learning algorithm.
\newblock In {\em AAAI Conference on Artificial Intelligence}, 2006.
\bibitem{domingos2000mining}
Pedro Domingos and Geoff Hulten.
\newblock Mining high-speed data streams.
\newblock In {\em Proceedings of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining}, pages 71--80. ACM, 2000.
\bibitem{deb2002fast}
Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan.
\newblock A fast and elitist multiobjective genetic algorithm: Nsga-ii.
\newblock {\em IEEE transactions on evolutionary computation}, 2002.
\bibitem{oh2017finding}
Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund.
\newblock Finding near-optimal configurations in product lines by random
sampling.
\newblock In {\em Foundations of Software Engineering}, 2017.
\bibitem{wang2016practical}
Shuai Wang, Shaukat Ali, Tao Yue, Yan Li, and Marius Liaaen.
\newblock A practical guide to select quality indicators for assessing
pareto-based search algorithms in search-based software engineering.
\newblock In {\em International Conference on Software Engineering}, 2016.
\bibitem{van1999multiobjective}
David~Allen Van~Veldhuizen.
\newblock Multiobjective evolutionary algorithms: Classifications, analyses,
and new innovations.
\newblock Technical report, 1999.
\bibitem{coello2004study}
Carlos A~Coello Coello and Margarita~Reyes Sierra.
\newblock A study of the parallelization of a coevolutionary multi-objective
evolutionary algorithm.
\newblock In {\em Mexican International Conference on Artificial Intelligence},
2004.
\bibitem{mittas13}
N.~Mittas and L.~Angelis.
\newblock Ranking and clustering software cost estimation models through a
multiple comparisons algorithm.
\newblock {\em IEEE Transactions on Software Engineering}, 39, 2013.
\bibitem{efron93}
B.~Efron and R.~J. Tibshirani.
\newblock {\em {An Introduction to the Bootstrap}}.
\newblock CRC, 1993.
\bibitem{shepperd12a}
Martin~J. Shepperd and Steven~G. MacDonell.
\newblock Evaluating prediction systems in software project estimation.
\newblock {\em Information {\&} Software Technology}, 54(8):820--827, 2012.
\bibitem{kampenes07}
Vigdis~By Kampenes, Tore Dyb{\aa}, Jo~Erskine Hannay, and Dag I.~K. Sj{\o}berg.
\newblock A systematic review of effect size in software engineering
experiments.
\newblock {\em Information {\&} Software Technology}, 49(11-12):1073--1086,
2007.
\bibitem{Kocaguneli2013:ep}
Ekrem Kocaguneli, Thomas Zimmermann, Christian Bird, Nachiappan Nagappan, and
Tim Menzies.
\newblock {Distributed development considered harmful?}
\newblock In {\em Proceedings - International Conference on Software
Engineering}, pages 882--890, 2013.
\bibitem{scikit-learn}
Fabian Pedregosa, Ga{\"e}l Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et~al.
\newblock Scikit-learn: Machine learning in python.
\newblock {\em Journal of Machine Learning Research}, 2011.
\bibitem{SSA15}
Janet Siegmund, Norbert Siegmund, and Sven Apel.
\newblock Views on internal and external validity in empirical software
engineering.
\newblock In {\em International Conference on Software Engineering}. IEEE,
2015.
\bibitem{me12d}
Tim Menzies, Andrew Butcher, David Cok, Andrian Marcus, Lucas Layman, Forrest
Shull, Burak Turhan, and Thomas Zimmermann.
\newblock Local versus global lessons for defect prediction and effort
estimation.
\newblock {\em IEEE Transactions on Software Engineering}, 2013.
\end{thebibliography}