-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathfinetune_highres.py
538 lines (464 loc) · 19.8 KB
/
finetune_highres.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import time
import numpy as np
import timeit
import saverloader
from nets.pips2 import Pips
import utils.improc
import utils.geom
import utils.misc
import random
from utils.basic import print_, print_stats
from datasets.pointodysseydataset import PointOdysseyDataset
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
import torch.nn.functional as F
from fire import Fire
import sys
from torch import nn, einsum
from einops import rearrange, repeat
from einops.layers.torch import Rearrange, Reduce
from torch.utils.data import Dataset, DataLoader
def create_pools(n_pool=1000):
pools = {}
pool_names = [
'l1',
'd_1',
'd_2',
'd_4',
'd_8',
'd_16',
'd_avg',
'l1_vis',
'ate_all',
'ate_vis',
'ate_occ',
'median_l2',
'survival',
'total_loss',
]
for pool_name in pool_names:
pools[pool_name] = utils.misc.SimplePool(n_pool, version='np')
return pools
def requires_grad(parameters, flag=True):
for p in parameters:
p.requires_grad = flag
def fetch_optimizer(lr, wdecay, epsilon, num_steps, params):
optimizer = torch.optim.AdamW(params, lr=lr, weight_decay=wdecay, eps=epsilon)
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer, lr, num_steps+100, pct_start=0.1, cycle_momentum=False, anneal_strategy='linear')
return optimizer, scheduler
def val_model(model, d, device, iters=8, sw=None, is_train=False):
metrics = {}
rgbs = d['rgbs'].float().to(device) # B,S,C,H,W
trajs_g = d['trajs'].float().to(device) # B,S,N,8
vis_g = d['visibs'].float().to(device) # B,S,N
valids = d['valids'].float().to(device) # B,S,N
B, S, C, H, W = rgbs.shape
B, S, N, D = trajs_g.shape
assert(D==2)
# zero-vel init
trajs_e0 = trajs_g[:,0:1].repeat(1,S,1,1)
preds, preds_anim, _, _ = model(trajs_e0, rgbs, iters=iters)
trajs_e = preds[-1]
l1_dists = torch.abs(trajs_e - trajs_g).sum(dim=-1) # B,S,N
l1_loss = utils.basic.reduce_masked_mean(l1_dists, valids)
l1_vis = utils.basic.reduce_masked_mean(l1_dists, valids*vis_g)
ate = torch.norm(trajs_e - trajs_g, dim=-1) # B,S,N
ate_all = utils.basic.reduce_masked_mean(ate, valids, dim=[1,2])
ate_vis = utils.basic.reduce_masked_mean(ate, valids*vis_g)
ate_occ = utils.basic.reduce_masked_mean(ate, valids*(1.0-vis_g))
metrics['l1'] = l1_loss.mean().item()
metrics['l1_vis'] = l1_vis.mean().item()
metrics['ate_all'] = ate_all.mean().item()
metrics['ate_vis'] = ate_vis.item()
metrics['ate_occ'] = ate_occ.item()
if sw is not None and sw.save_this:
prep_rgbs = utils.improc.preprocess_color(rgbs)
prep_grays = torch.mean(prep_rgbs, dim=2, keepdim=True).repeat(1, 1, 3, 1, 1)
gt_rgb = utils.improc.preprocess_color(sw.summ_traj2ds_on_rgb('', trajs_g[0:1], prep_grays[0:1].mean(dim=1), valids=valids[0:1], cmap='winter', only_return=True))
rgb_vis = []
for tre in preds_anim:
ate = torch.norm(tre - trajs_g, dim=-1) # B,S,N
ate_all = utils.basic.reduce_masked_mean(ate, valids, dim=[1,2]) # B
rgb_vis.append(sw.summ_traj2ds_on_rgb('', tre[0:1], gt_rgb, valids=valids[0:1], only_return=True, cmap='spring', frame_id=ate_all[0]))
sw.summ_rgbs('3_test/animated_trajs_on_rgb', rgb_vis)
d_sum = 0.0
thrs = [1,2,4,8,16]
sx_ = W / 256.0
sy_ = H / 256.0
sc_py = np.array([sx_, sy_]).reshape([1,1,2])
sc_pt = torch.from_numpy(sc_py).float().cuda()
for thr in thrs:
# note we exclude timestep0 from this eval
d_ = (torch.norm(trajs_e[:,1:]/sc_pt - trajs_g[:,1:]/sc_pt, dim=-1) < thr).float() # B,S-1,N
d_ = utils.basic.reduce_masked_mean(d_, valids[:,1:]).item()*100.0
d_sum += d_
metrics['d_%d' % thr] = d_
d_avg = d_sum / len(thrs)
metrics['d_avg'] = d_avg
sur_thr = 16
dists = torch.norm(trajs_e/sc_pt - trajs_g/sc_pt, dim=-1) # B,S,N
dist_ok = 1 - (dists > sur_thr).float() * valids # B,S,N
survival = torch.cumprod(dist_ok, dim=1) # B,S,N
metrics['survival'] = torch.mean(survival).item()*100.0
# get the median l2 error for each trajectory
dists_ = dists.permute(0,2,1).reshape(B*N,S)
valids_ = valids.permute(0,2,1).reshape(B*N,S)
median_l2 = utils.basic.reduce_masked_median(dists_, valids_, keep_batch=True) # B*N
metrics['median_l2'] = median_l2.mean().item()
return metrics
def run_model(model, d, device, iters=8, sw=None, is_train=True, use_augs=True):
total_loss = torch.tensor(0.0, requires_grad=True).to(device)
metrics = {}
rgbs = d['rgbs'].float().to(device) # B,S,C,H,W
trajs_g = d['trajs'].float().to(device) # B,S,N,8
vis_g = d['visibs'].float().to(device) # B,S,N
valids = d['valids'].float().to(device) # B,S,N
if use_augs and np.random.rand() < 0.5: # rot90 aug
rgbs = rgbs.permute(0,1,2,4,3) # swap xy
trajs_g = trajs_g.flip([3]) # swap xy
B, S, C, H, W = rgbs.shape
assert(C==3)
B, S, N, D = trajs_g.shape
assert(D==2)
# full random
x = torch.from_numpy(np.random.uniform(0, W-1, (B,S,N))).float().to(trajs_g.device)
y = torch.from_numpy(np.random.uniform(0, H-1, (B,S,N))).float().to(trajs_g.device)
trajs_e0 = torch.stack([x,y], dim=-1) # B,S,N,2
# mix with gt a random amount
coeff = torch.from_numpy(np.random.uniform(0, 1, (B,1,N,1))).float().to(trajs_g.device)
trajs_e0 = trajs_e0*coeff + trajs_g*(1-coeff)
# use zero-velocity init for some
trajs_z = trajs_g[:,0:1].repeat(1,S,1,1)
mask = (torch.from_numpy(np.random.uniform(0, 1, (B,1,N,1))).float().to(trajs_g.device)>0.5).float()
trajs_e0 = trajs_e0*mask + trajs_z*(1-mask)
# reset zeroth on all
trajs_e0[:,0:1] = trajs_g[:,0:1]
# # zero-vel init
# trajs_e0 = trajs_g[:,0:1].repeat(1,S,1,1)
# measure our initial distance, so we can check our improvement
ate0 = torch.norm(trajs_e0 - trajs_g, dim=-1) # B,S,N
ate0_all = utils.basic.reduce_masked_mean(ate0, valids, dim=[1,2])
preds, preds_anim, _, loss = model(trajs_e0, rgbs, iters=iters, trajs_g=trajs_g, vis_g=vis_g, valids=valids, is_train=is_train)
trajs_e = preds[-1]
total_loss += loss
# collect stats
l1_dists = torch.abs(trajs_e - trajs_g).sum(dim=-1) # B,S,N
l1_loss = utils.basic.reduce_masked_mean(l1_dists, valids)
l1_vis = utils.basic.reduce_masked_mean(l1_dists, valids*vis_g)
ate = torch.norm(trajs_e - trajs_g, dim=-1) # B,S,N
ate_all = utils.basic.reduce_masked_mean(ate, valids, dim=[1,2])
ate_vis = utils.basic.reduce_masked_mean(ate, valids*vis_g)
ate_occ = utils.basic.reduce_masked_mean(ate, valids*(1.0-vis_g))
metrics['l1'] = l1_loss.mean().item()
metrics['l1_vis'] = l1_vis.mean().item()
metrics['ate_all'] = ate_all.mean().item()
metrics['ate_vis'] = ate_vis.item()
metrics['ate_occ'] = ate_occ.item()
metrics['total_loss'] = total_loss.item()
d_sum = 0.0
thrs = [1,2,4,8,16]
sx_ = W / 256.0
sy_ = H / 256.0
sc_py = np.array([sx_, sy_]).reshape([1,1,2])
sc_pt = torch.from_numpy(sc_py).float().to(device)
for thr in thrs:
# note we exclude timestep0 from this eval
d_ = (torch.norm(trajs_e[:,1:]/sc_pt - trajs_g[:,1:]/sc_pt, dim=-1) < thr).float() # B,S-1,N
d_ = utils.basic.reduce_masked_mean(d_, valids[:,1:]).item()*100.0
d_sum += d_
metrics['d_%d' % thr] = d_
d_avg = d_sum / len(thrs)
metrics['d_avg'] = d_avg
sur_thr = 16
dists = torch.norm(trajs_e/sc_pt - trajs_g/sc_pt, dim=-1) # B,S,N
dist_ok = 1 - (dists > sur_thr).float() * valids # B,S,N
survival = torch.cumprod(dist_ok, dim=1) # B,S,N
metrics['survival'] = torch.mean(survival).item()*100.0
# get the median l2 error for each trajectory
dists_ = dists.permute(0,2,1).reshape(B*N,S)
valids_ = valids.permute(0,2,1).reshape(B*N,S)
val_ok = valids_[:,0] > 0 # get rid of the ones we padded in
dists_ = dists_[val_ok]
valids_ = valids_[val_ok]
median_l2 = utils.basic.reduce_masked_median(dists_, valids_, keep_batch=True) # B*N
metrics['median_l2'] = median_l2.mean().item()
if sw is not None and sw.save_this:
prep_rgbs = utils.improc.preprocess_color(rgbs)
prep_grays = torch.mean(prep_rgbs, dim=2, keepdim=True).repeat(1, 1, 3, 1, 1)
rgb0 = sw.summ_traj2ds_on_rgb('', trajs_g[0:1], prep_rgbs[0:1,0], valids=valids[0:1], cmap='winter', linewidth=2, only_return=True)
sw.summ_traj2ds_on_rgb('0_inputs/trajs_e0_on_rgb0', trajs_e0[0:1], utils.improc.preprocess_color(rgb0), valids=valids[0:1], cmap='spring', linewidth=2, frame_id=ate0_all[0].mean().item())
sw.summ_traj2ds_on_rgb('2_outputs/trajs_e_on_rgb0', trajs_e[0:1], utils.improc.preprocess_color(rgb0), valids=valids[0:1], cmap='spring', linewidth=2, frame_id=ate_all[0].mean().item())
sw.summ_traj2ds_on_rgbs2('0_inputs/trajs_g_on_rgbs2', trajs_g[0:1,::4], vis_g[0:1,::4], prep_rgbs[0:1,::4], valids=valids[0:1,::4], frame_ids=list(range(0,S,4)))
# in the kp vis, clamp so that we can see everything
trajs_g_clamp = trajs_g.clone()
trajs_g_clamp[:,:,:,0] = trajs_g_clamp[:,:,:,0].clip(0,W-1)
trajs_g_clamp[:,:,:,1] = trajs_g_clamp[:,:,:,1].clip(0,H-1)
trajs_e_clamp = trajs_e.clone()
trajs_e_clamp[:,:,:,0] = trajs_e_clamp[:,:,:,0].clip(0,W-1)
trajs_e_clamp[:,:,:,1] = trajs_e_clamp[:,:,:,1].clip(0,H-1)
gt_rgb = utils.improc.preprocess_color(sw.summ_traj2ds_on_rgb('', trajs_g[0:1], prep_grays[0:1].mean(dim=1), valids=valids[0:1], cmap='winter', only_return=True))
rgb_vis = []
for tre in preds_anim:
ate = torch.norm(tre - trajs_g, dim=-1) # B,S,N
ate_all = utils.basic.reduce_masked_mean(ate, valids, dim=[1,2]) # B
rgb_vis.append(sw.summ_traj2ds_on_rgb('', tre[0:1], gt_rgb, valids=valids[0:1], only_return=True, cmap='spring', frame_id=ate_all[0]))
sw.summ_rgbs('3_test/animated_trajs_on_rgb', rgb_vis)
outs = sw.summ_pts_on_rgbs(
'',
trajs_g_clamp[0:1,::4],
prep_grays[0:1,::4],
valids=valids[0:1,::4],
cmap='winter', linewidth=3, only_return=True)
sw.summ_pts_on_rgbs(
'0_inputs/kps_gv_on_rgbs',
trajs_g_clamp[0:1,::4],
utils.improc.preprocess_color(outs),
valids=valids[0:1,::4]*vis_g[0:1,::4],
cmap='spring', linewidth=2)
outs = sw.summ_pts_on_rgbs(
'',
trajs_g_clamp[0:1,::4],
prep_grays[0:1,::4],
valids=valids[0:1,::4],
cmap='winter', linewidth=3, only_return=True)
sw.summ_pts_on_rgbs(
'2_outputs/kps_eg_on_rgbs',
trajs_e_clamp[0:1,::4],
utils.improc.preprocess_color(outs),
valids=valids[0:1,::4],
cmap='spring', linewidth=2)
return total_loss, metrics
def main(
B=2, # batchsize
S=38, # seqlen
N=64, # number of points per clip
stride=8, # spatial stride of the model
iters=4, # inference steps of the model
crop_size=(512,896), # raw flt data is 540,960
use_augs=True, # resizing/jittering/color/blur augs
shuffle=True, # dataset shuffling
cache_len=0, # how many samples to cache into ram (for overfitting/debug)
cache_freq=0, # how often to add a new sample to cache
dataset_location='/orion/group/point_odyssey',
n_pool=1000, # size of running avg for stats
quick=False, # debug
# optimization
lr=5e-4,
grad_acc=1,
use_scheduler=True,
max_iters=200000,
# summaries
log_dir='./logs_finetune_highres',
log_freq=1000,
val_freq=0,
# saving/loading
ckpt_dir='./checkpoints',
save_freq=1000,
keep_latest=2,
init_dir='',
load_optimizer=True,
load_step=True,
ignore_load=None,
device_ids=[0],
):
device = 'cuda:%d' % device_ids[0]
# the idea in this file is:
# finetune on pointodyssey, using the raw high-res jpgs
exp_name = 'ac00' # copy from dev repo
if quick: # (debug)
B = 1
log_freq = 100
max_iters = 1000
shuffle = False
val_freq = 10
n_pool = 10
use_augs = False
cache_len = 3 # overfit on this many
cache_freq = 0
save_freq = 99999999
if init_dir:
init_dir = '%s/%s' % (ckpt_dir, init_dir)
assert(crop_size[0] % 32 == 0)
assert(crop_size[1] % 32 == 0)
# autogen a descriptive name
model_name = "%d_%d_%d" % (B,S,N)
model_name += "_i%d" % (iters)
if grad_acc > 1:
model_name += "x%d" % grad_acc
lrn = "%.1e" % lr # e.g., 5.0e-04
lrn = lrn[0] + lrn[3:5] + lrn[-1] # e.g., 5e-4
model_name += "_%s" % lrn
if use_scheduler:
model_name += "s"
if cache_len:
model_name += "_c%d_f%d" % (cache_len, cache_freq)
if use_augs:
model_name += "_A"
model_name += "_%s" % exp_name
import datetime
model_date = datetime.datetime.now().strftime('%H%M%S')
model_name = model_name + '_' + model_date
print('model_name', model_name)
ckpt_path = '%s/%s' % (ckpt_dir, model_name)
writer_t = SummaryWriter(log_dir + '/' + model_name + '/t', max_queue=10, flush_secs=60)
if val_freq:
writer_v = SummaryWriter(log_dir + '/' + model_name + '/v', max_queue=10, flush_secs=60)
def worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
dataset_t = PointOdysseyDataset(
dataset_location=dataset_location,
dset='train',
S=S,
N=N,
strides=[1,2],
use_augs=use_augs,
crop_size=crop_size,
quick=quick,
req_full=True,
verbose=False,
)
dataloader_t = DataLoader(
dataset_t,
batch_size=B,
shuffle=shuffle,
num_workers=6,
worker_init_fn=worker_init_fn,
drop_last=True)
iterloader_t = iter(dataloader_t)
if cache_len:
sample_pool_t = utils.misc.SimplePool(cache_len, version='np')
model = Pips(stride=stride).to(device)
model = torch.nn.DataParallel(model, device_ids=device_ids)
parameters = list(model.parameters())
weight_decay = 1e-6
if use_scheduler:
optimizer, scheduler = fetch_optimizer(lr, weight_decay, 1e-8, max_iters, model.parameters())
else:
optimizer = torch.optim.AdamW(parameters, lr=lr, weight_decay=weight_decay)
scheduler = None
utils.misc.count_parameters(model)
global_step = 0
if init_dir:
if load_step and load_optimizer:
global_step = saverloader.load(init_dir, model.module, optimizer=optimizer, scheduler=scheduler, ignore_load=ignore_load)
elif load_step:
global_step = saverloader.load(init_dir, model.module, ignore_load=ignore_load)
else:
_ = saverloader.load(init_dir, model.module, ignore_load=ignore_load)
global_step = 0
requires_grad(parameters, True)
model.train()
pools_t = create_pools(n_pool)
if val_freq:
pools_v = create_pools(n_pool)
while global_step < max_iters:
global_step += 1
iter_start_time = time.time()
iter_rtime = 0.0
for internal_step in range(grad_acc):
read_start_time = time.time()
if internal_step==grad_acc-1:
sw_t = utils.improc.Summ_writer(
writer=writer_t,
global_step=global_step,
log_freq=log_freq,
fps=min(S,8),
scalar_freq=log_freq//4,
just_gif=True)
else:
sw_t = None
read_new = True # read something from the dataloder
if cache_len:
read_new = False
if len(sample_pool_t) < cache_len:
read_new = True
if cache_freq > 0 and global_step % cache_freq == 0:
read_new = True
if read_new:
gotit = (False,False)
while not all(gotit):
try:
sample, gotit = next(iterloader_t)
except StopIteration:
iterloader_t = iter(dataloader_t)
sample, gotit = next(iterloader_t)
if cache_len:
sample_pool_t.update([sample])
print('cached a new sample into sample_pool (len %d)' % (len(sample_pool_t)))
if cache_len:
sample = sample_pool_t.sample()
iter_rtime += time.time()-read_start_time
total_loss, metrics = run_model(
model, sample, device,
iters=iters,
sw=sw_t,
is_train=True,
use_augs=use_augs)
if torch.isnan(total_loss):
print('nan in loss; quitting')
return False
total_loss /= grad_acc
total_loss.backward()
sw_t.summ_scalar('total_loss', metrics['total_loss'])
for key in list(pools_t.keys()):
if key in metrics:
pools_t[key].update([metrics[key]])
sw_t.summ_scalar('_/%s' % (key), pools_t[key].mean())
current_lr = optimizer.param_groups[0]['lr']
sw_t.summ_scalar('_/current_lr', current_lr)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
if use_scheduler:
scheduler.step()
optimizer.zero_grad()
if np.mod(global_step, save_freq)==0:
saverloader.save(ckpt_path, optimizer, model.module, global_step, scheduler=scheduler, keep_latest=keep_latest)
if val_freq and (global_step) % val_freq == 0:
model.eval()
del sample
with torch.no_grad():
torch.cuda.empty_cache()
sw_v = utils.improc.Summ_writer(
writer=writer_v,
global_step=global_step,
log_freq=log_freq,
fps=min(S,8),
scalar_freq=log_freq//4,
just_gif=True)
if cache_len:
sample = sample_pool_t.sample()
else:
gotit = (False,False)
while not all(gotit):
try:
sample, gotit = next(iterloader_t)
except StopIteration:
iterloader_t = iter(dataloader_t)
sample, gotit = next(iterloader_t)
with torch.no_grad():
metrics = val_model(
model, sample, device,
iters=iters*2,
sw=sw_v,
is_train=False)
for key in list(pools_v.keys()):
if key in metrics:
pools_v[key].update([metrics[key]])
sw_v.summ_scalar('_/%s' % (key), pools_v[key].mean())
model.train()
iter_itime = time.time()-iter_start_time
if val_freq:
print('%s; step %06d/%d; rtime %.2f; itime %.2f; loss %.3f; loss_t %.2f; d_t %.1f; d_v %.1f' % (
model_name, global_step, max_iters, iter_rtime, iter_itime,
total_loss.item(), pools_t['total_loss'].mean(), pools_t['d_avg'].mean(), pools_v['d_avg'].mean()))
else:
print('%s; step %06d/%d; rtime %.2f; itime %.2f; loss %.3f; loss_t %.2f; d_t %.1f' % (
model_name, global_step, max_iters, iter_rtime, iter_itime,
total_loss.item(), pools_t['total_loss'].mean(), pools_t['d_avg'].mean()))
writer_t.close()
if val_freq:
writer_v.close()
if __name__ == '__main__':
Fire(main)