-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_token_classifier.py
1405 lines (1144 loc) · 60 KB
/
run_token_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from curses.ascii import isalnum
from torch import nn
from torch.nn import CrossEntropyLoss
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from transformers import *
from sklearn.metrics import accuracy_score
from tqdm import tqdm, trange
from shutil import copyfile
import distutils
import sys
import os
import csv
import logging
import argparse
import random
import tempfile
import subprocess
import string
import numpy as np
import torch
import time
import unicodedata
#sys.path.append(os.path.join(os.path.dirname(__file__), "tree2labels"))
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
BERT_MODEL = "bert_model"
OPENIA_GPT_MODEL = "openai_gpt_model"
GPT2_MODEL = "gpt2_model"
TRANSFORXL_MODEL = "transforxl_model"
XLNET_MODEL = "xlnet_model"
XLM_MODEL = "xlm_modeL"
DISTILBERT_MODEL = "distilbert_model"
ROBERT_MODEL = "robert_model"
MODELS = {BERT_MODEL: (BertModel, BertTokenizer, 'bert-base-uncased'),
DISTILBERT_MODEL: (DistilBertModel, DistilBertTokenizer, 'distilbert-base-cased'),
}
class MTLBertForTokenClassification(BertPreTrainedModel):
def __init__(self, config, finetune, use_bilstms=False):
super(MTLBertForTokenClassification, self).__init__(config)
self.num_labels = config.num_labels
self.num_tasks = len(self.num_labels)
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.use_bilstms = use_bilstms
self.lstm_size = 400
self.lstm_layers = 2
self.bidirectional_lstm = True
if self.use_bilstms:
self.lstm = nn.LSTM(config.hidden_size, self.lstm_size, num_layers=self.lstm_layers, batch_first=True,
bidirectional=self.bidirectional_lstm)
self.hidden2tagList = nn.ModuleList([nn.Linear(self.lstm_size * (2 if self.bidirectional_lstm else 1),
self.num_labels[idtask])
for idtask in range(self.num_tasks)])
else:
self.hidden2tagList = nn.ModuleList([nn.Linear(config.hidden_size,
self.num_labels[idtask])
for idtask in range(self.num_tasks)])
self.finetune = finetune
self.init_weights()
def forward(self, input_ids, attention_mask=None, token_type_ids=None,
position_ids=None, head_mask=None, labels=None):
hidden_outputs = self.bert(input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
head_mask=head_mask)
sequence_output = hidden_outputs[0]
if not self.finetune:
sequence_output = sequence_output.detach()
if self.use_bilstms:
self.lstm.flatten_parameters()
sequence_output, hidden = self.lstm(sequence_output, None)
sequence_output = self.dropout(sequence_output)
outputs = [(classifier(sequence_output),) for classifier in self.hidden2tagList]
losses = []
for idtask, out in enumerate(outputs):
logits = out[0]
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels[idtask])[active_loss]
active_labels = labels[:, idtask, :].reshape(-1)[active_loss]
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels[idtask]), labels.view(-1))
losses.append(loss)
outputs = (sum(losses),) + hidden_outputs
return outputs
class MTLDistilBertForTokenClassification(DistilBertPreTrainedModel):
def __init__(self, config, finetune, use_bilstms=False):
super(MTLDistilBertForTokenClassification, self).__init__(config)
self.num_labels = config.num_labels
self.num_tasks = len(self.num_labels)
self.distilbert = DistilBertModel(config)
self.dropout = nn.Dropout(config.dropout)
self.use_bilstms = use_bilstms
self.lstm_size = 400
self.lstm_layers = 2
self.bidirectional_lstm = True
if self.use_bilstms:
self.lstm = nn.LSTM(config.hidden_size, self.lstm_size, num_layers=self.lstm_layers, batch_first=True,
bidirectional=self.bidirectional_lstm)
self.hidden2tagList = nn.ModuleList([nn.Linear(self.lstm_size * (2 if self.bidirectional_lstm else 1),
self.num_labels[idtask])
for idtask in range(self.num_tasks)])
else:
self.hidden2tagList = nn.ModuleList([nn.Linear(config.hidden_size,
self.num_labels[idtask])
for idtask in range(self.num_tasks)])
self.finetune = finetune
self.init_weights()
def forward(self, input_ids, attention_mask=None, token_type_ids=None,
position_ids=None, head_mask=None, labels=None):
hidden_outputs = self.distilbert(input_ids,
attention_mask=attention_mask,
head_mask=head_mask)
sequence_output = hidden_outputs[0]
if not self.finetune:
sequence_output = sequence_output.detach()
if self.use_bilstms:
self.lstm.flatten_parameters()
sequence_output, hidden = self.lstm(sequence_output, None)
sequence_output = self.dropout(sequence_output)
outputs = [(classifier(sequence_output),) for classifier in self.hidden2tagList]
losses = []
for idtask, out in enumerate(outputs):
logits = out[0]
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels[idtask])[active_loss]
active_labels = labels[:, idtask, :].reshape(-1)[active_loss]
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels[idtask]), labels.view(-1))
losses.append(loss)
outputs = (sum(losses),) + hidden_outputs
return outputs
class InputSLExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a,
text_a_list,
text_a_postags, labels=None, num_tasks=1):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the sentence
label: (Optional) list. The labels for each token. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = None
self.text_a_list = text_a_list
self.text_a_postags = text_a_postags
self.labels = labels
self.num_tasks = num_tasks
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, position_ids, segment_ids, labels_ids):
self.input_ids = input_ids
self.input_mask = input_mask
self.position_ids = position_ids
self.segment_ids = segment_ids
self.labels_ids = labels_ids
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r", encoding='utf-8') as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
class SLProcessor(DataProcessor):
"""Processor for PTB formatted as sequence labeling seq_lu file"""
def __init__(self, args):
self.transformer_pretrained_model = args.transformer_pretrained_model
self.label_split_char = args.label_split_char
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "dev")
def get_labels(self, data_dir):
"""See base class."""
train_samples = self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
dev_samples = self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
train_labels = [sample.labels for sample in train_samples]
dev_labels = [sample.labels for sample in dev_samples]
labels = []
if self.label_split_char is None:
tasks_range = 1
else:
tasks_range = len(train_labels[0])
for idtask in range(tasks_range):
labels.append([])
labels[idtask].append("[MASK_LABEL]")
labels[idtask].append("-EOS-")
labels[idtask].append("-BOS-")
train_labels.extend(dev_labels)
for label in train_labels:
for id_label_component, sent_label_component in enumerate(label):
for word_label in sent_label_component:
if word_label not in labels[id_label_component]:
labels[id_label_component].append(word_label)
return labels
def _preprocess_disco(self, word):
if word == "-LRB-":
word = "("
elif word == "-RRB-":
word = ")"
elif "`" in word:
word = word.replace("`", "'")
elif "’’" in word:
word = word.replace("’’", "'")
#Needed at least to be able to do a 'correct word - 1st-subword-piece' alignment between
#the original input and the tokenized output obtained by bert-base-german-dbmdz-uncased
if self.transformer_pretrained_model == "bert-base-german-dbmdz-uncased":
if '"' in word:
word = word.replace('"',"'")
if "Ä" in word:
word = word.replace("Ä", "A")
if "Ë" in word:
word = word.replace("Ë", "E")
if "Ï" in word:
word = word.replace("Ï", "I")
if "Ö" in word:
word = word.replace("Ö", "O")
if "Ü" in word:
word = word.replace("Ü", "U")
if "ä" in word:
word = word.replace("ä", "a")
if "ë" in word:
word = word.replace("ë", "e")
if "ï" in word:
word = word.replace("ï", "i")
if "ö" in word:
word = word.replace("ö", "o")
if "ü" in word:
word = word.replace("ü", "u")
if "Â" in word:
word = word.replace("Â","A")
if "Ê" in word:
word = word.replace("Ê","E")
if "Î" in word:
word = word.replace("Î","I")
if "Ô" in word:
word = word.replace("Ô","O")
if "Û" in word:
word = word.replace("Û","U")
if "â" in word:
word = word.replace("â", "a")
if "ê" in word:
word = word.replace("ê", "e")
if "î" in word:
word = word.replace("î", "i")
if "ô" in word:
word = word.replace("ô", "o")
if "û" in word:
word = word.replace("û", "u")
if "À" in word:
word = word.replace("À", "a")
if "È" in word:
word = word.replace("È", "e")
if "Ì" in word:
word = word.replace("Ì", "i")
if "Ò" in word:
word = word.replace("Ò", "o")
if "Ù" in word:
word = word.replace("Ù", "u")
if "à" in word:
word = word.replace("à", "a")
if "è" in word:
word = word.replace("è", "e")
if "ì" in word:
word = word.replace("ì", "i")
if "ò" in word:
word = word.replace("ò", "o")
if "ù" in word:
word = word.replace("ù", "u")
if "Á" in word:
word = word.replace("Á", "A")
if "É" in word:
word = word.replace("É", "E")
if "Í" in word:
word = word.replace("Í", "I")
if "Ó" in word:
word = word.replace("Ó", "O")
if "Ú" in word:
word = word.replace("Ú", "U")
if "á" in word:
word = word.replace("á", "a")
if "é" in word:
word = word.replace("é", "e")
if "í" in word:
word = word.replace("í", "i")
if "ó" in word:
word = word.replace("ó", "o")
if "ú" in word:
word = word.replace("ú", "u")
if "Ç" in word:
word = word.replace("Ç","C")
if "ç" in word:
word = word.replace("ç","c")
if word == "":
raise ValueError("Generating an empty word")
return word
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
sentences_texts = []
sentences_postags = []
sentences_labels = []
sentences_tokens = []
sentence, sentence_postags, sentence_labels = [], [], []
tokens = []
for l in lines:
if l != []:
if l[0] in ["-EOS-", "-BOS-"]:
tokens.append(l[0])
sentence_postags.append(l[-2])
else:
tokens.append(l[0])
sentence.append(self._preprocess_disco(l[0]))
if self.label_split_char != None:
values = l[-1].strip().split(self.label_split_char)
else:
values = [l[-1].strip()]
for idtask, value in enumerate(values):
try:
sentence_labels[idtask].append(value)
except IndexError:
sentence_labels.append([value])
sentence_postags.append(l[-2])
else:
sentences_texts.append(" ".join(sentence))
sentences_labels.append(sentence_labels)
sentences_postags.append(sentence_postags)
sentences_tokens.append(tokens)
sentence, sentence_postags, sentence_labels = [], [] , [[] for idtask in sentence_labels]
tokens = []
for guid, (sent, labels) in enumerate(zip(sentences_texts, sentences_labels)):
examples.append(
InputSLExample(guid=guid, text_a=sent,
text_a_list=sentences_tokens[guid],
text_a_postags=sentences_postags[guid],
labels=labels))
return examples
def _valid_wordpiece_indexes(sent, wp_sent):
valid_idxs = []
chars_to_process = ""
idx = 0
wp_idx = 0
case = -1
# print ("sent", list(enumerate(sent)))
# print ("wp_sent", list(enumerate(wp_sent)))
for idword, word in enumerate(sent):
# print ("Last case", case)
# print ("sent", list(enumerate(sent)))
# print ("wp_sent", list(enumerate(wp_sent)))
# print ("idword, word", idword, word)
# print ("valid_idxs", valid_idxs)
# print ()
chars_to_process = word
'''
(0) The word fully matches the word piece when no index has been assigned yet, easy case.
'''
if word == wp_sent[wp_idx]:
case = 0
valid_idxs.append(wp_idx)
wp_idx += 1
else:
while chars_to_process != "":
#print (word, type(word), len(word), wp_sent[wp_idx], type(wp_sent[wp_idx]), len(wp_sent[wp_idx]))
if word.startswith(wp_sent[wp_idx]) and chars_to_process == word:
'''
(1) The wordpiece wp_sent[wp_idx] is the prefix of the original word, i.e. first word piece,
we assign its index to the word
'''
case = 1
chars_to_process = chars_to_process[len(wp_sent[wp_idx]):]
valid_idxs.append(wp_idx)
wp_idx += 1
continue
elif not wp_sent[wp_idx].startswith("##") and chars_to_process.startswith(wp_sent[wp_idx]):
'''
(2) To control errors in BERT tokenizer at word level. For example a token
that is split into to actual tokens and not two or more wordpieces
'''
case = 2
chars_to_process = chars_to_process[len(wp_sent[wp_idx]):]
wp_idx += 1
continue
elif wp_sent[wp_idx].startswith("##"):
'''
(3) It is a wordpiece of the form ##[piece]. If this happens,
we skip word pieces until a new word is read because in this scenario
the original word (word) in the sentence has been assigned a wp_index already, according to (1)
'''
case = 3
while wp_sent[wp_idx].startswith("##"):
chars_to_process = chars_to_process[len(wp_sent[wp_idx][2:]):]
wp_idx += 1
continue
elif wp_sent[wp_idx] == "[UNK]":
'''
(4) The word could not be tokenized and the BERT tokenizer generated an [UNK]
This can be a problematic case: sometime an original token is split on two, and then each of those
generate two consecutive [UNK] symbols. This complicates a lot the alignment between words and word pieces
'''
case = 4
'''
We found an [UNK] when the current word still has not been assigned a wp_idx,
we consider that [UNK] index must be aligned with word
'''
if chars_to_process == word:
chars_to_process = ""
valid_idxs.append(wp_idx)
wp_idx += 1
else:
'''
We found an UNK, but the current word has been already assigned an wp_idx. However,
there still missing chars to process from that word (for example if it was generated according to (1))
but we know this [UNK] should be a ##wordpiece. To correct this problem, we skip word pieces
until a word pieces matches the next word to assign an index to, to get back the alignment to valid
scenario.
'''
chars_to_process = ""
while idword + 1 < len(sent) and not sent[idword + 1].startswith(wp_sent[wp_idx]):
wp_idx += 1
continue
elif not word.startswith(wp_sent[wp_idx]) and chars_to_process == word:
'''
Some kind of unpredictable tokenization mismatching between the input samples and BERT
caused a mismatch in the alignment. We try to move forward to get the alignment back to
a valid position, iff the word has still not received any index
'''
case = 5
wp_idx += 1
elif chars_to_process != word:
'''
otherwise we just move to the next word
'''
case = 6
break
else:
raise RuntimeError("Potential infinite loop caused by the sentence" +
"Sentence: {}\n".format(list(enumerate(sent))) +
"Word piece sentence: {}\n".format(list(enumerate(wp_sent))) +
"Selected indexes: {}\n".format(list(enumerate(valid_idxs)))
)
return valid_idxs
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, args):
"""Loads a data file into a list of `InputBatch`s."""
label_map = [{l:i for i, l in enumerate(component_label)} for j, component_label in enumerate(label_list)]
#label_map_reverse = [{i:l for i, l in enumerate(component_label)} for j, component_label in enumerate(label_list)]
num_tasks = len(label_map)
features = []
for (ex_index, example) in enumerate(examples):
#To make it work the _valid_wordpiece_indexes() function with bert-uncased too and not just bert-cased
ori_tokens_a = example.text_a.split(" ") if not args.do_lower_case else example.text_a.lower().split(" ")
#ori_tokens_a = example.text_a.split(" ")
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[:(max_seq_length - 2)]
# print ("ex_index", ex_index)
# print ("example", example)
# print ("ori_tokens_a", ori_tokens_a, len(ori_tokens_a))
# print ("tokens_a", tokens_a, len(tokens_a))
# input("NEXT")
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambigiously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
ori_tokens_a = ["[CLS]"] + ori_tokens_a + ["[SEP]"]
tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
segment_ids = [0] * len(tokens)
if tokens_b:
tokens += tokens_b + ["[SEP]"]
segment_ids += [1] * (len(tokens_b) + 1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
position_ids = list(range(max_seq_length))
valid_indexes = _valid_wordpiece_indexes(ori_tokens_a, tokens)
input_mask = [1 if idtoken in valid_indexes else 0
for idtoken, _ in enumerate(tokens)]
labels_ids = [[] for i in range(num_tasks)]
i = 0
for idtoken, token in enumerate(tokens):
for idtask in range(num_tasks):
if idtoken in valid_indexes:
if token == "[CLS]":
labels_ids[idtask].append(label_map[idtask]["-BOS-"])
elif token == "[SEP]":
labels_ids[idtask].append(label_map[idtask]["-EOS-"])
else:
try:
label_mapped = label_map[idtask][example.labels[idtask][i]]
labels_ids[idtask].append(label_mapped)
except KeyError:
labels_ids[idtask].append(0)
if idtask == num_tasks - 1:
i += 1
else:
try:
labels_ids[idtask].append(label_map[idtask][example.labels[idtask][min(i, len(example.labels[idtask]) - 1)]])
except KeyError:
labels_ids[idtask].append(0)
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
labels_ids = [lids + padding for lids in labels_ids]
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
for l in labels_ids:
assert len(l) == max_seq_length
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
position_ids=position_ids,
segment_ids=segment_ids,
labels_ids=labels_ids))
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def accuracy(out, labels, mask):
output = out * mask
gold = labels * mask
mask = list()
o_flat = list(output.flatten())
g_flat = list(gold.flatten())
o_filtered, g_filtered = [], []
for o, g in zip(o_flat, g_flat):
if g != 0:
g_filtered.append(g)
o_filtered.append(o)
assert(len(o_filtered), len(g_filtered))
return accuracy_score(o_filtered, g_filtered)
def evaluate(model, device, logger, processor, tokenizer, label_list, args):
start_raw_time = time.time()
if args.do_test:
eval_examples = processor.get_test_examples(args.data_dir)
else:
eval_examples = processor.get_dev_examples(args.data_dir)
eval_features = convert_examples_to_features(
eval_examples, label_list, args.max_seq_length, tokenizer, args)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_position_ids = torch.tensor([f.position_ids for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.labels_ids for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_position_ids, all_segment_ids, all_label_ids)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
label_map_reverse = {i:l for i, l in enumerate(label_list)}
examples_texts = [example.text_a_list for example in eval_examples]
examples_postags = [example.text_a_postags for example in eval_examples]
# examples_preds = []
examples_preds = [[] for i in range(len(label_list))]
model.eval()
eval_loss, eval_accuracy = [0] * len(label_list), [0] * len(label_list)
# eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for input_ids, input_mask, position_ids, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
position_ids = position_ids.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
outputs = model(input_ids=input_ids,
# position_ids=position_ids,
token_type_ids=segment_ids,
attention_mask=input_mask) # , input_mask)
for idtask, task_output in enumerate(outputs):
logits_task = task_output[0]
logits_task = logits_task.detach().cpu().numpy()
task_label_ids = label_ids[:, idtask, :].to('cpu').numpy()
masks = input_mask.cpu().numpy()
outputs = np.argmax(logits_task, axis=2)
for prediction, mask in zip(outputs, masks):
examples_preds[idtask].append([label_map_reverse[idtask][element] for element, m in zip(prediction, mask)
if m != 0])
for idx_out, (o, l) in enumerate(zip(outputs, task_label_ids)):
eval_accuracy[idtask] += accuracy(o, l, masks[idx_out])
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
# Join the preds into one single label
new_examples_preds = []
for idsample in range(len(examples_texts)):
for idtask , component in enumerate(examples_preds):
if idtask == 0:
new_examples_preds.append(component[idsample])
else:
new_examples_preds[-1] = [c + "{}" + n for c, n in zip(new_examples_preds[-1], component[idsample])]
output_file_name = args.output_dir + ".tsv"
with open(output_file_name, "w") as temp_out:
print ("Saving the output at", output_file_name)
content = []
for tokens, postags, preds in zip(examples_texts, examples_postags, new_examples_preds):
# assert(len(tokens), len(preds))
content.append("\n".join(["\t".join(element) for element in zip(tokens, postags, preds)]))
temp_out.write("\n\n".join(content))
temp_out.write("\n\n")
raw_time = time.time() - start_raw_time
eval_accuracy = [e / nb_eval_examples for e in eval_accuracy]
print ("Eval accuracy per task", eval_accuracy)
eval_accuracy = sum(eval_accuracy) / len(eval_accuracy)
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy}
score = eval_accuracy
out = eval_accuracy
print ("Average eval accuracy", eval_accuracy)
if args.parsing_paradigm == "constituency":
tmp_trees_file = tempfile.NamedTemporaryFile(delete=False)
command = ["python", "decode.py ",
"--input", output_file_name,
"--output", tmp_trees_file.name,
"--disc" if args.disco_encoder is not None else "",
"--split_char {}",
"--os",
"--disco_encoder " + args.disco_encoder if args.disco_encoder is not None else "",
"" if not args.add_leaf_unary_column else "--add_leaf_unary_column",
"--path_reduced_tagset " + args.path_reduced_tagset if args.path_reduced_tagset is not None else ""]
p = subprocess.Popen(" ".join(command), stdout=subprocess.PIPE, shell=True)
out_decoding, err = p.communicate()
out_decoding = out_decoding.decode("utf-8")
raw_decode_time = float(out_decoding.split("\n")[0].split(":")[1])
output_trees = output_file_name.replace(".tsv",".trees")
with open(output_trees, "w") as f:
with open(tmp_trees_file.name) as f_temp_trees:
f.write(f_temp_trees.read())
detailed_score = ""
if not args.disco_encoder:
command = [args.evalb, output_trees, args.path_gold_parenthesized]
if args.evalb_param is not None:
command.extend(["-p", args.evalb_param])
p = subprocess.Popen(" ".join(command), stdout=subprocess.PIPE, shell=True)
out, err = p.communicate()
out = out.decode("utf-8")
detailed_score += out
score_all = float([l for l in out.split("\n")
if l.startswith("Bracketing FMeasure")][0].split("=")[1])
score_disco = -1
else:
command = ["discodop", "eval",
args.path_gold_parenthesized,
output_trees,
args.evalb_param,
"--fmt", "discbracket",
"--disconly"]
p = subprocess.Popen(" ".join(command), stdout=subprocess.PIPE, shell=True)
out, err = p.communicate()
out = out.decode("utf-8")
detailed_score += """
********************************
******* Disco scores *******
********************************
"""
detailed_score += out + "\n"
score_disco = float([l for l in out.split("\n")
if l.startswith("labeled f-measure:")][0].rsplit(" ", 1)[1])
command = ["discodop", "eval",
args.path_gold_parenthesized,
output_trees,
args.evalb_param,
"--fmt", "discbracket"]
p = subprocess.Popen(" ".join(command), stdout=subprocess.PIPE, shell=True)
out, err = p.communicate()
out = out.decode("utf-8")
detailed_score += """
********************************
******* Overall score *******
********************************
"""
detailed_score += out
score_all = float([l for l in out.split("\n")
if l.startswith("labeled f-measure:")][0].rsplit(" ", 1)[1])
score = (score_all, score_disco)
os.remove(tmp_trees_file.name)
results = {"eval_loss":eval_loss,
"eval_accuracy": eval_accuracy,
"score": score,
"detailed_score": detailed_score,
"output_file_name": output_file_name,
"raw_time": raw_time,
"raw_decode_time": raw_decode_time}
return results
def main():
parser = argparse.ArgumentParser()
# # Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--transformer_model",
help="Specify the architecture of the transformer model: bert_model|distilbert_model")
parser.add_argument("--transformer_pretrained_model",
help="Specify the pretrained model to be finetuned: bert-base-german-dbmdz-cased|distilbert-base-german-cased (for German) and bert-base-cased|bert-large-cased|distilbert-base-cased (for English). Check the full list of pre-trained models at: https://github.com/huggingface/transformers",
required=True)
parser.add_argument("--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train. In this work: sl_tsv (sequence labeling in .tsv format)")
parser.add_argument("--model_dir",
default=None,
type=str,
required=True,
help="The output path where the model will be stored.")
parser.add_argument("--output_dir",
default=None,