-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdynamic_dependent_tactic.v
914 lines (805 loc) · 36.2 KB
/
dynamic_dependent_tactic.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat div seq.
From mathcomp Require Import choice fintype prime tuple finfun finset bigop.
Require Import Program JMeq Compare_dec ExtrOcamlNatInt.
Require Import tree_traversal rank_select insert_delete set_clear dynamic.
Set Implicit Arguments.
Tactic Notation "remember_eq" constr(expr) ident(vname) ident(eqname) :=
case (exist (fun x => x = expr) expr erefl) => vname eqname.
Section dynamic_dependent.
Variable w : nat.
Hypothesis wordsize_gt1: w > 1.
Section insert.
Definition balanceL {nl ml d cl cr nr mr} (p : color) (l : near_tree w nl ml d cl) (r : tree w nr mr d cr) :
color_ok p (fix_color l) (* important claim! *) ->
color_ok p cr ->
{tr : near_tree w (nl + nr) (ml + mr) (incr_black d p) p | dflatteni tr = dflatteni l ++ dflatten r}.
destruct l as [s1 o1 s2 o2 s3 o3 d' x y z | s o d' c' cc l'].
(* l is bad *)
+ case: p => //= cpl cpr.
rewrite -(addnA (s1 + s2)) -(addnA (o1 + o2)).
exists (Good Black (rnode (bnode x y) (bnode z r))).
by rewrite /= !catA.
(* l is good *)
+ case: p => /= cpl cpr; last by exists (Good Black (bnode l' r)).
case Hc': c' in cpl.
(* bad pattern (c' and p are red) *)
- destruct l' as [|s1 o1 s2 o2 d cl' cr' c' w1 w2 l'1 l'2] => //.
subst c'; destruct cl', cr', cr => //.
exists (Bad l'1 l'2 r).
by rewrite /= !catA.
(* otherwise *)
- subst c'; destruct cr => //.
by exists (Good Red (rnode l' r)).
Defined.
Definition balanceR {nl ml d cl cr nr mr} (p : color) (l : tree w nl ml d cl) (r : near_tree w nr mr d cr):
color_ok p cl ->
color_ok p (fix_color r) -> (* important claim! *)
{tr : near_tree w (nl + nr) (ml + mr) (incr_black d p) p | dflatteni tr = dflatten l ++ dflatteni r}.
destruct r as [s1 o1 s2 o2 s3 o3 d' x y z | s o d' c' cc r'].
(* r is bad *)
+ case: p => //= cpl cpr.
rewrite -!addnA [nl + (s1 + (s2 + s3))]addnA [ml + (o1 + (o2 + o3))]addnA.
exists (Good Black (rnode (bnode l x) (bnode y z))).
by rewrite /= !catA.
(* r is good *)
+ case: p => /= cpl cpr; last by exists (Good Black (bnode l r')).
case Hc': c' in cpr.
(* bad pattern (c' and p are red) *)
- destruct r' as [|s1 o1 s2 o2 d cl' cr' c' w1 w2 r'1 r'2] => //=.
subst c'; destruct cl', cr', cl => //.
rewrite !addnA.
by exists (Bad l r'1 r'2).
(* otherwise *)
- subst c'; destruct cl => //.
by exists (Good Red (rnode l r')).
Defined.
Program Fixpoint dinsert' {n m d c} (B : tree w n m d c) (b : bool) i
{measure (size_of_tree B)} : { B' : near_tree w n.+1 (m + b) d c
| dflatteni B' = insert1 (dflatten B) b i } :=
match B with
| Leaf s _ _ =>
let s' := insert1 s b i in
match size s' == 2 * (w ^ 2) with
| true => let n := (size s') %/ 2 in
let sl := take n s' in
let sr := drop n s' in
Good c (rnode (Leaf _ sl _ _) (Leaf _ sr _ _))
| false => Good c (Leaf _ s' _ _)
end
| Node s1 o1 s2 o2 d cl cr _ okl okr l r =>
if i < s1
then proj1_sig (balanceL c (dinsert' l b i) r _ okr)
else proj1_sig (balanceR c l (dinsert' r b (i - s1)) okl _)
end.
Next Obligation.
move/eqP/eqnP : Heq_anonymous => /=.
rewrite size_take size_insert1.
move => H.
rewrite H.
case: ifP => H2. by rewrite mulKn // leq_div //.
have H3 : w ^ 2 %/ 2 <= w ^ 2. by rewrite leq_div.
have H4 : w ^ 2 <= 2 * w ^ 2. by rewrite leq_pmull.
by move:(leq_trans H3 H4).
Qed.
Next Obligation.
move/eqP/eqnP : Heq_anonymous => /=.
rewrite size_take size_insert1.
move => H.
rewrite H mulnC.
case: ifP => //.
rewrite mulnK //.
have H2 : w ^ 2 > 0. by rewrite expn_gt0 wordsize_gt0.
have H3 : w ^ 2 < w ^ 2 * 2. by rewrite -{1}[w ^ 2]muln1 ltn_mul2l H2 /=.
by rewrite H3.
Qed.
Next Obligation.
move/eqP/eqnP : Heq_anonymous => /=.
rewrite size_drop size_insert1.
move => H.
by rewrite H mulKn // mulSn mul1n -addnBA // subnKC // leq_div.
Qed.
Next Obligation.
move/eqP/eqnP : Heq_anonymous => /=.
rewrite size_drop size_insert1.
move => H.
by rewrite H mulKn // mulSn mul1n -addnBA // subnKC // -{1}[w ^ 2]addn0 ltn_add2l expn_gt0 wordsize_gt0.
Qed.
Next Obligation. by rewrite -size_cat cat_take_drop size_insert1. Qed.
Next Obligation.
rewrite -count_cat cat_take_drop /count_one count_insert1.
by destruct b.
Qed.
Next Obligation.
rewrite /dflatteni /insert1.
destruct dinsert'_func_obligation_5, dinsert'_func_obligation_6 => /=.
by rewrite cat_take_drop.
Qed.
Next Obligation.
rewrite size_insert1.
by apply: leq_trans.
Qed.
Next Obligation.
move/eqP/eqnP/eqP: Heq_anonymous => /=.
rewrite size_insert1 neq_ltn.
case/orP => //.
by rewrite ltnNge wildcard'0.
Qed.
Next Obligation. by rewrite size_insert1. Qed.
Next Obligation. rewrite /count_one count_insert1. by destruct b. Qed.
Next Obligation.
rewrite /dflatteni /insert1.
by destruct dinsert'_func_obligation_11, dinsert'_func_obligation_12, dinsert'_func_obligation_13 => /=.
Qed.
Next Obligation.
apply /ltP; by rewrite -Heq_B /= -[X in X < _]addn0 ltn_add2l size_of_tree_pos.
Qed.
Next Obligation. by destruct dinsert',x,c. Qed.
Next Obligation.
apply /ltP; by rewrite -Heq_B /= -[X in X < _]add0n ltn_add2r size_of_tree_pos.
Qed.
Next Obligation. by destruct dinsert',x,c. Qed.
Next Obligation. by rewrite -addn1 -[RHS]addn1 addnA. Qed.
Next Obligation. by rewrite [o2 + b]addnC addnA. Qed.
Next Obligation. by rewrite -[RHS]addnA [o2 + b]addnC addnA. Qed.
Next Obligation.
case: ifP => /= H.
- set B' := balanceL _ _ _ _ _.
destruct dinsert'_func_obligation_23.
rewrite (proj2_sig B') {B'}.
destruct dinsert' => /=.
by rewrite e /insert1 /insert take_cat drop_cat size_dflatten H -!catA.
- set B' := balanceR _ _ _ _ _.
rewrite /dflatteni /eq_rect => /=.
destruct dinsert'_func_obligation_23, dinsert'_func_obligation_22, dinsert'_func_obligation_21.
rewrite -/(dflatteni (proj1_sig B')) (proj2_sig B') {B'}.
destruct dinsert' => /=.
by rewrite e /insert1 /insert take_cat drop_cat size_dflatten H -!catA.
Qed.
Definition dinsert n m d c (B : tree w n m d c) (b : bool) (i : nat) :=
fix_near_tree (proj1_sig (dinsert' B b i)).
Lemma dinsertK n m d c (B : tree w n m d c) b i :
dflatten (dinsert B b i) = insert1 (dflatten B) b i.
Proof. by rewrite /dinsert fix_near_treeK (proj2_sig (dinsert' B b i)). Qed.
End insert.
Section query.
Fixpoint daccess {n m d c} (tr : tree w n m d c) i :=
match tr with
| Leaf s _ _ => nth false s i
| Node lnum _ _ _ _ _ _ _ _ _ l r =>
if i < lnum
then daccess l i
else daccess r (i - lnum)
end.
Fixpoint drank {n m d c} (tr : tree w n m d c) i :=
match tr with
| Leaf s _ _ => rank true i s
| Node lnum lones rnum rones _ _ _ _ _ _ l r =>
if i < lnum
then drank l i
else lones + drank r (i - lnum)
end.
Fixpoint dselect_0 {n m d c} (tr : tree w n m d c) i :=
match tr with
| Leaf s _ _ => select false i s
| Node s1 o1 s2 o2 _ _ _ _ _ _ l r =>
let zeroes := s1 - o1
in if i <= zeroes
then dselect_0 l i
else s1 + dselect_0 r (i - zeroes)
end.
Fixpoint dselect_1 {n m d c} (tr : tree w n m d c) i :=
match tr with
| Leaf s _ _ => select true i s
| Node s1 o1 s2 o2 _ _ _ _ _ _ l r =>
if i <= o1
then dselect_1 l i
else s1 + dselect_1 r (i - o1)
end.
Definition access (s : seq bool) i := nth false s i.
Lemma daccessK nums ones d c (B : tree w nums ones d c) :
daccess B =1 access (dflatten B).
Proof.
rewrite /access.
elim: B => //= lnum o1 s2 o2 d0 cl cr c0 i i0 l IHl r IHr x.
by rewrite nth_cat size_dflatten -IHl -IHr.
Qed.
Lemma drankK nums ones d c (B : tree w nums ones d c) i :
drank B i = rank true i (dflatten B).
Proof.
elim: B i => //= lnum o1 s2 o2 d0 cl cr c0 i i0 l IHl r IHr x.
by rewrite rank_cat size_dflatten IHl -IHr -dflatten_rank.
Qed.
Lemma drank_ones num ones d c (B : tree w num ones d c) :
drank B num = ones.
Proof.
by rewrite [in RHS](dflatten_rank B) drankK.
Qed.
Lemma dselect1K nums ones d c (B : tree w nums ones d c) i :
dselect_1 B i = select true i (dflatten B).
Proof.
elim: B i => //= lnum o1 s2 o2 d0 cl cr c0 i i0 l IHl r IHr x.
by rewrite select_cat -dflatten_ones IHl IHr size_dflatten.
Qed.
Lemma dselect0K nums ones d c (B : tree w nums ones d c) i :
dselect_0 B i = select false i (dflatten B).
Proof.
elim: B i => //= lnum o1 s2 o2 d0 cl cr c0 i i0 l IHl r IHr x.
by rewrite select_cat -dflatten_zeroes IHl IHr size_dflatten.
Qed.
End query.
(* Section added by Xuanrui
* because I wanted to experiment with this version as well...
*
* Feel free to comment this out or remove this...
*)
Section set_clear.
Obligation Tactic := idtac.
Program Fixpoint bset {num ones d c} (B : tree w num ones d c) i
{measure (size_of_tree B)} :
{ B'b : tree w num (ones + (~~ (daccess B i)) && (i < num)) d c * bool
| dflatten (fst B'b) = bit_set (dflatten B) i/\snd B'b = ~~ daccess B i } :=
match B with
| Leaf s _ _ => (Leaf _ (bit_set s i) _ _, ~~ (access s i))
| Node lnum lones rnum rones _ _ _ _ col cor l r =>
match lt_dec i lnum with
| left H =>
let x := bset l i
in (Node col cor x.1 r, x.2)
| right H =>
let x := bset r (i - lnum)
in (Node col cor l x.1, x.2)
end
end.
Next Obligation. intros. by rewrite size_bit_set. Qed.
Next Obligation. intros. by rewrite size_bit_set. Qed.
Next Obligation. intros; apply: size_bit_set. Qed.
Next Obligation.
intros; case Hi: (i < size s).
rewrite /count_one /daccess (count_bit_set false). by rewrite andbT addnC.
by rewrite Hi.
rewrite andbF addn0. by rewrite /count_one /daccess bit_set_over //= leqNgt Hi.
Qed.
Next Obligation.
intros; subst; split => //.
by destruct bset_func_obligation_4 , bset_func_obligation_3 => /=.
Qed.
Next Obligation.
intros; subst. apply /ltP.
by rewrite -addn1 leq_add2l size_of_tree_pos.
Qed.
Next Obligation.
intros; move/ltP: (H) => Hi /=.
by rewrite Hi (ltn_addr _ Hi) addnAC.
Qed.
Next Obligation.
split; last first.
destruct bset as [[l' flip][Hl' Hf]] => /=.
move/ltP: (H) => ->.
by rewrite -Hf.
move=> /=.
move: (lones + rones + _) (bset_func_obligation_7 _ _ _ _ _ _) => ones' Ho.
destruct Ho => /=.
destruct bset as [[l' flip][Hl' Hf]] => /=.
rewrite /= in Hl'.
move/ltP: (H).
rewrite Hl' /bit_set update_cat {1}(size_dflatten l) => Hi.
by rewrite ifT.
Qed.
Next Obligation.
intros; subst. apply /ltP.
by rewrite -add1n leq_add2r size_of_tree_pos.
Qed.
Next Obligation.
intros; move/ltP: (H) => Hi /=.
rewrite -if_neg Hi !addnA.
by rewrite -(ltn_add2l lnum) subnKC // leqNgt.
Qed.
Next Obligation.
split; last first.
destruct bset as [[r' flip][Hr' Hf]] => /=.
move/ltP: (H) => Hi.
by rewrite -if_neg Hi -Hf.
move=> /=.
move: (lones + rones + _) (bset_func_obligation_10 _ _ _ _ _ _) => ones' Ho.
destruct Ho => /=.
destruct bset as [[r' flip][Hr' Hf]] => /=.
rewrite /= in Hr'.
move/ltP: (H).
rewrite Hr' /bit_set update_cat (size_dflatten l) => Hi.
by rewrite -if_neg Hi.
Qed.
Next Obligation. intuition. Qed.
End set_clear.
Section delete.
Lemma count_delete {arr i} : count_one arr - nth false arr i = count_one (delete arr i).
Proof.
case_eq (i < (size arr)) => H.
rewrite -(cat_take_drop i arr) /delete /count_one !count_cat cat_take_drop (drop_nth false) // -/(cat [:: nth false arr i] _) count_cat /= addn0.
case: (nth false arr i) => /=.
by rewrite [1 + _]addnC addnA addn1 subn1 -[_.+1]subn0 subSKn subn0.
by rewrite add0n subn0.
rewrite ltnNge in H.
move/negPn : H => H.
rewrite nth_default /count_one /delete // take_oversize // drop_oversize.
by rewrite count_cat /= addn0 subn0.
by apply: leqW.
Qed.
Lemma delete_oversize {arr : seq bool} {i} : size arr <= i -> arr = delete arr i.
Proof.
move => H.
rewrite /= /delete take_oversize // drop_oversize.
by rewrite cats0.
by apply: leqW.
Qed.
Lemma daccess_default {n m d c} (tr : tree w n m d c) : forall(i : nat), n <= i -> (daccess tr i) = false.
Proof.
elim: tr => /=. intros; by rewrite nth_default //.
intros.
case: ifP => H2.
move: (ltn_addr s2 H2) => H3.
move: (leq_ltn_trans H1 H3).
by rewrite ltnn.
move: (leq_sub2r s1 H1).
rewrite addKn => H3.
by apply: (H0 (i1 - s1) H3).
Qed.
(* NB: move? *)
Lemma sizeW (arr : seq bool) : w ^ 2 %/ 2 <= size arr -> 0 < size arr.
Proof.
move/eqP: (wordsize_sqrn_div2_neq0 _ wordsize_gt1).
rewrite -lt0n => ltn1.
rewrite leq_eqVlt.
case/orP => eq2. move/eqP: eq2 => eq2. by rewrite eq2 in ltn1.
exact: (ltn_trans ltn1 eq2).
Qed.
Lemma delete_cat {arr arr' : seq bool} {i} : delete (arr ++ arr') i = (if i < size arr then delete arr i ++ arr' else arr ++ delete arr' (i - (size arr))).
Proof.
rewrite /delete take_cat -catA.
case: ifP => H.
rewrite drop_cat.
case: ifP => // H2.
move: (negbT H2).
rewrite -leqNgt => H3.
have H4 : i.+1 = size arr. apply/eqP. rewrite eqn_leq. by apply/andP.
by rewrite H4 subnn drop0 drop_oversize //.
rewrite drop_cat.
case: ifP => H2. move: (ltnW H2). by rewrite H.
move: (negbT H) (negbT H2).
rewrite -!leqNgt => H3 H4.
by rewrite catA subSn //.
Qed.
Lemma addnBAC a b c : a >= c -> (a + b) - c = (a - c) + b.
Proof. by move => ?; rewrite addnC -addnBA // addnC. Qed.
Lemma cons_head_behead (arr: seq bool) : (size arr) > 0 -> (access arr 0) :: (behead arr) = arr.
Proof. case: arr => /= //. Qed.
Lemma cat_head_behead (arr arr' : seq bool) : 0 < size arr' -> (rcons arr (access arr' 0)) ++ (delete arr' 0) = arr ++ arr'.
Proof. move => H. rewrite !cat_rcons -!cat_cons take0 drop1 /= cons_head_behead //. Qed.
Lemma cat_last_belast (arr arr' : seq bool) : 0 < size arr -> (delete arr (size arr).-1) ++ ((access arr (size arr).-1) :: arr') = arr ++ arr'.
Proof.
move => H.
rewrite /delete /access drop_oversize;last by rewrite prednK.
rewrite cats0.
move: H.
elim arr => // /= b arr'' IH.
case H : (0 < size arr'').
by rewrite -(IH H); destruct arr''.
move/negP/negP in H.
rewrite leqNgt in H.
move/negPn in H.
move: H.
case arr'' => //.
Qed.
Lemma cons_delete {i} (arr arr' : seq bool) : 0 < size arr' ->
(rcons (delete arr i) (access arr' 0)) ++ (delete arr' 0) = (delete arr i) ++ arr'.
Proof. move => H. rewrite !cat_rcons -!catA -cat_cons take0 drop1 /= cons_head_behead //. Qed.
Lemma size_rcons_delete {arr : seq bool} (i : nat) (b : bool) : i < size arr -> size (rcons (delete arr i) b) = size arr.
Proof.
move => G.
rewrite size_rcons size_delete // -addn1 -subn1 subnK //.
case_eq i => [H|i' H]. by rewrite H in G.
rewrite H in G.
exact: (ltn_trans (ltn0Sn i') G).
Qed.
Lemma size_delete1 {arr : seq bool} (i : nat) : size arr = (size (delete arr i)) + (i < size arr).
Proof.
case_eq (i < size arr).
move/idP => G.
rewrite size_delete // -subn1 /= subnK //.
case_eq i => [H|i' H]. by rewrite H in G.
rewrite H in G.
exact: (ltn_trans (ltn0Sn i') G).
move/negP/negP => G.
rewrite -leqNgt in G.
rewrite /delete take_oversize // drop_oversize // /=;last first. exact: (leqW G).
by rewrite cats0 addn0.
Qed.
Lemma leq_nth_count {i arr} : nth false arr i <= count_one arr.
Proof.
rewrite -(cat_take_drop i arr) /count_one count_cat nth_cat size_take.
case: ifP. case: ifP => H. by rewrite ltnn. by rewrite H.
case: ifP.
rewrite subnn nth0 /head /(count_mem _).
case (drop i arr) => // b.
destruct b => //.
case (take i arr) => // b.
destruct b => // /= l r.
rewrite add0n addnA ltn_addr // ltn_addl //.
move/negP/negP => H ?.
rewrite -leqNgt in H.
rewrite nth_default;last first. rewrite size_drop. move/eqP: H => H. by rewrite H leq0n.
by rewrite /= leq0n.
Qed.
Lemma leq_divn2n_mul2 (a : nat) : a > 0 -> a %/ 2 + a %/ 2 < 2 * a.
Proof.
by move=> ?; rewrite mul2n divn2 addnn ltn_double -{1}(add0n a) avg_ltn_l.
Qed.
Lemma ltn_subln a b c : c > 0 -> a < b + c = (a - b < c).
Proof.
case H1 : (b <= a) => H2. by rewrite -[RHS](ltn_add2r b) subnK // addnC.
move: H1; rewrite leqNgt; move/negP/negP => H1.
rewrite ltn_addr //. move: H1.
case: b => // n H1.
move/eqP: (ltnW H1) => W.
by rewrite W H2.
Qed.
Lemma ltn_subrn a b c : b > 0 -> a < b + c = (a - c < b).
Proof. rewrite addnC. exact: (ltn_subln a c b). Qed.
Lemma sizeW' {s o d c} (tr : tree w s o d c) : s > 0.
Proof. elim tr; intros; first apply sizeW => //; rewrite ltn_addr //. Qed.
Inductive near_tree' : nat -> nat -> nat -> color -> Type :=
| Stay : forall {s o d c} p,
color_ok c (inv p) ->
tree w s o d c -> near_tree' s o d p
| Down : forall {s o d},
tree w s o d Black -> near_tree' s o d.+1 Black.
Definition dflatteni' {s o d c} (tr : near_tree' s o d c) :=
match tr with
| Stay _ _ _ _ _ _ t => dflatten t
| Down _ _ _ t => dflatten t
end.
Definition black_of_red {s o d} (B : tree w s o d Red) : { B' : tree w s o (incr_black d Black) Black | dflatten B' = dflatten B }.
move: B; move ceq : (Red) => c' B.
move: B ceq => [//|? ? ? ? ? cl cr c ? ? l r] /= <-.
by exists (bnode l r).
Defined.
Lemma leq_access_count {s o d c} : forall(B : tree w s o d c), forall(i : nat) , i < s -> daccess B i <= o.
Proof.
move => B.
elim B => /=. intros. exact: leq_nth_count.
move => s1 o1 s2 o2 d' cl cr c' ? ? l IHl r IHr.
move => i H.
case: ifP => H'.
by rewrite (leq_trans (IHl _ H')) // leq_addr.
rewrite (leq_trans _ (leq_addl _ _)) //.
move: (IHr (i - s1)).
rewrite -(ltn_add2r s1) subnK ;last by rewrite leqNgt H' /=.
rewrite addnC => H''.
exact: (H'' H).
Qed.
Definition merge_arrays (a b : seq bool) (i : nat) (w1 : w ^ 2 %/ 2 == size a) (w2 : w ^ 2 %/ 2 == size b) (val : i < size a + size b) :
{tr : tree w (size a + size b - (i < size a + size b)) (count_one a + count_one b - (access (a ++ b) i)) 0 Black | dflatten tr = delete (a ++ b) i}.
move/eqP : (wordsize_sqrn_div2_neq0 _ wordsize_gt1); rewrite -lt0n => pos.
move/eqP: w1 => w1. move/eqP: w2 => w2. move: (pos); rewrite w1 => w1p. move: (pos); rewrite w2 => w2p.
case Hl : (i < size a).
have ueq : size ((rcons (delete a i) (access b 0)) ++ (delete b 0)) < 2 * w ^ 2.
rewrite size_cat size_rcons !size_delete // prednK // -subn1 addnBA // subn1 -w1 -w2 ltnW // prednK //;last rewrite ltn_addl //.
rewrite leq_divn2n_mul2 // wordsize_sqrn_gt0 //.
have leq : size (rcons (delete a i) (access b 0) ++ delete b 0) >= w ^ 2 %/ 2.
by rewrite size_cat size_rcons !size_delete // prednK // w1 leq_addr.
rewrite ltn_addr // addnC -addnBA // subn1 -(size_delete Hl) /= addnC -size_cat delete_cat addnBAC /access nth_cat Hl; last rewrite leq_nth_count //.
rewrite count_delete -count_cat -cat_head_behead //.
by exists (Leaf _ ((rcons (delete a i) (access b 0)) ++ (delete b 0)) leq ueq).
move: val; rewrite ltn_subln // => Hr.
have ueq : size (a ++ (delete b (i - (size a)))) < 2 * w ^ 2.
rewrite size_cat size_delete // -w1 -w2 -subn1 addnBA // subn1 ltnW // prednK //;last rewrite ltn_addl //.
rewrite leq_divn2n_mul2 // wordsize_sqrn_gt0 //.
have leq : size (a ++ (delete b (i - (size a)))) >= w ^ 2 %/ 2.
rewrite size_cat size_delete //;last rewrite -{1}w1 w2 //.
by rewrite leq_addr.
rewrite Hr -addnBA // subn1 -(size_delete Hr) -size_cat -addnBA /access nth_cat Hl ;last rewrite leq_nth_count //.
rewrite count_delete -count_cat.
exists (Leaf _ (a ++ (delete b (i - (size a)))) leq ueq).
by rewrite /= delete_cat Hl.
Qed.
Lemma xir_ok {c} : color_ok c (inv Red).
Proof. move: c => [] //. Qed.
Definition delete_from_leaves {s1 o1 s2 o2} p (l : tree w s1 o1 0 Black) (r : tree w s2 o2 0 Black) (i : nat) :
{B' : near_tree' (s1 + s2 - (i < s1 + s2))
(o1 + o2 - access (dflatten l ++ dflatten r) i) (incr_black 0 p) p | dflatteni' B' = delete (dflatten l ++ dflatten r) i}.
move/eqP : (wordsize_sqrn_div2_neq0 _ wordsize_gt1) (sizeW' l) (sizeW' r); rewrite -lt0n => pos posl posr.
remember_eq 0 d' deq; remember_eq Black c' ceq; move: l r; rewrite -ceq -deq => l; destruct l as [al leql ueql|]; last rewrite ceq /= // in deq.
move => {deq ceq}; remember_eq 0 d' deq; remember_eq Black c' ceq; rewrite /= -ceq -deq => r; destruct r as [ar leqr ueqr|]; last rewrite ceq /= // in deq.
rewrite /access nth_cat.
case: ifP => Hl.
case bcl : (w ^ 2 %/ 2 == size al).
case bcr : (w ^ 2 %/ 2 == size ar).
case (merge_arrays al ar i bcl bcr (ltn_addr _ Hl)).
rewrite /access nth_cat Hl => res resK.
case: p;[ by exists (Stay Red xir_ok res) | by exists (Down res)].
rewrite /=.
rewrite leq_eqVlt bcr (size_delete1 0) posr /= addn1 in leqr,ueqr.
rewrite -(size_rcons_delete i (access ar 0)) // in leql,ueql.
rewrite addnC -addnBA // ltn_addl // subn1 -(size_delete Hl) addnC -size_cat addnBAC;last exact: leq_nth_count.
rewrite count_delete -count_cat -cat_head_behead // count_cat size_cat.
case: p;
[ exists (Stay Red xir_ok (rnode (Leaf _ (rcons (delete al i) (access ar 0)) leql ueql) (Leaf _ (delete ar 0) leqr (ltnW ueqr))))
| exists (Stay Black (black_any_ok Red) (bnode (Leaf _ (rcons (delete al i) (access ar 0)) leql ueql) (Leaf _ (delete ar 0) leqr (ltnW ueqr)))) ];
by rewrite delete_cat Hl /= cat_head_behead.
rewrite leq_eqVlt bcl (size_delete1 i) Hl /= addn1 in leql,ueql.
rewrite addnC -addnBA // ltn_addl // subn1 -(size_delete Hl) /= addnC addnBAC;last exact: leq_nth_count.
rewrite count_delete.
case: p;
[ exists (Stay Red xir_ok (rnode (Leaf _ (delete al i) leql (ltnW ueql)) (Leaf _ ar leqr ueqr)))
| exists (Stay Black (black_any_ok Red) (bnode (Leaf _ (delete al i) leql (ltnW ueql)) (Leaf _ ar leqr ueqr))) ];
by rewrite delete_cat Hl.
case Hrl : (i < size al + size ar).
case bcr : (w ^ 2 %/ 2 == size ar).
case bcl : (w ^ 2 %/ 2 == size al).
rewrite -Hrl.
case (merge_arrays al ar i bcl bcr Hrl).
rewrite /access nth_cat Hl => res resK.
case: p;[ by exists (Stay Red xir_ok res) | by exists (Down res)].
rewrite leq_eqVlt bcl (size_delete1 (size al).-1) prednK //= leqnn addn1 in leql,ueql.
move/eqP/eqP in bcl. move/eqP in bcr.
have leqr' : w ^ 2 %/ 2 <= size ((access al (size al).-1) :: (delete ar (i - size al))).
rewrite /= size_delete //;last rewrite -ltn_subln //. rewrite prednK //.
have ueqr' : size ((access al (size al).-1) :: (delete ar (i - size al))) < 2 * w ^ 2.
rewrite /= size_delete //;last rewrite -ltn_subln //. rewrite prednK //.
rewrite -!addnBA //;last by apply leq_nth_count.
rewrite count_delete -count_cat /= subn1 [size ar](size_delete1 (i - size al)) -ltn_subln // Hrl -subn1 -addnBA // subnn addn0 -size_cat -cat_last_belast // size_cat count_cat.
case: p;
[ exists (Stay Red xir_ok (rnode (Leaf _ (delete al (size al).-1) leql (ltnW ueql)) (Leaf _ ((access al (size al).-1) :: (delete ar (i - size al))) leqr' ueqr')))
| exists (Stay Black (black_any_ok Red) (bnode (Leaf _ (delete al (size al).-1) leql (ltnW ueql)) (Leaf _ ((access al (size al).-1) :: (delete ar (i - size al))) leqr' ueqr'))) ];
by rewrite delete_cat Hl /= cat_last_belast.
rewrite /=.
rewrite leq_eqVlt bcr (size_delete1 (i - size al)) -ltn_subln // Hrl addn1 /= in leqr,ueqr.
rewrite -!addnBA //;last exact: leq_nth_count.
rewrite count_delete subn1 [size ar](size_delete1 (i - size al)).
rewrite -ltn_subln // Hrl -subn1 -addnBA // subnn addn0.
case: p;
[ exists (Stay Red xir_ok (rnode (Leaf _ al leql ueql) (Leaf _ (delete ar (i - size al)) leqr (ltnW ueqr))))
| exists (Stay Black (black_any_ok Red) (bnode (Leaf _ al leql ueql) (Leaf _ (delete ar (i - size al)) leqr (ltnW ueqr)))) ];
by rewrite delete_cat Hl.
rewrite /= nth_default;last rewrite ltn_subln // in Hrl;last by rewrite leqNgt Hrl.
rewrite !subn0.
case: p;
[ exists (Stay Red xir_ok (rnode (Leaf _ al leql ueql) (Leaf _ ar leqr ueqr)))
| exists (Stay Black (black_any_ok Red) (bnode (Leaf _ al leql ueql) (Leaf _ ar leqr ueqr))) ];
by rewrite -delete_oversize // size_cat leqNgt Hrl.
Defined.
Definition balright {s1 s2 o1 o2 d cl cr} (p : color)
(l : tree w s1 o1 d cl)
(dr : near_tree' s2 o2 d cr) :
color_ok p cl ->
color_ok p cr ->
{B' : near_tree' (s1 + s2) (o1 + o2) (incr_black d p) p |
dflatteni' B' = dflatten l ++ dflatteni' dr}.
move: p => [].
move: cl cr l dr => [] [] // l dr ? ?.
move: l dr; move ceq : (Black) => c' l dr.
move: dr ceq l => /= [? ? d' c p ok dr|? ? d' dr] ceq l.
move: ceq c ok l dr => <- [] // ? l dr.
by exists (Stay Red xir_ok (rnode l dr)).
move: l dr => {ceq c'} /=; move ceq : (Black) => c'; move deq : (d'.+1) => d'' l dr.
move: l deq ceq dr => [//| ? ? ? ? ? ? clr c cllok clrok ll lr] deq ceq dr.
move: ceq deq ll lr dr cllok clrok => <- /= [] <- ll lr dr clrok ?.
move: clr lr clrok => [] lr ? {c'}.
move: ll lr dr; move ceq : (Red) => c' ll lr dr.
move: lr ll dr ceq => [//| ? ? ? ? ? cl' cr' cll okl okr lrl lrr] ll dr ceq.
move: ceq cl' cr' okl okr ll lrl lrr dr => /= <- [] [] //= ? ? ll lrl lrr dr.
rewrite !addnA -![_ + _ + _ + _]addnA.
exists (Stay Red xir_ok (rnode (bnode ll lrl) (bnode lrr dr))).
by rewrite /= !catA.
rewrite -!addnA -catA.
by exists (Stay Red xir_ok (bnode ll (rnode lr dr))).
move => /= ? ?.
move: dr l => [? ? d' c ? ? dr|? ? d' dr] l; first by exists (Stay Black (black_any_ok Red) (bnode l dr)).
move: dr l => /=; move deq : (d'.+1) => d'' dr l.
move: l deq dr => [//| ? oo ? ? ? cll clr c cllok clrok ll lr] /=.
move: clr clrok lr => [] clrok lr.
move: c cllok clrok => [] //= ? ? [] -> dr.
move: lr; move ceq : (Red) => c' lr.
move: lr ceq dr ll => /= [//|? ? ? ? ? cl' cr' ? okl okr lrl lrr] ceq dr ll.
move: ceq cl' cr' ll lrl lrr okl okr dr => <- [] [] //= ll lrl lrr ? ? dr.
rewrite !addnA -![_ + _ + _ + _]addnA.
exists (Stay Black (black_any_ok Red) (bnode (bnode ll lrl) (bnode lrr dr))).
by rewrite /= -!catA.
move: c cllok clrok => [] /= cllok clrok.
move: cll cllok ll => [] // ? ll deq.
move: lr ll ; move ceq : (Black) => c' lr ll dr.
move: lr ceq deq ll dr => [//| ? ? ? ? ? cl' cr' crl okl okr lrl lrr] ceq deq ll dr.
move: ceq deq lrl lrr ll dr okl okr => /= <- [] <- lrl lrr ll dr /= ? ?.
move: cr' lrr => [] lrr;last first.
rewrite -!addnA.
exists (Stay Black (black_any_ok Red) (bnode ll (bnode lrl (rnode lrr dr)))).
by rewrite /= -!catA.
move: lrr => /=; move ceq : (Red) => c lrr {c'}.
move: lrr ceq lrl ll dr => [//| ? ? ? ? ? clrrl clrr c' okl okr lrrl lrrr] ceq lrl ll dr.
move: ceq clrrl clrr lrrl lrrr lrl ll dr okl okr => <- [] [] // lrrl lrrr lrl ll dr ? ?.
rewrite -!addnA [X in (_ + X)]addnA [X in (oo + X)]addnA.
exists (Stay Black (black_any_ok Red) (bnode ll (rnode (bnode lrl lrrl) (bnode lrrr dr)))).
by rewrite /= -!catA.
move => [] -> dr.
rewrite -!addnA -!catA.
by exists (Down (bnode ll (rnode lr dr))).
Defined.
Definition balleft {s1 s2 o1 o2 d cl cr} (p : color)
(dl : near_tree' s1 o1 d cl)
(r : tree w s2 o2 d cr) :
color_ok p cl ->
color_ok p cr ->
{B' : near_tree' (s1 + s2) (o1 + o2) (incr_black d p) p |
dflatteni' B' = dflatteni' dl ++ dflatten r}.
move: p => [].
move: cl cr dl r => [] [] // dl r ? ?.
move: dl r; move ceq : (Black) => c' dl r.
move: dl ceq r => /= [? ? d' c p ok dl|? ? d' dl] ceq r.
move: ceq c ok r dl => <- [] // ? r dl.
by exists (Stay Red xir_ok (rnode dl r)).
move: dl r => {ceq c'} /=; move ceq : (Black) => c'; move deq : (d'.+1) => d'' dl r.
move: r deq ceq dl => [//| ? ? ? ? ? crl ? c crlok crrok rl rr] deq ceq dl.
move: ceq deq rl rr dl crlok crrok => <- /= [] <- rl rr dl crlok ?.
move: crl rl crlok => [] rl ? {c'}.
move: rl rr dl; move ceq : (Red) => c' rl rr dl.
move: rl rr dl ceq => [//| ? ? ? ? ? cl' cr' crl okl okr rll rlr] rr dl ceq.
move: ceq cl' cr' okl okr rr rll rlr dl => /= <- [] [] //= ? ? rr rll rlr dl.
rewrite !addnA -![_ + _ + _ + _]addnA.
exists (Stay Red xir_ok (rnode (bnode dl rll) (bnode rlr rr))).
by rewrite /= !catA.
rewrite !addnA /= !catA.
by exists (Stay Red xir_ok (bnode (rnode dl rl) rr)).
move => /= ? ?.
move: dl r => [? ? d' c ? ? dl|? ? d' dl] r; first by exists (Stay Black (black_any_ok Red) (bnode dl r)).
move: dl r => /=; move deq : (d'.+1) => d'' dl r.
move: r deq dl => [//| ? ? ? ? ? crl crr c crlok crrok rl rr] /=.
move: crl crlok rl => [] crlok rl.
move: c crlok crrok => [] //= ? ? [] -> dl.
move: rl; move ceq : (Red) => c' rl.
move: rl ceq dl rr => /= [//|? ? ? ? ? cl' cr' crl okl okr rll rlr] ceq dl rr.
move: ceq cl' cr' rr rll rlr okl okr dl => <- [] [] //= rr rll rlr ? ? dl.
rewrite !addnA -![_ + _ + _ + _]addnA.
exists (Stay Black (black_any_ok Red) (bnode (bnode dl rll) (bnode rlr rr))).
by rewrite /= -!catA.
move: c crrok crlok => [] /= crrok crlok.
move: crr crrok rr => [] // ? rr deq.
move: rl rr; move ceq : (Black) => c' rl rr dl.
move: rl ceq deq rr dl => [//| ? ? ? ? ? cl' cr' crl okl okr rll rlr] ceq deq rr dl.
move: ceq deq rll rlr rr dl okl okr => /= <- [] <- rll rlr rr dl /= ? ?.
move: cl' rll => [] rll;last first.
rewrite !addnA.
exists (Stay Black (black_any_ok Red) (bnode (bnode (rnode dl rll) rlr) rr)).
by rewrite /= -!catA.
move: rll; move ceq : (Red) => c rll {c'}.
move: rll ceq rlr rr dl=> [//| ? ? ? o3 ? crll crlr c' okl okr rlll rllr] ceq rlr rr dl.
move: ceq crll crlr rlll rllr rlr rr dl okl okr => <- [] [] // rlll rllr rlr rr dl ? ?.
rewrite -!addnA ![_ + ( _ + (_ + (_ + _)))]addnA [X in _ + _ + X]addnA [o3 + (_ + _)]addnA.
exists (Stay Black (black_any_ok Red) (bnode (bnode dl rlll) (rnode (bnode rllr rlr) rr))).
by rewrite /= -!catA.
move => [] -> dl.
rewrite !addnA !catA.
by exists (Down (bnode (rnode dl rl) rr)).
Defined.
Lemma access_cat s t i : access (s ++ t) i = (if i < size s then access s i else access t (i - size s)).
Proof. by rewrite /access nth_cat. Qed.
Lemma cic_ok {c} : color_ok c (inv c).
Proof. by destruct c. Qed.
Lemma ltn_subLN a b c : 0 < c -> (a < b + c) -> (a - b < c).
Proof. move => H H'. rewrite -ltn_subln //. Qed.
Lemma ltn_subLN2 a b c i : 0 < c ->
i < a + b + c ->
(i < a + b) = false ->
i - a - b < c.
Proof.
move => H H'; rewrite ltnNge.
move/negPn => H''.
rewrite -!ltn_subln //;
first by rewrite addnA.
by apply: ltn_addl.
Qed.
Lemma leq_addln a b c : a <= b -> a <= b + c.
Proof. by move/leq_trans; apply; rewrite leq_addr. Qed.
Lemma leq_addrn a b c : a <= c -> a <= b + c.
Proof. by move/leq_trans; apply; rewrite leq_addl. Qed.
Hint Resolve ltn_subLN ltn_subLN2 addnA leq_addr leq_addrn ltn_addl ltn_addr cic_ok leq_access_count sizeW' : core.
Lemma ordinal_caseL {s1 o1 s2 o2 d i cl cr} c
(lok : color_ok c cl)
(rok : color_ok c cr)
(l : tree w s1 o1 d cl)
(r : tree w s2 o2 d cr) :
i < s1 ->
{B' : near_tree' (s1 - 1) (o1 - daccess l i) d cl | dflatteni' B' = delete (dflatten l) i} ->
{B' : near_tree' (s1 + s2 - 1) (o1 + o2 - daccess l i) (incr_black d c) c | dflatteni' B' = delete (dflatten l) i ++ dflatten r }.
Proof.
move=> H dl.
rewrite !addnBAC; eauto.
apply: exist; apply: etrans;
first by (apply (proj2_sig (balleft c (proj1_sig dl) r lok rok))).
congr (_ ++ _); by apply: (proj2_sig dl).
Qed.
Lemma ordinal_caseR {s1 o1 s2 o2 d i cl cr} c
(lok : color_ok c cl)
(rok : color_ok c cr)
(l : tree w s1 o1 d cl)
(r : tree w s2 o2 d cr) :
i < s1 + s2 ->
{B' : near_tree' (s2 - 1) (o2 - daccess r (i - s1)) d cr | dflatteni' B' = delete (dflatten r) (i - s1)} ->
{B' : near_tree' (s1 + s2 - 1) (o1 + o2 - daccess r (i - s1)) (incr_black d c) c | dflatteni' B' = dflatten l ++ delete (dflatten r) (i - s1)}.
Proof.
move=> H dr.
rewrite -!addnBA; eauto.
apply: exist; apply: etrans;
first (apply: (proj2_sig (balright c l (proj1_sig dr) lok rok));
apply: ltn_subLN; by eauto);
congr (_ ++ _); by apply: (proj2_sig dr).
Qed.
Definition ddelete (d: nat) (c: color) (num ones : nat) (i : nat) (B : tree w num ones (incr_black d c) c) :
{ B' : near_tree' (num - (i < num)) (ones - (daccess B i)) (incr_black d c) c | dflatteni' B' = delete (dflatten B) i }.
case val : (i < num);last first.
move/negP/negP : val;
rewrite ltnNge; move/negPn => val;
rewrite daccess_default // !subn0 -delete_oversize;
last by rewrite size_dflatten.
apply: (exist _ (Stay _ _ B)) => //.
move: B; move dceq: (incr_black d c) => d' B;
elim: B d dceq i val => {c} // [s1 o1 ? ? d'' [] [] c // g1 g2 l IHl r IHr] d dceq i val;
(have dceq' : d = d'' by case: c dceq g1 g2 => //=; case => //);
move: dceq' l r IHl IHr => /= <- l r IHl IHr {dceq};
rewrite delete_cat size_dflatten;
case: ifP => H;
(* most general cases *)
try (apply: (ordinal_caseL c _ _ l r H (IHl d erefl i H)); by eauto);
try (apply: (ordinal_caseR c _ _ l r val (IHr d erefl (i - s1) _));
eauto; apply: ltn_subLN; by eauto).
case: d r l IHl IHr val H => {d' d''} [| d r l _ IHr val H] /=.
move creq: Red => cr;
move cbeq: Black => cb; move deq: 0 => d r l.
case: l creq cbeq deq r => // ? ? ? ? ? [] [] [] // ? ? ll lr ? <- /= deq r _ _ val H.
move: deq ll lr r val H => <- ll lr r val H.
move: (delete_from_leaves Red lr r (i - (size (dflatten ll)))).
rewrite delete_cat access_cat -!daccessK !size_dflatten -!ltn_subln ; eauto.
rewrite H !addnA val subnDA /= -!addnA -!addnBA; eauto => dr.
apply: exist; apply: etrans.
apply: (proj2_sig (balright c ll (proj1_sig dr) _ _)); eauto.
rewrite -!catA; congr (_ ++ _).
apply: (proj2_sig dr).
apply: (ordinal_caseR c _ _ l r val (IHr d erefl (i - s1) _));
eauto; apply: ltn_subLN; by eauto.
case: d r l IHl IHr val H => {d' d''} [| d r l IHl _ val H] /=.
move creq: Red => cr;
move cbeq: Black => cb'; move deq: 0 => d r l.
case: r creq cbeq deq l => // ? ? ? ? ? [] [] [] // ? ? rl rr ? <- /= deq l _ _ val H.
move: deq rl rr l val H => <- rl rr l val H.
move: (delete_from_leaves Red l rl i).
rewrite delete_cat access_cat -!daccessK !size_dflatten; eauto.
rewrite ltn_addr H /=; auto => dl.
rewrite !addnA.
rewrite [s1 + _ + _ - _]addnBAC; eauto.
rewrite [o1 + _ + _ - _]addnBAC; eauto.
apply: exist; apply: etrans.
apply: (proj2_sig (balleft c (proj1_sig dl) rr _ _ )); eauto.
rewrite !catA; congr (_ ++ _).
exact: (proj2_sig dl).
by rewrite (leq_trans _ (leq_addr _ _)) // leq_access_count.
apply: (ordinal_caseL c _ _ l r H (IHl d erefl i H)); by eauto.
case: d l r IHl IHr => [l r _ _| d l r IHl _].
move: (delete_from_leaves c l r i).
by rewrite access_cat delete_cat size_dflatten H val /= daccessK.
apply: (ordinal_caseL c _ _ l r H (IHl d erefl i H)); by eauto.
case: d l r IHl IHr => [l r _ _| d l r _ IHr].
move: (delete_from_leaves c l r i).
by rewrite access_cat delete_cat size_dflatten H val /= daccessK.
apply: (ordinal_caseR c _ _ l r val (IHr d erefl (i - s1) _));
eauto; apply: ltn_subLN; by eauto.
Qed.
End delete.
End dynamic_dependent.
Extract Inductive tree => tree_ml [ "LeafML" "(function (s1,o1,s2,o2,d,c,cl,cr,l,r) -> NodeML (s1, o1, s2, o2, c, l, r))" ]
"(fun fl fn ->
function
| LeafML arr -> fl arr
| NodeML (s1,o1,s2,o2,c,(NodeML (_,_,_,_,cl,_,_) as l),(NodeML (_,_,_,_,cr,_,_) as r)) -> fn s1 o1 s2 o2 1 cl cr c l r
| NodeML (s1,o1,s2,o2,c,(LeafML _ as l),(NodeML (_,_,_,_,cr,_,_) as r)) -> fn s1 o1 s2 o2 1 Black cr c l r
| NodeML (s1,o1,s2,o2,c,(LeafML _ as l),(LeafML _ as r)) -> fn s1 o1 s2 o2 1 Black Black c l r
| NodeML (s1,o1,s2,o2,c,(NodeML (_,_,_,_,cl,_,_) as l),(LeafML _ as r)) -> fn s1 o1 s2 o2 1 cl Black c l r)".
Extraction TestCompile dinsert ddelete tree_ml.
Extraction "dydep.ml" dinsert ddelete tree_ml.