-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSABER_PAKE.c
401 lines (294 loc) · 9.99 KB
/
SABER_PAKE.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
#include "SABER_params.h"
#include <string.h>
#include <stdint.h>
#include <stdio.h>
#include "SABER_indcpa.h"
#include "api.h"
#include "verify.h"
#include "rng.h"
#include "fips202.h"
#include "SABER_indcpa.h"
#include "poly.h"
#include "pack_unpack.h"
#define h1 (1 << (SABER_EQ - SABER_EP - 1))
#define h2 ((1 << (SABER_EP - 2)) - (1 << (SABER_EP - SABER_ET - 1)) + (1 << (SABER_EQ - SABER_EP - 1)))
void printKey(uint8_t *a, int sizeArray){
int i ;
printf("\n------------\n");
for(i = 0 ; i< sizeArray; i++){
printf("%u,",a[i]);
}
}
void printArray(uint16_t a[SABER_L][SABER_N], int sizeArray){
int i ;
printf("\n------------\n");
for(i = 0 ; i< sizeArray; i++){
printf("%u,",a[0][i]);
}
}
void encode_c0(unsigned char *r, const unsigned char *m, const unsigned char *seed, const unsigned char *cid)
{
int i;
for ( i = 0; i < SABER_POLYVECBYTES; i++)
r[i] = m[i];
for ( i = 0; i < SABER_SEEDBYTES; i++)
r[i + SABER_POLYVECBYTES ] = seed[i];
for ( i = 0; i < SABER_IDBYTES; i++)
r[SABER_POLYVECBYTES + SABER_SEEDBYTES + i] = cid[i];
}
void decode_c0(uint16_t m[SABER_L][SABER_N], unsigned char *seed, unsigned char *cid, const unsigned char *r)
{
int i;
BS2POLVECq(r,m);
for(i = 0; i<SABER_SEEDBYTES; i++)
seed[i] = r[i + SABER_POLYVECBYTES];
for(i = 0; i<SABER_IDBYTES;i++)
cid[i] = r[i + SABER_POLYVECBYTES + SABER_SEEDBYTES];
}
void encode_s0(unsigned char *r, const unsigned char *y_c, const unsigned char *c,const unsigned char *k)
{
int i;
for(i = 0; i< SABER_POLYVECBYTES; i++)
r[i] = y_c[i];
for(i = 0 ; i < CRYPTO_CIPHERTEXTBYTES ; i++)
r[i+SABER_POLYVECBYTES] = c[i];
for(i = 0; i< SABER_KEYBYTES; i++)
r[i + SABER_POLYVECBYTES + CRYPTO_CIPHERTEXTBYTES] = k[i];
}
void decode_s0(uint8_t *yc_bytes, uint8_t *c, unsigned char *k, const unsigned char *r)
{
int i;
for(i = 0; i <SABER_POLYVECBYTES;i++)
yc_bytes[i] = r[i];
for(i = 0; i< CRYPTO_CIPHERTEXTBYTES;i++)
c[i] = r[i + SABER_POLYVECBYTES];
for(i = 0; i< SABER_KEYBYTES;i++)
k[i] = r[i + SABER_POLYVECBYTES + CRYPTO_CIPHERTEXTBYTES];
}
void hash_pw(uint16_t a[SABER_N], const unsigned char *seed, unsigned char nonce)
{
unsigned int pos = 0, ctr = 0;
uint16_t val;
unsigned int nblocks=4;
uint8_t buf[SHAKE128_RATE*nblocks];
int i;
unsigned char extseed[SABER_SEEDBYTES+1];
uint64_t state[25];
for(i=0;i<SABER_SEEDBYTES;i++){
extseed[i] = seed[i];
}
extseed[SABER_SEEDBYTES] = nonce;
shake128_absorb(state,extseed,SABER_SEEDBYTES+1);
shake128_squeezeblocks(buf,nblocks,state);
while(ctr < SABER_N)
{
val = (buf[pos] | ((uint16_t) buf[pos+1] << 8)) & 0x1fff;
if(val < SABER_Q)
{
a[ctr++] = val;
}
pos += 2;
if(pos > SHAKE128_RATE*nblocks-2)
{
nblocks = 1;
pos = 0;
}
}
}
void hash_vec_frompw(uint16_t gamma[SABER_L][SABER_N], const unsigned char *pw, unsigned char nonce)
{
int i;
for(i = 0; i< SABER_L;i++)
{
hash_pw(gamma[i], pw, nonce++);
}
}
int pake_c0(uint8_t *pk, uint8_t *sk,uint8_t *pw,uint8_t *state,uint8_t *cid, uint8_t *sid, uint8_t *send,polyvec *gamma)
{
int i,j;
uint16_t A[SABER_L][SABER_L][SABER_N];
uint16_t s[SABER_L][SABER_N];
uint16_t m[SABER_L][SABER_N];
uint16_t b[SABER_L][SABER_N] = {0};
uint8_t seed_A[SABER_SEEDBYTES];
uint8_t seed_s[SABER_NOISE_SEEDBYTES];
uint8_t nonce = 0;
uint8_t mbytes[SABER_POLYVECBYTES];
uint8_t gammabytes[SABER_POLYVECBYTES];
randombytes(seed_A, SABER_SEEDBYTES);
shake128(seed_A, SABER_SEEDBYTES, seed_A, SABER_SEEDBYTES); // for not revealing system RNG state
randombytes(seed_s, SABER_NOISE_SEEDBYTES);
GenMatrix(A, seed_A);
GenSecret(s, seed_s);
MatrixVectorMul(A, s, b, 1);
for (i = 0; i < SABER_L; i++)
{
for (j = 0; j < SABER_N; j++)
{
b[i][j] = ((b[i][j] + h1) >> (SABER_EQ - SABER_EP)) ;
}
}
POLVECq2BS(sk, s);
POLVECp2BS(pk, b);
memcpy(pk + SABER_POLYVECCOMPRESSEDBYTES, seed_A, sizeof(seed_A));
hash_vec_frompw(gamma, pw, nonce);
for (i = 0; i < SABER_L; i++){
for (j = 0; j < SABER_N; j++){
m[i][j] = (gamma->vec[i].coeffs[j] + b[i][j]) % SABER_Q;
gamma->vec[i].coeffs[j] = SABER_Q - gamma->vec[i].coeffs[j];
}
}
for (i = 0; i < SABER_IDBYTES; i++)
{
state[i] = cid[i];
state[i + SABER_IDBYTES] = sid[i];
}
POLVECq2BS(mbytes,m);
for (i = 0; i < SABER_POLYVECBYTES; i++)
state[i+2*SABER_IDBYTES] = mbytes[i];
POLVECq2BS(gammabytes,gamma);
for (i = 0; i < SABER_POLYVECBYTES; i++)
state[i+2*SABER_IDBYTES+SABER_POLYVECBYTES] = gammabytes[i];
encode_c0(send, mbytes, seed_A, cid);
for (i = 0; i < SABER_INDCPA_PUBLICKEYBYTES; i++)
sk[i + SABER_INDCPA_SECRETKEYBYTES] = pk[i];
sha3_256(sk + SABER_SECRETKEYBYTES - 64, pk, SABER_INDCPA_PUBLICKEYBYTES); // Then hash(pk) is appended.
randombytes(sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES); // Remaining part of sk contains a pseudo-random number.
}
int pake_s0(unsigned char *send, const unsigned char *received, const polyvec *gamma, const unsigned char *sid, unsigned char *state,uint8_t *ct, uint8_t *ss,uint8_t *pkafd)
{
uint8_t pk_s0[CRYPTO_PUBLICKEYBYTES];
uint16_t m[SABER_L][SABER_N];
uint16_t y_c[SABER_L][SABER_N];
int i,j,counter = 0;
unsigned char seed[SABER_SEEDBYTES];
unsigned char cid[SABER_IDBYTES];
unsigned char mbytes[SABER_POLYVECBYTES];
unsigned char gammabytes[SABER_POLYVECBYTES];
unsigned char yc_bytes[SABER_POLYVECBYTES];
decode_c0(m, seed, cid, received);
for (i = 0; i < SABER_L; i++) {
for (j = 0; j < SABER_N ; j++) {
if (m[i][j] > SABER_Q) {
counter++;
}
}
}
if(counter==0){
for(i = 0 ; i < SABER_L ; i++){
for(j = 0 ; j < SABER_N ; j++){
y_c[i][j] = (m[i][j] + gamma->vec[i].coeffs[j]) % SABER_Q;
}
}
POLVECp2BS(pk_s0, y_c);
memcpy(pk_s0 + SABER_POLYVECCOMPRESSEDBYTES, seed, sizeof(seed));
crypto_kem_enc(ct,ss,pkafd);
for (i = 0; i < SABER_IDBYTES; i++) {
state[i] = cid[i];
state[i + SABER_IDBYTES] = sid[i];
}
POLVECq2BS(mbytes,m);
for (i = 0; i < SABER_POLYVECBYTES; i++)
state[i+2*SABER_IDBYTES] = mbytes[i];
POLVECq2BS(gammabytes,gamma);
for (i = 0; i < SABER_POLYVECBYTES; i++)
state[i+2*SABER_IDBYTES+SABER_POLYVECBYTES] = gammabytes[i];
POLVECp2BS(yc_bytes,y_c);
for (i = 0; i < SABER_POLYVECBYTES; i++)
state[i+2*SABER_IDBYTES+(2*SABER_POLYVECBYTES)] = yc_bytes[i];
for (i = 0; i < SABER_IDBYTES; i++)
state[i+2*SABER_IDBYTES+(3*SABER_POLYVECBYTES)] = ss[i];
encode_s0(send, yc_bytes, ct ,ss);
return (0);
}
else{
return (1);
}
}
int pake_c1(unsigned char *sharedkey_c, unsigned char *k_prime, const unsigned char *received, uint8_t *sk, uint8_t *pk ,unsigned char *state){
uint8_t ct[CRYPTO_CIPHERTEXTBYTES];
uint8_t yc_bytes[SABER_POLYVECBYTES];
uint8_t decode_k[SABER_KEYBYTES];
uint8_t decapsulation_k[SABER_KEYBYTES];
uint16_t p_key[SABER_L][SABER_N];
uint16_t p_key_c0[SABER_L][SABER_N];
int i,j,counter=0;
decode_s0(yc_bytes,ct,decode_k,received);
BS2POLVECp(yc_bytes,p_key);
BS2POLVECp(pk,p_key_c0);
for (i = 0; i < SABER_L; i++) {
for (j = 0; j < SABER_N; j++) {
if (p_key_c0[i][j] != p_key[i][j]) {
counter++;
}
}
}
if(counter==0){
crypto_kem_dec(decapsulation_k,ct,sk);
if(memcmp(decapsulation_k, decode_k, 32) == 0){
for (i = 0; i < SABER_POLYVECBYTES; i++)
state[i+2*SABER_IDBYTES+(2*SABER_POLYVECBYTES)] = yc_bytes[i];
for (i = 0; i < SABER_IDBYTES; i++)
state[i+2*SABER_IDBYTES+(3*SABER_POLYVECBYTES)] = decapsulation_k[i];
state[HASH_BYTES] = 0;
sha3_256(k_prime, state, HASH_BYTES+1);
state[HASH_BYTES+1] = 1;
sha3_256(sharedkey_c, state, HASH_BYTES+2);
}
else{
return (1);
}
}
else{
return (1);
}
return (0);
}
int pake_s1(unsigned char *sharedkey_s, const unsigned char *k_3_c, unsigned char *state)
{
uint8_t k_2_prime[SABER_KEYBYTES];
sha3_256(k_2_prime, state, HASH_BYTES+1);
//s0 da üretilen K ve c1 den gelen k karşılaştır
if(memcmp(k_2_prime, k_3_c, 32) == 0){
state[HASH_BYTES+1] = 1;
sha3_256(sharedkey_s, state, HASH_BYTES+2);
return 0;
}
else{
return 1;
}
}
int crypto_kem_enc(unsigned char *c, unsigned char *k, const unsigned char *pk)
{
unsigned char kr[64]; // Will contain key, coins
unsigned char buf[64];
randombytes(buf, 32);
sha3_256(buf, buf, 32); // BUF[0:31] <-- random message (will be used as the key for client) Note: hash doesnot release system RNG output
sha3_256(buf + 32, pk, SABER_INDCPA_PUBLICKEYBYTES); // BUF[32:63] <-- Hash(public key); Multitarget countermeasure for coins + contributory KEM
sha3_512(kr, buf, 64); // kr[0:63] <-- Hash(buf[0:63]);
// K^ <-- kr[0:31]
// noiseseed (r) <-- kr[32:63];
indcpa_kem_enc(buf, kr + 32, pk, c); // buf[0:31] contains message; kr[32:63] contains randomness r;
sha3_256(kr + 32, c, SABER_BYTES_CCA_DEC);
sha3_256(k, kr, 64); // hash concatenation of pre-k and h(c) to k
return (0);
}
int crypto_kem_dec(unsigned char *k, const unsigned char *c, const unsigned char *sk)
{
int i, fail;
unsigned char cmp[SABER_BYTES_CCA_DEC];
unsigned char buf[64];
unsigned char kr[64]; // Will contain key, coins
const unsigned char *pk = sk + SABER_INDCPA_SECRETKEYBYTES;
indcpa_kem_dec(sk, c, buf); // buf[0:31] <-- message
// Multitarget countermeasure for coins + contributory KEM
for (i = 0; i < 32; i++) // Save hash by storing h(pk) in sk
buf[32 + i] = sk[SABER_SECRETKEYBYTES - 64 + i];
sha3_512(kr, buf, 64);
indcpa_kem_enc(buf, kr + 32, pk, cmp);
fail = verify(c, cmp, SABER_BYTES_CCA_DEC);
sha3_256(kr + 32, c, SABER_BYTES_CCA_DEC); // overwrite coins in kr with h(c)
cmov(kr, sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES, fail);
sha3_256(k, kr, 64); // hash concatenation of pre-k and h(c) to k
return (0);
}