Skip to content

Latest commit

 

History

History
 
 

semantic_segmentation

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

ADE20k Semantic segmentation with XCiT

Getting started

Install the mmsegmentation library

pip install mmcv-full==1.3.0 mmsegmentation==0.11.0

Please follow the datasets guide of mmseg to prepare the ADE20k dataset.


XCiT + Semantic FPN models (80k schedule)

Backbone patch size mIoU Config Weights
XCiT-Tiny 12 16x16 38.1 config download
XCiT-Tiny 12 8x8 39.9 config download
XCiT-Small 12 16x16 43.9 config download
XCiT-Small 12 8x8 44.2 config download
XCiT-Small 24 16x16 44.6 config download
XCiT-Small 24 8x8 47.1 config download
XCiT-Medium 24 16x16 45.9 config download
XCiT-Medium 24 8x8 46.9 config download

XCiT + UperNet models (160k schedule)

Backbone patch size mIoU Config Weights
XCiT-Tiny 12 16x16 41.5 config download
XCiT-Tiny 12 8x8 43.5 config download
XCiT-Small 12 16x16 45.9 config download
XCiT-Small 12 8x8 46.6 config download
XCiT-Small 24 16x16 46.9 config download
XCiT-Small 24 8x8 48.1 config download
XCiT-Medium 24 16x16 47.6 config download
XCiT-Medium 24 8x8 48.4 config download

Training

tools/dist_train.sh <CONFIG_PATH> <NUM_GPUS>  --work-dir <SAVE_PATH> --seed 0  --deterministic --options model.pretrained=<IMAGENET_CHECKPOINT_PATH/URL>

For example, using an XCiT-S12/16 backbone with Semantic-FPN

tools/dist_train.sh configs/xcit/sem_fpn/sem_fpn_xcit_small_12_p16_80k_ade20k.py 8  --work-dir /path/to/save --seed 0  --deterministic --options model.pretrained=https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_384_dist.pth

Evaluation

tools/dist_test.sh  <CONFIG_PATH> <CHECKPOINT_PATH> <NUM_GPUS> --eval mIoU

For example, using an XCiT-S12/16 backbone with Semantic-FPN

 tools/dist_test.sh  configs/xcit/sem_fpn/sem_fpn_xcit_small_12_p16_80k_ade20k.py https://dl.fbaipublicfiles.com/xcit/ade/sem_fpn_xcit_small_12_p16.pth  1 --eval mIoU

Acknowledgment

This code is built using the mmsegmentation library. The optimization hyperparameters we use are adopted from Swin Transformer repository.