This repository has been archived by the owner on Apr 4, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClusteringCoefficient.rs
78 lines (65 loc) · 2.54 KB
/
ClusteringCoefficient.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
use std::fs::OpenOptions;
use std::io::Write;
// Define a function to calculate the clustering coefficient for a node
fn clustering_coefficient(node: usize, adjacency_list: &Vec<Vec<usize>>) -> f64 {
let neighbors = &adjacency_list[node];
let k = neighbors.len();
if k < 2 {
return 0.0; // Return 0 if the node has less than 2 neighbors
}
let mut triangles = 0;
for i in 0..k {
for j in i+1..k {
if adjacency_list[neighbors[i]].contains(&neighbors[j]) {
triangles += 1;
}
}
}
// Clustering coefficient formula: 2 * number of triangles / (k * (k - 1))
2.0 * triangles as f64 / (k * (k - 1)) as f64
}
// Define a function to calculate the average clustering coefficient of the entire graph
fn average_clustering_coefficient(adjacency_list: &Vec<Vec<usize>>) -> f64 {
let mut total_coefficient = 0.0;
let n = adjacency_list.len();
// Iterate through each node in the graph
for i in 0..n {
total_coefficient += clustering_coefficient(i, adjacency_list);
}
// Average clustering coefficient formula: sum of clustering coefficients / number of nodes
total_coefficient / n as f64
}
fn main() {
// Define the graph edges with high clustering
let edges = vec![
(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3),
(4, 5), (4, 6), (4, 7), (5, 6), (5, 7), (6, 7),
(8, 9), (8, 10), (8, 11), (9, 10), (9, 11), (10, 11),
(0, 4), (1, 5), (2, 6), (3, 7), (4, 8), (5, 9), (6, 10), (7, 11),
];
// Determine the maximum node ID
let max_node_id = edges.iter().flat_map(|&(a, b)| vec![a, b]).max().unwrap_or(0);
// Create an adjacency list representation of the graph
let mut adjacency_list = vec![Vec::new(); max_node_id + 1];
for &(a, b) in &edges {
adjacency_list[a].push(b);
adjacency_list[b].push(a);
}
// Calculate the average clustering coefficient
let avg_clustering_coefficient = average_clustering_coefficient(&adjacency_list);
// Print the average clustering coefficient
println!("Average clustering coefficient: {}", avg_clustering_coefficient);
// Open the file in append mode to add the new line
let mut file = OpenOptions::new()
.append(true)
.create(true)
.open("output/ClusteringCoefficient-output.txt")
.expect("Unable to open file");
// Write the output to the file
writeln!(
&mut file,
"Average clustering coefficient: {}",
avg_clustering_coefficient
)
.expect("Unable to write to file");
}