-
Notifications
You must be signed in to change notification settings - Fork 0
/
joint_train_span_electra.py
379 lines (323 loc) · 12.1 KB
/
joint_train_span_electra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import logging
import os
import random
import time
import numpy as np
import pandas as pd
import tokenizers
import torch
import torch.nn as nn
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from transformers import AdamW, get_linear_schedule_with_warmup
import json
from argument import Joint_trainDataArgs, Joint_validDataArgs, JointTrainingConfig
from modelling_span_electra import SpanaElectraJoint
from processing import (
InputExample,
MLMSpanElectraDataset,
SpanELectraLazyDataset,
CachedBinaryIndexedDataset,
)
from utilis import (
plot2,
save_stats,
SpanElectraJointTrainConfig,
SpanElectraDataConfig,
jt_arg_parse,
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
# self.record= []
def update(self, val, n=1):
self.val = val
# self.record.append(val)
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def predict(
evalData,
batch_size,
device,
model,
ignore_label,
worker=0,
use_multi_gpu=False,
device_ids=[],
):
model.eval()
evalDataLoader = DataLoader(
evalData,
batch_size=batch_size,
num_workers=worker,
collate_fn=evalData.collate_fun,
)
tdl = tqdm(evalDataLoader, total=len(evalDataLoader))
genLoss = AverageMeter()
genAcc = AverageMeter()
discLoss = AverageMeter()
discF1 = AverageMeter()
t0 = time.time()
for idx, batch in enumerate(tdl):
# ids= batch['input_id'].to(device, dtype= torch.long)
mask_ids = batch["input_mask"].to(device, dtype=torch.long)
seg_ids = batch["segment_id"].to(device, dtype=torch.long)
lm_sentence = batch["lm_sentence"].to(device, dtype=torch.long)
pairs = batch["pairs"].to(device, dtype=torch.long)
# spans = batch["spans"].to(device, dtype=torch.long)
labels = batch["labels"].to(device, dtype=torch.long)
with torch.no_grad():
logits = model(
input_ids=lm_sentence,
attention_mask=mask_ids,
token_type_ids=seg_ids,
pairs=pairs,
labels=labels,
)
disc_f1 = torch.sum(logits[5]).item()
gen_accu = torch.sum(logits[2]).item()
discF1.update(disc_f1)
genAcc.update(gen_accu)
tdl.set_postfix(
gen_accu=genAcc.avg,
disc_f1=discF1.avg,
)
logger.info(
"Validation: generator_accu: {:.4f}, disc_f1 {:.4f} ".format(
genAcc.avg, discF1.avg
)
)
logger.info("validation took {:.2f} sec".format(time.time() - t0))
return genLoss.avg, discF1.avg
def train(
trainData,
validData,
device,
train_config,
use_multi_gpu=False,
device_ids=[],
log_steps=10,
):
seed_val = 42
random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)
logger.info("seed value: {} ".format(seed_val))
batch_size = train_config.train_batch_size
model = SpanaElectraJoint(train_config.gen_config, train_config.disc_config)
if torch.cuda.device_count() > 1 and use_multi_gpu:
model = nn.DataParallel(model, device_ids=device_ids)
logger.info("generator config {}".format(train_config.gen_config.__dict__))
logger.info("discrimnator config {}".format(train_config.disc_config.__dict__))
logger.info("preaparing train data in batches")
start_time = time.time()
trainDataloader = DataLoader(
trainData,
batch_size=train_config.train_batch_size,
num_workers=train_config.num_workers,
collate_fn=trainData.collate_fun,
)
logger.info("batching took {:.3f} sec".format(time.time() - start_time))
param_optimizer = list(model.named_parameters()) # get parameter of models
no_decay = [
"bias",
"LayerNorm.bias",
"LayerNorm.weight",
] ##doubt layers to be not decayed #issue
optimizer_parameters = [
{
"params": [
p for n, p in param_optimizer if not any(nd in n for nd in no_decay)
],
"weight_decay": 0.001,
},
{
"params": [
p for n, p in param_optimizer if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_parameters, lr=train_config.learningRate)
total_len = trainData.__len__()
logger.info("optimizer: {}".format(optimizer))
num_steps = total_len / train_config.train_batch_size * train_config.epochs
logger.info("total steps: {}".format(num_steps))
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=0, num_training_steps=num_steps
)
model.to(device)
start_epoch = -1
if train_config.checkpoint_path is not None:
logger.info("loading model from a check point\n")
checkPoint = torch.load(train_config.checkpoint_path)
model.load_state_dict(checkPoint["model_state_dict"])
start_epoch = checkPoint["epoch"]
optimizer.load_state_dict(checkPoint["optimizer_state_dict"])
logger.info("done loading")
logger.info("using device: {}".format(device))
logger.info("################# training started ##################")
stats_writer = open(train_config.save_dir + "joint_train_stats.txt", "w")
for epoch_i in range(start_epoch + 1, train_config.epochs):
print("")
print(
"======== Epoch {:} / {:} ========".format(epoch_i + 1, train_config.epochs)
)
print("Training...")
t0 = time.time()
genLoss = AverageMeter()
genAcc = AverageMeter()
discLoss = AverageMeter()
discF1 = AverageMeter()
logger.info(
"============= Epoch {:} / {:} ===========".format(
epoch_i + 1, train_config.epochs
)
)
tdl = tqdm(trainDataloader, total=len(trainDataloader))
model.train()
for idx, batch in enumerate(tdl):
# ids= batch['input_id'].to(device, dtype= torch.long)
mask_ids = batch["input_mask"].to(device, dtype=torch.long)
seg_ids = batch["segment_id"].to(device, dtype=torch.long)
lm_sentence = batch["lm_sentence"].to(device, dtype=torch.long)
pairs = batch["pairs"].to(device, dtype=torch.long)
# spans = batch["spans"].to(device, dtype=torch.long)
labels = batch["labels"].to(device, dtype=torch.long)
model.zero_grad()
logits = model(
input_ids=lm_sentence,
attention_mask=mask_ids,
token_type_ids=seg_ids,
pairs=pairs,
labels=labels,
)
stats_dic = {}
gen_loss = torch.sum(logits[0])
disc_loss = torch.sum(logits[3])
stats_dic["gen_lm_loss"] = gen_loss.item()
stats_dic["disc_at_loss"] = disc_loss.item()
if train_config.use_SBGO:
gen_sbo_loss = torch.sum(logits[1])
stats_dic["gen_sbo_loss"] = gen_sbo_loss.item()
gen_loss += gen_sbo_loss
if train_config.use_SBPO:
disc_sbo_loss = torch.sum(logits[4])
stats_dic["disc_sbo_loss"] = disc_sbo_loss.item()
disc_loss += disc_sbo_loss
stats_dic["gen_f1"] = torch.sum(logits[2]).item()
stats_dic["disc_f1"] = torch.sum(logits[5]).item()
loss = gen_loss + disc_loss # gen_loss + disc loss
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
genLoss.update(gen_loss.item())
genAcc.update(stats_dic["gen_f1"])
discLoss.update(disc_loss.item())
discF1.update(stats_dic["disc_f1"])
if idx % log_steps == 0:
stats_writer.write(json.dumps(stats_dic) + "\n")
tdl.set_postfix(
gen_loss=genLoss.avg,
gen_accu=genAcc.avg,
disc_loss=discLoss.avg,
disc_f1=discF1.avg,
)
if validData:
logger.info("##########validating after epoch end#############")
valid_gen_accu, valid_disc_f1 = predict(
validData,
train_config.valid_batch_size,
device,
model,
ignore_label=train_config.ignore_label,
)
torch.save(
{
"epoch": epoch_i,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
train_config.save_dir + "jointSE_checkpoint_{}.pt".format(epoch_i),
) # save whole model after epoch
torch.save(
model.state_dict(),
train_config.save_dir + "jointSEmodel_weight{}".format(epoch_i) + ".pt",
)
stats_writer.close()
def main():
parser = jt_arg_parse()
args = parser.parse_args()
train_data_arg = SpanElectraDataConfig.load_from_json(args.config_file)
train_data_arg.inFile = args.train_file
train_data_arg.occur = args.train_occur
valid_data_arg = SpanElectraDataConfig.load_from_json(args.config_file)
valid_data_arg.inFile = args.valid_file
valid_data_arg.occur = args.valid_occur
logger.addHandler(
logging.FileHandler(os.path.join(args.out_dir, "jointTrain_logFile.log"), "w")
) # initalize logger
logger.info("training data args")
logger.info(train_data_arg.__dict__) # log train data arg
logger.info("validation data args")
logger.info(valid_data_arg.__dict__)
train_config = SpanElectraJointTrainConfig.load_from_json(args.config_file)
train_config.save_dir = args.out_dir
train_config.num_workers = args.workers
train_config.train_batch_size = args.train_batch_size
train_config.valid_batch_size = args.valid_batch_size
train_config.learningRate = args.lr
train_config.checkpoint_path = args.checkpoint_path
train_config.epochs = args.epochs
# device_ids = JointTrainingConfig.device_ids
device_ids = args.device_ids
if type(device_ids) != list:
device_ids = [device_ids]
print(device_ids)
use_multi_gpu = False
if len(device_ids) > 1:
use_multi_gpu = True
if torch.cuda.is_available():
device = torch.device(
"cuda:" + str(device_ids[0])
) # use first device as main device
print("There are %d GPU(s) available." % torch.cuda.device_count())
# print("We will use the GPU:", torch.cuda.get_device_name(device_ids[0]))
else:
print("No GPU available, using the CPU instead.")
device = torch.device("cpu")
trainData = CachedBinaryIndexedDataset(train_data_arg, 8)
validData = CachedBinaryIndexedDataset(valid_data_arg, 8)
# otarg= Joint_trainDataArgs()
# ovarg= Joint_validDataArgs()
# trainData = MLMSpanElectraDataset(otarg)
# validData = MLMSpanElectraDataset(ovarg)
train(
trainData=trainData,
validData=validData,
device=device,
train_config=train_config,
use_multi_gpu=use_multi_gpu,
device_ids=device_ids,
)
torch.cuda.empty_cache()
if __name__ == "__main__":
main()
torch.cuda.empty_cache()
# python joint_train_span_electra.py --config_file "/home/amardeep/spanElectra/keyword-language-modeling/configs/default.json" --train_file "/media/data_dump/Amardeep/spanElectra/out/jfeat/train.txt" --valid_file "/media/data_dump/Amardeep/spanElectra/out/jfeat/valid.txt" --out_dir "/media/data_dump/Amardeep/spanElectra/out/jfeat/" --workers 0 --epochs 1 --lr 3e-5 --device_ids 1