From 4d020ba4391b1db29e578b8460e38f34a7c83424 Mon Sep 17 00:00:00 2001 From: Andreas Troxler Date: Sat, 7 Oct 2023 11:20:44 +0200 Subject: [PATCH] update library versions, add notebook 3 --- ...Actuarial_Applications_of_NLP_Part_1.ipynb | 74949 ++++++---------- ...Actuarial_Applications_of_NLP_Part_2.ipynb | 74325 +++++---------- ...Actuarial_Applications_of_NLP_Part_3.ipynb | 1896 + 3 files changed, 50600 insertions(+), 100570 deletions(-) create mode 100644 12 - NLP Using Transformers/Actuarial_Applications_of_NLP_Part_3.ipynb diff --git a/12 - NLP Using Transformers/Actuarial_Applications_of_NLP_Part_1.ipynb b/12 - NLP Using Transformers/Actuarial_Applications_of_NLP_Part_1.ipynb index ed3ec21..bb7f761 100644 --- a/12 - NLP Using Transformers/Actuarial_Applications_of_NLP_Part_1.ipynb +++ b/12 - NLP Using Transformers/Actuarial_Applications_of_NLP_Part_1.ipynb @@ -1,49132 +1,26841 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "OnFQmduQWNvE" - }, - "source": [ - "# Actuarial Applications of Natural Language Processing Using Transformers\n", - "### A Case Study for Processing Text Features in an Actuarial Context\n", - "### Part I – Introduction and Case Studies on Car Accident Descriptions\n", - "\n", - "By Andreas Troxler, June 2022\n", - "\n", - "An abundant amount of information is available to insurance companies in the form of text.\n", - "However, language data is unstructured, sometimes multilingual,\n", - "and single words or phrases taken out of context can be highly ambiguous.\n", - "By the help of transformer models, text data can be converted into structured data and then\n", - "used as input to predictive models.\n", - "\n", - "In this Part I of tutorial, you will discover the use of transformer models for text classification.\n", - "Throughout this tutorial, the [HuggingFace](https://huggingface.co/docs/transformers/index)\n", - "Transformers library will be used.\n", - "\n", - "This notebook serves as a companion to the tutorial\n", - "[\"Actuarial Applications of Natural Language Processing Using Transformers”](https://github.com/JSchelldorfer/ActuarialDataScience/tree/master/12%20-%20NLP%20Using%20Transformers).\n", - "The tutorial explains the underlying concepts, and this notebook illustrates the implementation.\n", - "This tutorial, the dataset and the notebooks are available on [github](https://github.com/JSchelldorfer/ActuarialDataScience/tree/master/12%20-%20NLP%20Using%20Transformers).\n", - "\n", - "After competing this tutorial, you will know:\n", - "* How to use a transformer model to convert multi-lingual text features into embeddings - simply put, into a vector of real numbers.\n", - "* How to use this structured data to perform a text classification task.\n", - "* How to improve model performance by fine-tuning the NLP model with your own data.\n", - "* How to perform error analysis and interpret model predictions.\n", - "* How to deal with long input sequences.\n", - "\n", - "Let’s get started.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "TDCiMy_fWNvK" - }, - "source": [ - "## Notebook Overview\n", - "\n", - "This notebook is divided into into seven parts; they are:\n", - "\n", - "1. [Introduction](#intro)\n", - "\n", - " 1.1 [Prerequisites](#prerequisites)\n", - "\n", - " [1.2 Exploring the data](#dataexploration)

\n", - "\n", - "2. [A brief introduction to the HuggingFace ecosystem](#huggingface)\n", - "\n", - " 2.1 [Loading the data into a DataSet](#dataset)\n", - "\n", - " 2.2 [Tokenization – splitting the raw text](#tokenize)\n", - "\n", - " 2.3 [The transformer model](#transformer)

\n", - "\n", - "3. [Using transformers to extract features for classification or regression tasks](#feature_extraction)\n", - "\n", - " 3.1 [Extracting the encoded text ...](#extract_encoding)\n", - "\n", - " 3.2 [... and using it in a classification model](#classification)\n", - "\n", - " 3.3 [Case study: use accident descriptions to predict the number of vehicles involved](#case_study_nvehicles)\n", - "\n", - " 3.4 [Cross-lingual transfer](#cross_lingual_transfer)\n", - "\n", - " 3.5 [Multi-lingual training](#multi_lingual_training)

\n", - "\n", - "4. [Fine-tuning – improving the model](#finetuning)\n", - "\n", - " 4.1. [Domain-specific finetuning](#domain_finetuning)\n", - "\n", - " 4.2. [Task-specific finetuning](#task_finetuning)

\n", - "\n", - "5. [Understand predictions errors and interpret predictions](#understand)\n", - "\n", - " 5.1. [Case study: use accident descriptions to identify bodily injury](#case_study_injuries)\n", - "\n", - " 5.2. [Investigate false positives and false negatives](#investigate)\n", - "\n", - " 5.3. [Use Captum and `transformers-interpret` to interpret predictions](#interpret)

\n", - "\n", - "6. [Using extractive question answering to process longer texts](#qna)

\n", - "\n", - "7. [Conclusion](#conclusion)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "dnU_Y0gcWNvM" - }, - "source": [ - "\n", - "\n", - "## 1. Introduction" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "bTFN7kK4WNvN" - }, - "source": [ - "\n", - "\n", - "### 1.1. Prerequisites" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Z2xX3ICs0AAo" - }, - "source": [ - "#### Computing Power\n", - "This notebook is computationally intensive. We recommend using a platform with GPU support.\n", - "\n", - "We have run this notebook on Google Colab and on an Amazon EC2 p2.xlarge instance (an older generation of GPU-based instances).\n", - "\n", - "Please note that the results may not be reproducible across platforms and versions." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qc3FaMEFDWwh" - }, - "source": [ - "#### Local files\n", - "Make sure the following files are available in the directory of the notebook:\n", - "* `tutorial_utils.py` - a collection of utility functions used throughout this notebook, explained in Section [3.2](#classification)\n", - "* `NHTSA_NMVCCS_extract.parquet.gzip` - the data\n", - "\n", - "This notebook will create the following subdirectories:\n", - "* `datasets` - pre-processed datasets\n", - "* `models` - trained Transformer models\n", - "* `results` - figures and Excel files" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "uLmmA-fQWNvN" - }, - "source": [ - "#### Getting started with Python and Jupyter Notebook\n", - "\n", - "For this tutorial, we assume that you are already familiar with Python and Jupyter Notebook.\n", - "\n", - "In this section, Jupyter Notebook and Python settings are initialized.\n", - "For code in Python, the [PEP8 standard](https://www.python.org/dev/peps/pep-0008/)\n", - "(\"PEP = Python Enhancement Proposal\") is enforced with minor variations to improve readability.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 17 - }, - "id": "E7grvuz8WNvQ", - "outputId": "cfe1efde-b6c7-4df9-f744-0b611fae3399", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ + "cells": [ { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "OnFQmduQWNvE" + }, + "source": [ + "# Actuarial Applications of Natural Language Processing Using Transformers\n", + "### A Case Study for Processing Text Features in an Actuarial Context\n", + "### Part I – Introduction and Case Studies on Car Accident Descriptions\n", + "\n", + "By Andreas Troxler, June 2022\n", + "\n", + "An abundant amount of information is available to insurance companies in the form of text.\n", + "However, language data is unstructured, sometimes multilingual,\n", + "and single words or phrases taken out of context can be highly ambiguous.\n", + "By the help of transformer models, text data can be converted into structured data and then\n", + "used as input to predictive models.\n", + "\n", + "In this Part I of tutorial, you will discover the use of transformer models for text classification.\n", + "Throughout this tutorial, the [HuggingFace](https://huggingface.co/docs/transformers/index)\n", + "Transformers library will be used.\n", + "\n", + "This notebook serves as a companion to the tutorial\n", + "[\"Actuarial Applications of Natural Language Processing Using Transformers”](https://github.com/JSchelldorfer/ActuarialDataScience/tree/master/12%20-%20NLP%20Using%20Transformers).\n", + "The tutorial explains the underlying concepts, and this notebook illustrates the implementation.\n", + "This tutorial, the dataset and the notebooks are available on [github](https://github.com/JSchelldorfer/ActuarialDataScience/tree/master/12%20-%20NLP%20Using%20Transformers).\n", + "\n", + "After competing this tutorial, you will know:\n", + "* How to use a transformer model to convert multi-lingual text features into embeddings - simply put, into a vector of real numbers.\n", + "* How to use this structured data to perform a text classification task.\n", + "* How to improve model performance by fine-tuning the NLP model with your own data.\n", + "* How to perform error analysis and interpret model predictions.\n", + "* How to deal with long input sequences.\n", + "\n", + "Let’s get started.\n", + "\n" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Notebook settings\n", - "\n", - "# clear the namespace variables\n", - "from IPython import get_ipython\n", - "get_ipython().run_line_magic(\"reset\", \"-sf\")\n", - "\n", - "# formatting: cell width\n", - "from IPython.display import display, HTML\n", - "display(HTML(\"\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "FGxBx9MVWNvS" - }, - "source": [ - "#### Importing Required Libraries\n", - "\n", - "The following libraries are required:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "PFZRb_nWZnG5", - "outputId": "2c9bcb1d-0ebb-4413-b06e-584bbef0a709" - }, - "outputs": [], - "source": [ - "!pip install transformers" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "HDmc_CXBZmQz", - "outputId": "a028a40c-4a64-4aab-eeda-64661d82d935" - }, - "outputs": [], - "source": [ - "!pip install datasets" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "fap9tsxwa5QR", - "outputId": "e742c528-71ea-444d-f7a1-0a193623221c" - }, - "outputs": [], - "source": [ - "!pip install transformers_interpret" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "PzHnOM3JZq7G", - "outputId": "e119834a-fd1f-4c5a-9e0d-60b5e65dfc6f" - }, - "outputs": [], - "source": [ - "!pip install plotly" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "cFmU2CO5Zxe-", - "outputId": "5e26145d-0c87-450f-e257-cda799e9f895" - }, - "outputs": [], - "source": [ - "!pip install kaleido" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + { + "cell_type": "markdown", + "metadata": { + "id": "TDCiMy_fWNvK" + }, + "source": [ + "## Notebook Overview\n", + "\n", + "This notebook is divided into into seven parts; they are:\n", + "\n", + "1. [Introduction](#intro)\n", + "\n", + " 1.1 [Prerequisites](#prerequisites)\n", + "\n", + " [1.2 Exploring the data](#dataexploration)

\n", + "\n", + "2. [A brief introduction to the HuggingFace ecosystem](#huggingface)\n", + "\n", + " 2.1 [Loading the data into a DataSet](#dataset)\n", + "\n", + " 2.2 [Tokenization – splitting the raw text](#tokenize)\n", + "\n", + " 2.3 [The transformer model](#transformer)

\n", + "\n", + "3. [Using transformers to extract features for classification or regression tasks](#feature_extraction)\n", + "\n", + " 3.1 [Extracting the encoded text ...](#extract_encoding)\n", + "\n", + " 3.2 [... and using it in a classification model](#classification)\n", + "\n", + " 3.3 [Case study: use accident descriptions to predict the number of vehicles involved](#case_study_nvehicles)\n", + "\n", + " 3.4 [Cross-lingual transfer](#cross_lingual_transfer)\n", + "\n", + " 3.5 [Multi-lingual training](#multi_lingual_training)

\n", + "\n", + "4. [Fine-tuning – improving the model](#finetuning)\n", + "\n", + " 4.1. [Domain-specific finetuning](#domain_finetuning)\n", + "\n", + " 4.2. [Task-specific finetuning](#task_finetuning)

\n", + "\n", + "5. [Understand predictions errors and interpret predictions](#understand)\n", + "\n", + " 5.1. [Case study: use accident descriptions to identify bodily injury](#case_study_injuries)\n", + "\n", + " 5.2. [Investigate false positives and false negatives](#investigate)\n", + "\n", + " 5.3. [Use Captum and `transformers-interpret` to interpret predictions](#interpret)

\n", + "\n", + "6. [Using extractive question answering to process longer texts](#qna)

\n", + "\n", + "7. [Conclusion](#conclusion)\n" + ] }, - "id": "JgoxGJH-bW84", - "outputId": "778bad51-692b-491d-8376-13f5fe16477e" - }, - "outputs": [], - "source": [ - "!pip install pyyaml==5.4.1 ## https://github.com/yaml/pyyaml/issues/576" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + { + "cell_type": "markdown", + "metadata": { + "id": "dnU_Y0gcWNvM" + }, + "source": [ + "\n", + "\n", + "## 1. Introduction" + ] }, - "id": "_z92uLSKWNvS", - "outputId": "83969d4b-83c3-4640-bbe6-a2604472a8de", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "from datasets import Dataset, DatasetDict, load_from_disk\n", - "from transformers import AutoTokenizer, AutoModel, Trainer, TrainingArguments, trainer_utils, AutoModelForMaskedLM,\\\n", - " DataCollatorForLanguageModeling, AutoModelForSequenceClassification, pipeline\n", - "from transformers_interpret import SequenceClassificationExplainer\n", - "import torch\n", - "import pandas as pd\n", - "import numpy as np\n", - "from scipy.special import softmax\n", - "from sklearn.linear_model import LogisticRegression\n", - "from sklearn.dummy import DummyClassifier\n", - "from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score\n", - "import plotly.express as px\n", - "from wordcloud import WordCloud\n", - "\n", - "from tutorial_utils import extract_sequence_encoding, get_xy, dummy_classifier, logistic_regression_classifier, evaluate_classifier" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ut5VN51xWNvT" - }, - "source": [ - "In addition, we require `openpyxl` to enable export from Pandas to Excel." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "u8MaU-VkWNvU" - }, - "source": [ - "\n", - "\n", - "### 1.2. Exploring the Data\n", - "\n", - "The data used throughout this tutorial is derived from data of a vehicle crash causation study performed\n", - "in the United States from 2005 to 2007.\n", - "The dataset has almost 7'000 records, each relating to one accident.\n", - "For each case, a verbal description of the accident is available in English,\n", - "which summarizes road and weather conditions,\n", - "vehicles, drivers and passengers involved, preconditions, injury severities, etc.\n", - "The same information is also encoded in tabular form,\n", - "so that we can apply supervised learning techniques to train the NLP models and\n", - "compare the information extracted from the verbal descriptions with the encoded data.\n", - "\n", - "The original data consists of multiple tables. For this tutorial, we have aggregated it into a single dataset\n", - "and added German translations of the English accident descriptions.\n", - "The translations were generated using the new\n", - "[DeepL python API](https://pypi.org/project/deepl/).\n", - "\n", - "To explore the data, let's load it into a Pandas DataFrame and examine its shape, columns and data types:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + { + "cell_type": "markdown", + "metadata": { + "id": "bTFN7kK4WNvN" + }, + "source": [ + "\n", + "\n", + "### 1.1. Prerequisites" + ] }, - "id": "RJDyLey0WNvU", - "outputId": "886a4e98-eba3-4c8c-bf9f-26212dcea1e5", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "shape of DataFrame: (6949, 16)\n", - "('level_0', dtype('int64'))\n", - "('index', dtype('int64'))\n", - "('SCASEID', dtype('int64'))\n", - "('SUMMARY_EN', dtype('O'))\n", - "('SUMMARY_GE', dtype('O'))\n", - "('INJSEVA', dtype('int64'))\n", - "('NUMTOTV', dtype('int64'))\n", - "('WEATHER1', dtype('int64'))\n", - "('WEATHER2', dtype('int64'))\n", - "('WEATHER3', dtype('int64'))\n", - "('WEATHER4', dtype('int64'))\n", - "('WEATHER5', dtype('int64'))\n", - "('WEATHER6', dtype('int64'))\n", - "('WEATHER7', dtype('int64'))\n", - "('WEATHER8', dtype('int64'))\n", - "('INJSEVB', dtype('int64'))\n" - ] - } - ], - "source": [ - "df = pd.read_parquet(\"NHTSA_NMVCCS_extract.parquet.gzip\")\n", - "print(f\"shape of DataFrame: {df.shape}\")\n", - "print(*list(zip(df.columns, df.dtypes)), sep=\"\\n\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "k2Ee4mjtWNvW" - }, - "source": [ - "The column `SCASEID` is a unique case identifier.\n", - "\n", - "The columns `SUMMARY_EN` and `SUMMARY_GE` are strings representing the verbal descriptions of the accident\n", - "in English and German, respectively.\n", - "\n", - "`NUMTOTV` is the number of vehicles involved in the case. Let's have a look at the distribution of this feature:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 542 + "cell_type": "markdown", + "metadata": { + "id": "Z2xX3ICs0AAo" + }, + "source": [ + "#### Computing Power\n", + "This notebook is computationally intensive. We recommend using a platform with GPU support.\n", + "\n", + "We have run this notebook on Google Colab and on an Amazon EC2 p2.xlarge instance (an older generation of GPU-based instances).\n", + "\n", + "Please note that the results may not be reproducible across platforms and versions." + ] }, - "id": "wx8Bp2n-WNvW", - "outputId": "d74f1f13-7540-444d-f656-e255f7c7231f", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "text/html": [ - " \n", - " " + "cell_type": "markdown", + "metadata": { + "id": "qc3FaMEFDWwh" + }, + "source": [ + "#### Local files\n", + "Make sure the following files are available in the directory of the notebook:\n", + "* `tutorial_utils.py` - a collection of utility functions used throughout this notebook, explained in Section [3.2](#classification)\n", + "* `NHTSA_NMVCCS_extract.parquet.gzip` - the data\n", + "\n", + "This notebook will create the following subdirectories:\n", + "* `datasets` - pre-processed datasets\n", + "* `models` - trained Transformer models\n", + "* `results` - figures and Excel files" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "num_vehicles", - "format": "svg" - } - }, - "data": [ - { - "alignmentgroup": "True", - "hovertemplate": "variable=NUMTOTV
index=%{x}
value=%{y}", - "legendgroup": "NUMTOTV", - "marker": { - "color": "#636efa", - "pattern": { - "shape": "" - } - }, - "name": "NUMTOTV", - "offsetgroup": "NUMTOTV", - "orientation": "v", - "showlegend": true, - "textposition": "auto", - "type": "bar", - "x": [ - 1, - 2, - 3, - 4, - 5, - 6, - 7, - 8, - 9 - ], - "xaxis": "x", - "y": [ - 1822, - 4151, - 783, - 150, - 34, - 5, - 2, - 1, - 1 - ], - "yaxis": "y" - } - ], - "layout": { - "barmode": "relative", - "legend": { - "title": { - "text": "variable" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "number of cases by number of vehicles" - }, - "width": 640, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "number of vehicles" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "number of cases" - } - } - } + "cell_type": "markdown", + "metadata": { + "id": "uLmmA-fQWNvN" }, - "text/html": [ - "
" + "source": [ + "#### Getting started with Python and Jupyter Notebook\n", + "\n", + "For this tutorial, we assume that you are already familiar with Python and Jupyter Notebook.\n", + "\n", + "In this section, Jupyter Notebook and Python settings are initialized.\n", + "For code in Python, the [PEP8 standard](https://www.python.org/dev/peps/pep-0008/)\n", + "(\"PEP = Python Enhancement Proposal\") is enforced with minor variations to improve readability.\n" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig = px.bar(df[\"NUMTOTV\"].value_counts().sort_index(), width=640)\n", - "fig.update_layout(title=\"number of cases by number of vehicles\", xaxis_title=\"number of vehicles\",\n", - " yaxis_title=\"number of cases\")\n", - "fig.show(config={\"toImageButtonOptions\": {\"format\": 'svg', \"filename\": \"num_vehicles\"}})" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "pwcfXawvWNvX" - }, - "source": [ - "Most cases involve two vehicles, and only very few accidents involve more than three vehicles.\n", - "\n", - "Each of the columns `WEATHER1` to `WEATHER8` indicates the presence of a specific weather condition\n", - "(1: weather condition present, 9999: presence of weather condition unknown, 0 otherwise):\n", - "\n", - "| column | meaning | count |\n", - "|---|---|---|\n", - "| `WEATHER1` | cloudy | 1112 |\n", - "| `WEATHER2` | snow | 114 |\n", - "| `WEATHER3` | fog, smog, smoke | 28 |\n", - "| `WEATHER4` | rain | 624 |\n", - "| `WEATHER5` | sleet, hail (freezing drizzle or rain) | 25 |\n", - "| `WEATHER6` | blowing snow | 38 |\n", - "| `WEATHER7` | severe crosswinds | 20 |\n", - "| `WEATHER8` | other | 25 |\n", - "\n", - "These weather conditions are not mutually exclusive, i.e., more than one condition can be present in a single case.\n", - "The frequency distribution looks as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 542 }, - "id": "DD17G3B9WNvY", - "outputId": "90ff1035-709a-4cd4-e677-a8f169105301", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "weather", - "format": "svg" + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 17 + }, + "id": "E7grvuz8WNvQ", + "outputId": "d3dec457-8e5c-45a6-a9d9-264d8d10b127", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "alignmentgroup": "True", - "hovertemplate": "x=%{x}
y=%{y}", - "legendgroup": "", - "marker": { - "color": "#636efa", - "pattern": { - "shape": "" - } - }, - "name": "", - "offsetgroup": "", - "orientation": "v", - "showlegend": false, - "textposition": "auto", - "type": "bar", - "x": [ - 1, - 2, - 3, - 4, - 5, - 6, - 7, - 8 - ], - "xaxis": "x", - "y": [ - 1112, - 114, - 28, - 624, - 25, - 38, - 20, - 25 - ], - "yaxis": "y" - } - ], - "layout": { - "barmode": "relative", - "legend": { - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" + "output_type": "display_data", + "data": { + "text/plain": [ + "" ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" + "text/html": [ + "" ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "number of cases by weather condition" - }, - "width": 640, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "weather condition" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "number of cases" - } + "metadata": {} } - } - }, - "text/html": [ - "
" + ], + "source": [ + "# Notebook settings\n", + "\n", + "# clear the namespace variables\n", + "from IPython import get_ipython\n", + "get_ipython().run_line_magic(\"reset\", \"-sf\")\n", + "\n", + "# formatting: cell width\n", + "from IPython.display import display, HTML\n", + "display(HTML(\"\"))" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig=px.bar(x=range(1,9), y=[(df[\"WEATHER\"+str(i)]==1).sum() for i in range(1,9)], width=640)\n", - "fig.update_layout(title=\"number of cases by weather condition\", xaxis_title=\"weather condition\",\n", - " yaxis_title=\"number of cases\")\n", - "fig.show(config={\"toImageButtonOptions\": {\"format\": 'svg', \"filename\": \"weather\"}})" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "gVwOVGouWNvY" - }, - "source": [ - "The most frequently recorded weather conditions are \"cloudy\" (`WEATHER1`) and \"rain\" (`WEATHER4`).\n", - "\n", - "`INJSEVA` indicates the most serious sustained injury in the accident.\n", - "For instance, if one person was not injured, and another person suffered a non-incapacitating injury,\n", - "injury class 2 was assigned to the case.\n", - "\n", - "Information on injury severity has been taken from police accident reports, which are not available in the data.\n", - "Unfortunately, this information does not necessarily align with the case description:\n", - "There are many cases for which the case description indicates the presence of an injury,\n", - "but `INJSEVA` does not, and vice versa.\n", - "\n", - "For this reason, we created manually an additional column `INJSEVB` based on the case description,\n", - "to indicate the presence of a (possible) bodily injury.\n", - "The table below shows the distribution of number of cases by the two variables.\n", - "\n", - "| `INJSEVA` | meaning | count | `INJSEVB`=0 | `INJSEVB`=1 \n", - "|---|---|---|---|---|\n", - "| 0 | O - No injury | 1'458 | 96| 1'554 |\n", - "| 1 | C - Possible injury | 1'112 | 1'298 | 2'410 |\n", - "| 2 | B - Non-incapacitating injury | 729 | 945 | 1'674 |\n", - "| 3 | A - Incapacitating injury | 304 | 373 | 677 |\n", - "| 4 | K - Killed | 5 | 114 | 119 |\n", - "| 5 | U - Injury, severity unknown | 44 | 122 | 166 |\n", - "| 6 | Died prior to crash | 0 | 0| 0 |\n", - "| 9 | Unknown if injured | 51 | 16 | 67 |\n", - "| 10 | No person in crash | 1 | 0| 1 |\n", - "| 11 | No PAR (police accident report) obtained | 231 | 50 | 281 |\n", - "|**Total**| | **3'935** | **3'014**| **6'949**|\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Mi0yKfm2WNvZ" - }, - "source": [ - "Now we turn to the verbal accident descriptions.\n", - "First, we examine the length of the English texts, `SUMMARY_EN`.\n", - "To this end, we split the texts into words, with blank spaces as separator,\n", - "and show a box plot of the text length by number of vehicles involved in the accident:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 559 }, - "id": "70q6pUwuWNvZ", - "outputId": "9dcead0e-d1b9-46fa-dfef-dc4e29084a4e", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Overall number of words by case summary: min 60, average 419, max 1248\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "FGxBx9MVWNvS" + }, + "source": [ + "#### Importing Required Libraries\n", + "\n", + "The following libraries are required:" + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "text_length", - "format": "svg" - } - }, - "data": [ + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "PFZRb_nWZnG5", + "outputId": "805e7052-ed79-4aa4-8daa-3f2dec75c3b5" + }, + "outputs": [ { - "alignmentgroup": "True", - "hovertemplate": "NUMTOTV=%{x}
words per case summary=%{y}", - "legendgroup": "", - "marker": { - "color": "#636efa" - }, - "name": "", - "notched": false, - "offsetgroup": "", - "orientation": "v", - "showlegend": false, - "type": "box", - "x": [ - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 8, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 1, - 1, - 1, - 2, - 1, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 3, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 3, - 1, - 2, - 1, - 2, - 1, - 1, - 2, - 1, - 2, - 1, - 2, - 4, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 3, - 1, - 3, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 3, - 2, - 2, - 1, - 3, - 1, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 3, - 2, - 4, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 3, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 5, - 3, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 2, - 4, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 4, - 2, - 2, - 3, - 1, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 3, - 2, - 1, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 1, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 1, - 1, - 2, - 3, - 1, - 2, - 2, - 2, - 3, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 4, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 4, - 2, - 1, - 2, - 3, - 2, - 2, - 3, - 2, - 3, - 2, - 2, - 1, - 1, - 3, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 3, - 2, - 1, - 3, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 3, - 1, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 3, - 1, - 2, - 3, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 1, - 3, - 2, - 3, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 3, - 2, - 2, - 2, - 1, - 1, - 2, - 3, - 3, - 3, - 2, - 2, - 4, - 3, - 4, - 1, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 2, - 2, - 4, - 2, - 2, - 2, - 3, - 2, - 1, - 1, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 4, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 4, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 3, - 3, - 1, - 2, - 3, - 2, - 2, - 2, - 2, - 5, - 2, - 2, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 3, - 2, - 2, - 3, - 2, - 2, - 4, - 2, - 3, - 2, - 2, - 2, - 3, - 3, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 3, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 4, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 1, - 2, - 2, - 3, - 3, - 2, - 1, - 1, - 2, - 1, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 4, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 5, - 1, - 2, - 1, - 2, - 1, - 1, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 3, - 2, - 4, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 4, - 1, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 1, - 2, - 1, - 3, - 3, - 2, - 2, - 3, - 2, - 2, - 2, - 4, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 3, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 3, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 3, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 1, - 3, - 1, - 3, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 1, - 4, - 2, - 1, - 2, - 3, - 3, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 4, - 2, - 2, - 2, - 1, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 3, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 3, - 1, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 3, - 2, - 2, - 5, - 4, - 2, - 3, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 1, - 1, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 1, - 1, - 3, - 2, - 2, - 2, - 2, - 4, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 6, - 2, - 2, - 1, - 3, - 4, - 3, - 3, - 3, - 2, - 2, - 2, - 2, - 3, - 3, - 1, - 2, - 2, - 3, - 1, - 1, - 2, - 2, - 3, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 5, - 2, - 4, - 1, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 3, - 1, - 2, - 2, - 1, - 1, - 3, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 3, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 6, - 1, - 3, - 2, - 1, - 2, - 2, - 4, - 1, - 1, - 2, - 2, - 2, - 3, - 1, - 1, - 7, - 3, - 1, - 1, - 3, - 1, - 3, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 1, - 3, - 3, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 3, - 3, - 2, - 2, - 3, - 1, - 2, - 3, - 3, - 2, - 5, - 2, - 2, - 2, - 3, - 1, - 2, - 2, - 4, - 2, - 2, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 4, - 2, - 1, - 2, - 2, - 4, - 1, - 1, - 3, - 4, - 2, - 3, - 2, - 3, - 2, - 3, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 3, - 3, - 3, - 3, - 2, - 2, - 2, - 3, - 2, - 3, - 3, - 2, - 2, - 2, - 3, - 3, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 4, - 2, - 1, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 3, - 2, - 2, - 2, - 4, - 1, - 1, - 3, - 2, - 4, - 3, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 3, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 4, - 3, - 3, - 2, - 2, - 2, - 3, - 2, - 3, - 2, - 1, - 2, - 3, - 1, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 4, - 2, - 2, - 1, - 4, - 2, - 1, - 2, - 4, - 1, - 1, - 2, - 2, - 1, - 1, - 2, - 3, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 3, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 3, - 1, - 3, - 2, - 2, - 2, - 5, - 2, - 1, - 2, - 1, - 1, - 2, - 1, - 3, - 1, - 2, - 1, - 1, - 1, - 1, - 1, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 1, - 1, - 1, - 1, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 1, - 2, - 1, - 1, - 2, - 1, - 2, - 1, - 1, - 1, - 2, - 1, - 1, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 1, - 1, - 1, - 1, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 3, - 2, - 2, - 1, - 2, - 3, - 1, - 3, - 2, - 2, - 2, - 2, - 4, - 1, - 1, - 3, - 1, - 2, - 1, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 4, - 4, - 2, - 1, - 2, - 2, - 2, - 3, - 3, - 2, - 2, - 2, - 2, - 3, - 2, - 4, - 2, - 2, - 1, - 3, - 1, - 3, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 1, - 1, - 3, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 3, - 1, - 3, - 2, - 3, - 2, - 2, - 3, - 3, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 3, - 3, - 3, - 4, - 2, - 2, - 2, - 2, - 4, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 3, - 1, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 1, - 2, - 2, - 2, - 1, - 3, - 2, - 1, - 2, - 2, - 4, - 2, - 2, - 4, - 1, - 3, - 2, - 3, - 3, - 4, - 3, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 1, - 4, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 4, - 2, - 2, - 2, - 2, - 4, - 1, - 2, - 2, - 3, - 3, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 4, - 2, - 2, - 2, - 1, - 3, - 2, - 4, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 3, - 2, - 2, - 2, - 3, - 3, - 1, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 1, - 1, - 1, - 3, - 5, - 3, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 1, - 2, - 1, - 1, - 2, - 4, - 1, - 2, - 2, - 2, - 1, - 3, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 4, - 2, - 1, - 1, - 1, - 4, - 2, - 3, - 1, - 1, - 1, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 1, - 4, - 2, - 1, - 1, - 1, - 2, - 1, - 1, - 1, - 3, - 1, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 3, - 2, - 3, - 2, - 5, - 2, - 3, - 2, - 2, - 2, - 4, - 4, - 2, - 2, - 5, - 2, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 3, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 3, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 5, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 4, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 3, - 2, - 3, - 3, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 3, - 2, - 2, - 3, - 3, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 3, - 2, - 4, - 2, - 4, - 2, - 4, - 2, - 1, - 1, - 2, - 2, - 2, - 3, - 3, - 1, - 2, - 3, - 2, - 3, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 5, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 3, - 1, - 2, - 2, - 3, - 1, - 4, - 2, - 3, - 2, - 2, - 3, - 3, - 4, - 2, - 3, - 4, - 2, - 1, - 2, - 2, - 3, - 4, - 1, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 4, - 1, - 1, - 3, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 4, - 2, - 2, - 3, - 1, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 3, - 3, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 1, - 2, - 1, - 1, - 2, - 1, - 1, - 2, - 1, - 3, - 2, - 3, - 1, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 1, - 2, - 3, - 1, - 2, - 2, - 1, - 3, - 2, - 4, - 2, - 1, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 1, - 1, - 2, - 1, - 2, - 3, - 3, - 1, - 3, - 2, - 2, - 2, - 2, - 1, - 2, - 4, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 1, - 3, - 5, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 3, - 3, - 3, - 1, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 1, - 2, - 2, - 1, - 1, - 2, - 3, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 3, - 2, - 1, - 1, - 1, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 1, - 2, - 1, - 1, - 1, - 4, - 1, - 1, - 2, - 3, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 1, - 3, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 3, - 3, - 1, - 3, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 3, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 3, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 1, - 1, - 2, - 4, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 6, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 3, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 3, - 2, - 2, - 1, - 2, - 3, - 4, - 3, - 2, - 3, - 2, - 2, - 1, - 3, - 3, - 2, - 2, - 1, - 3, - 3, - 2, - 2, - 2, - 1, - 3, - 1, - 2, - 1, - 3, - 2, - 2, - 2, - 1, - 1, - 3, - 1, - 1, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 2, - 2, - 2, - 2, - 3, - 1, - 2, - 2, - 1, - 4, - 1, - 4, - 3, - 3, - 2, - 1, - 2, - 1, - 2, - 1, - 3, - 3, - 2, - 2, - 2, - 3, - 2, - 2, - 4, - 1, - 1, - 2, - 1, - 3, - 2, - 2, - 2, - 3, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 1, - 1, - 1, - 1, - 3, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 3, - 3, - 2, - 2, - 3, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 1, - 4, - 2, - 2, - 2, - 3, - 2, - 1, - 1, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 1, - 2, - 3, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 1, - 1, - 1, - 3, - 2, - 3, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 3, - 3, - 2, - 3, - 2, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 1, - 3, - 2, - 1, - 4, - 2, - 2, - 1, - 3, - 2, - 2, - 2, - 1, - 2, - 5, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 3, - 3, - 1, - 1, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 1, - 2, - 4, - 2, - 2, - 2, - 1, - 3, - 3, - 1, - 1, - 2, - 3, - 2, - 3, - 1, - 1, - 1, - 1, - 1, - 1, - 2, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 3, - 2, - 1, - 1, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 4, - 3, - 1, - 1, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 1, - 1, - 1, - 3, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 2, - 3, - 4, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 3, - 3, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 1, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 1, - 2, - 1, - 2, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 1, - 1, - 1, - 1, - 2, - 2, - 1, - 1, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 1, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 3, - 3, - 2, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 3, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 2, - 1, - 2, - 3, - 1, - 2, - 4, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 3, - 2, - 3, - 2, - 1, - 2, - 1, - 3, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 4, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 3, - 2, - 1, - 1, - 1, - 3, - 1, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 2, - 2, - 2, - 3, - 2, - 3, - 1, - 1, - 2, - 3, - 2, - 2, - 3, - 2, - 1, - 1, - 3, - 4, - 4, - 2, - 1, - 3, - 1, - 2, - 5, - 1, - 2, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 3, - 3, - 1, - 1, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 1, - 2, - 1, - 1, - 3, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 1, - 1, - 2, - 2, - 3, - 2, - 2, - 2, - 4, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 4, - 2, - 2, - 2, - 2, - 2, - 5, - 3, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 2, - 3, - 3, - 1, - 3, - 2, - 2, - 1, - 3, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 2, - 3, - 3, - 2, - 6, - 2, - 3, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 4, - 3, - 2, - 1, - 3, - 2, - 2, - 2, - 3, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 4, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 2, - 4, - 2, - 2, - 1, - 3, - 4, - 3, - 3, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 4, - 2, - 3, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 3, - 2, - 1, - 1, - 2, - 3, - 4, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 2, - 3, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 3, - 2, - 1, - 3, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 1, - 4, - 1, - 3, - 5, - 4, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 1, - 1, - 2, - 3, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 4, - 1, - 1, - 2, - 1, - 4, - 3, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 1, - 1, - 3, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 1, - 1, - 1, - 1, - 1, - 3, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 3, - 1, - 1, - 1, - 2, - 1, - 2, - 2, - 3, - 2, - 1, - 1, - 1, - 2, - 3, - 1, - 2, - 2, - 1, - 1, - 1, - 1, - 2, - 3, - 3, - 2, - 1, - 1, - 3, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 3, - 1, - 3, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 1, - 3, - 1, - 1, - 1, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 4, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 4, - 2, - 3, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 3, - 1, - 3, - 2, - 1, - 2, - 3, - 2, - 3, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 3, - 2, - 1, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 3, - 3, - 2, - 2, - 4, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 1, - 4, - 3, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 3, - 1, - 3, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 2, - 4, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 3, - 2, - 3, - 1, - 3, - 2, - 3, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 1, - 1, - 2, - 3, - 1, - 2, - 1, - 2, - 1, - 3, - 2, - 3, - 1, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 1, - 2, - 1, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 3, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 1, - 3, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 3, - 1, - 1, - 2, - 2, - 1, - 2, - 1, - 4, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 4, - 1, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 3, - 2, - 2, - 3, - 3, - 2, - 2, - 2, - 4, - 3, - 3, - 2, - 3, - 2, - 2, - 3, - 2, - 4, - 2, - 4, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 5, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 5, - 1, - 1, - 3, - 3, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 3, - 2, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 2, - 3, - 2, - 2, - 1, - 5, - 3, - 2, - 3, - 2, - 3, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 2, - 2, - 4, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 5, - 2, - 1, - 1, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 4, - 1, - 2, - 1, - 3, - 1, - 1, - 2, - 1, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 1, - 1, - 1, - 1, - 4, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 5, - 2, - 2, - 4, - 2, - 1, - 2, - 3, - 4, - 3, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 3, - 3, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 3, - 1, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 4, - 2, - 2, - 3, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 4, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 4, - 2, - 1, - 1, - 1, - 1, - 2, - 3, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 3, - 2, - 1, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 3, - 3, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 1, - 1, - 2, - 1, - 2, - 2, - 3, - 1, - 3, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 3, - 3, - 1, - 2, - 2, - 2, - 3, - 2, - 1, - 3, - 1, - 1, - 3, - 4, - 3, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 1, - 1, - 2, - 1, - 2, - 3, - 1, - 2, - 1, - 1, - 1, - 1, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 4, - 1, - 3, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 1, - 2, - 4, - 1, - 2, - 1, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 5, - 3, - 3, - 4, - 3, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 1, - 1, - 1, - 3, - 2, - 3, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 1, - 1, - 3, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 1, - 1, - 1, - 1, - 3, - 1, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 2, - 3, - 1, - 1, - 2, - 1, - 4, - 2, - 1, - 1, - 1, - 2, - 1, - 1, - 2, - 3, - 2, - 1, - 2, - 1, - 1, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 1, - 1, - 1, - 2, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 3, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 3, - 2, - 3, - 2, - 2, - 3, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 1, - 1, - 2, - 1, - 2, - 1, - 2, - 3, - 1, - 2, - 2, - 1, - 1, - 1, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 3, - 2, - 1, - 1, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 1, - 1, - 3, - 3, - 1, - 2, - 1, - 2, - 1, - 1, - 1, - 2, - 2, - 1, - 1, - 1, - 1, - 1, - 2, - 1, - 3, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 3, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 5, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 1, - 2, - 3, - 2, - 2, - 1, - 2, - 2, - 3, - 2, - 1, - 2, - 3, - 3, - 2, - 2, - 4, - 2, - 3, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 3, - 2, - 3, - 3, - 3, - 1, - 2, - 2, - 1, - 4, - 2, - 3, - 1, - 5, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 4, - 2, - 3, - 2, - 1, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 3, - 4, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 3, - 2, - 1, - 2, - 2, - 3, - 4, - 2, - 1, - 2, - 1, - 2, - 5, - 3, - 2, - 2, - 5, - 1, - 2, - 1, - 2, - 1, - 2, - 3, - 3, - 2, - 2, - 3, - 1, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 3, - 2, - 3, - 2, - 2, - 2, - 2, - 1, - 2, - 7, - 1, - 2, - 3, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 4, - 1, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 3, - 3, - 1, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 4, - 3, - 1, - 1, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 1, - 3, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 1, - 1, - 1, - 1, - 1, - 2, - 1, - 2, - 1, - 1, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 2, - 3, - 3, - 2, - 2, - 2, - 3, - 1, - 3, - 3, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 1, - 1, - 3, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 1, - 2, - 3, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 1, - 3, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 3, - 3, - 2, - 2, - 3, - 1, - 1, - 1, - 2, - 4, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 3, - 1, - 2, - 1, - 4, - 2, - 1, - 2, - 2, - 3, - 3, - 1, - 2, - 1, - 2, - 1, - 2, - 3, - 2, - 2, - 1, - 2, - 3, - 1, - 3, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 3, - 3, - 2, - 2, - 1, - 2, - 2, - 3, - 1, - 3, - 2, - 1, - 2, - 2, - 1, - 3, - 3, - 1, - 1, - 2, - 3, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 4, - 1, - 2, - 1, - 1, - 2, - 2, - 3, - 1, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 3, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 4, - 1, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 3, - 1, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 3, - 2, - 3, - 2, - 2, - 4, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 3, - 1, - 1, - 2, - 2, - 1, - 3, - 2, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 3, - 2, - 1, - 2, - 3, - 2, - 2, - 4, - 1, - 4, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 2, - 3, - 1, - 1, - 1, - 3, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 1, - 3, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 3, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 4, - 4, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 1, - 3, - 1, - 2, - 2, - 1, - 2, - 3, - 2, - 1, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 4, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 3, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 3, - 1, - 1, - 3, - 2, - 4, - 1, - 2, - 2, - 3, - 2, - 3, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 3, - 3, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 4, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 3, - 1, - 3, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 4, - 3, - 3, - 2, - 2, - 2, - 3, - 1, - 5, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 2, - 3, - 2, - 2, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 3, - 2, - 2, - 1, - 5, - 2, - 1, - 2, - 1, - 1, - 2, - 1, - 3, - 2, - 1, - 3, - 1, - 1, - 2, - 2, - 1, - 1, - 1, - 3, - 3, - 3, - 1, - 2, - 2, - 1, - 2, - 2, - 3, - 1, - 2, - 1, - 3, - 9, - 1, - 2, - 4, - 1, - 2, - 3, - 2, - 2, - 1, - 3, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 2, - 5, - 1, - 2, - 3, - 2, - 1, - 1, - 2, - 1, - 2, - 1, - 1, - 1, - 3, - 1, - 1, - 2, - 2, - 1, - 2, - 1, - 2, - 1, - 3, - 2, - 1, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 1, - 2, - 3, - 2, - 2, - 3, - 2, - 1, - 2, - 1, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 1, - 2, - 5, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 1, - 3, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 1, - 2, - 3, - 1, - 1, - 2, - 1, - 2, - 1, - 1, - 1, - 2, - 2, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 1, - 3, - 1, - 1, - 2, - 2, - 1, - 1, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 3, - 1, - 1, - 2, - 1, - 1, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 1, - 1, - 2, - 2, - 1, - 1, - 2, - 1, - 2, - 2, - 2, - 1, - 1, - 1, - 3, - 2, - 2, - 1, - 3, - 1, - 1, - 2, - 1, - 2, - 3, - 2, - 1, - 1, - 2, - 1, - 2, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 3, - 2, - 2, - 1, - 1, - 2, - 3, - 1, - 4, - 2, - 1, - 1, - 1, - 2, - 2, - 1, - 2, - 1, - 4, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 1, - 2, - 1, - 1, - 3, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 1, - 2, - 3, - 2, - 2, - 2, - 3, - 1, - 2, - 3, - 3, - 1, - 4, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 2, - 2, - 1, - 1, - 1, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 3, - 1, - 2, - 2, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 4, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 1, - 1, - 2, - 6, - 3, - 2, - 2, - 2, - 2, - 2, - 4, - 1, - 2, - 1, - 1, - 2, - 1, - 2, - 2, - 2, - 2, - 1, - 1, - 1, - 5, - 2, - 2, - 2, - 2, - 1, - 4, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 3, - 1, - 2, - 1, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 1, - 1, - 2, - 3, - 1, - 2, - 1, - 1, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 1, - 3, - 2, - 1, - 1, - 2, - 3, - 1, - 2, - 1, - 2, - 2, - 1, - 3, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 2, - 1, - 3, - 2, - 2, - 2, - 2, - 2, - 3, - 4, - 2, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 2, - 2, - 1, - 2, - 2, - 4, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 2, - 2, - 2, - 3, - 3, - 1, - 2, - 2, - 2, - 2, - 4, - 3, - 2, - 2, - 1, - 2, - 1, - 2, - 3, - 2, - 1, - 2, - 5, - 2, - 2, - 2, - 3, - 2, - 1, - 2, - 2, - 2, - 2, - 2, - 4, - 2, - 2, - 4, - 2, - 2, - 1, - 2, - 2, - 2, - 1, - 5, - 2, - 3, - 1, - 2, - 2, - 1, - 1, - 2, - 2, - 3, - 3, - 4, - 1, - 2 - ], - "x0": " ", - "xaxis": "x", - "y": [ - 426, - 321, - 510, - 254, - 423, - 645, - 466, - 319, - 535, - 403, - 352, - 611, - 280, - 334, - 477, - 588, - 370, - 399, - 479, - 491, - 318, - 349, - 378, - 446, - 480, - 243, - 362, - 348, - 318, - 477, - 432, - 229, - 501, - 256, - 368, - 436, - 369, - 311, - 260, - 257, - 491, - 325, - 310, - 528, - 536, - 481, - 488, - 588, - 505, - 452, - 486, - 288, - 504, - 436, - 361, - 304, - 668, - 525, - 467, - 297, - 461, - 212, - 228, - 447, - 401, - 307, - 374, - 353, - 321, - 355, - 418, - 354, - 404, - 301, - 373, - 243, - 326, - 288, - 347, - 302, - 234, - 161, - 371, - 333, - 355, - 344, - 395, - 375, - 351, - 383, - 416, - 497, - 340, - 351, - 428, - 662, - 417, - 389, - 197, - 262, - 374, - 396, - 412, - 537, - 257, - 383, - 169, - 410, - 274, - 229, - 315, - 409, - 415, - 257, - 439, - 597, - 348, - 401, - 576, - 374, - 587, - 323, - 270, - 259, - 249, - 365, - 302, - 285, - 395, - 305, - 226, - 261, - 194, - 428, - 288, - 445, - 370, - 342, - 224, - 480, - 425, - 288, - 354, - 317, - 376, - 346, - 350, - 350, - 249, - 201, - 316, - 493, - 415, - 365, - 252, - 532, - 262, - 282, - 356, - 512, - 474, - 351, - 532, - 629, - 508, - 578, - 433, - 488, - 445, - 469, - 387, - 651, - 445, - 505, - 566, - 472, - 377, - 474, - 441, - 292, - 425, - 334, - 359, - 704, - 326, - 378, - 378, - 419, - 223, - 402, - 263, - 610, - 360, - 521, - 261, - 440, - 246, - 285, - 707, - 524, - 352, - 417, - 225, - 475, - 380, - 336, - 412, - 465, - 488, - 378, - 330, - 312, - 483, - 315, - 293, - 332, - 291, - 534, - 240, - 523, - 444, - 327, - 355, - 358, - 329, - 404, - 424, - 457, - 396, - 220, - 331, - 336, - 256, - 211, - 360, - 445, - 365, - 416, - 410, - 293, - 340, - 248, - 504, - 371, - 388, - 324, - 403, - 410, - 478, - 252, - 472, - 377, - 303, - 335, - 392, - 368, - 401, - 376, - 354, - 366, - 337, - 456, - 160, - 143, - 257, - 236, - 225, - 136, - 409, - 99, - 162, - 102, - 225, - 452, - 388, - 554, - 237, - 152, - 169, - 208, - 329, - 141, - 167, - 274, - 158, - 235, - 284, - 319, - 199, - 201, - 209, - 181, - 210, - 276, - 192, - 398, - 201, - 334, - 260, - 388, - 331, - 380, - 286, - 287, - 337, - 270, - 233, - 323, - 201, - 163, - 246, - 118, - 320, - 142, - 241, - 357, - 182, - 354, - 96, - 131, - 303, - 307, - 273, - 181, - 217, - 224, - 251, - 137, - 166, - 60, - 125, - 64, - 84, - 141, - 351, - 295, - 279, - 346, - 269, - 246, - 273, - 229, - 274, - 342, - 506, - 340, - 241, - 452, - 748, - 536, - 733, - 723, - 374, - 928, - 995, - 568, - 536, - 516, - 962, - 387, - 667, - 709, - 674, - 296, - 730, - 612, - 612, - 315, - 688, - 690, - 625, - 617, - 403, - 513, - 312, - 526, - 351, - 151, - 408, - 142, - 781, - 468, - 302, - 486, - 275, - 246, - 212, - 387, - 212, - 481, - 328, - 408, - 301, - 247, - 391, - 219, - 693, - 234, - 321, - 395, - 277, - 287, - 510, - 307, - 454, - 284, - 359, - 249, - 551, - 231, - 418, - 196, - 423, - 301, - 440, - 312, - 400, - 462, - 362, - 377, - 386, - 355, - 308, - 218, - 736, - 356, - 483, - 367, - 777, - 394, - 487, - 863, - 375, - 439, - 257, - 129, - 199, - 180, - 348, - 549, - 595, - 400, - 428, - 370, - 431, - 358, - 395, - 295, - 468, - 354, - 571, - 504, - 615, - 487, - 433, - 325, - 505, - 538, - 379, - 473, - 486, - 560, - 342, - 542, - 531, - 499, - 503, - 641, - 318, - 399, - 446, - 655, - 665, - 546, - 543, - 589, - 599, - 800, - 794, - 462, - 423, - 809, - 213, - 385, - 496, - 344, - 446, - 609, - 182, - 362, - 531, - 450, - 685, - 736, - 422, - 473, - 320, - 447, - 669, - 396, - 293, - 581, - 586, - 707, - 240, - 418, - 221, - 406, - 359, - 389, - 256, - 410, - 381, - 213, - 288, - 307, - 380, - 164, - 354, - 333, - 178, - 357, - 317, - 171, - 415, - 414, - 319, - 356, - 436, - 428, - 431, - 234, - 617, - 468, - 265, - 328, - 423, - 289, - 272, - 362, - 482, - 351, - 187, - 210, - 310, - 228, - 366, - 286, - 426, - 344, - 298, - 337, - 208, - 351, - 542, - 245, - 593, - 650, - 278, - 399, - 264, - 578, - 515, - 406, - 240, - 417, - 345, - 271, - 361, - 582, - 336, - 452, - 438, - 433, - 242, - 290, - 255, - 253, - 323, - 292, - 304, - 294, - 245, - 282, - 164, - 262, - 252, - 242, - 213, - 169, - 240, - 319, - 337, - 336, - 519, - 663, - 452, - 438, - 923, - 439, - 612, - 469, - 352, - 600, - 650, - 669, - 410, - 415, - 626, - 532, - 589, - 546, - 487, - 567, - 532, - 360, - 498, - 509, - 311, - 569, - 655, - 602, - 553, - 613, - 545, - 314, - 431, - 280, - 600, - 361, - 524, - 709, - 549, - 517, - 641, - 486, - 572, - 579, - 500, - 450, - 370, - 398, - 450, - 445, - 455, - 421, - 450, - 226, - 317, - 394, - 423, - 368, - 376, - 195, - 270, - 364, - 414, - 331, - 376, - 445, - 393, - 409, - 345, - 237, - 447, - 416, - 412, - 217, - 316, - 302, - 314, - 269, - 346, - 229, - 290, - 410, - 481, - 425, - 331, - 279, - 236, - 367, - 311, - 529, - 469, - 592, - 379, - 493, - 661, - 411, - 326, - 469, - 480, - 661, - 222, - 411, - 473, - 720, - 448, - 431, - 398, - 476, - 669, - 450, - 702, - 445, - 639, - 367, - 428, - 504, - 474, - 408, - 533, - 591, - 588, - 683, - 462, - 326, - 510, - 368, - 493, - 456, - 617, - 616, - 458, - 316, - 597, - 430, - 299, - 547, - 427, - 398, - 506, - 427, - 433, - 480, - 557, - 551, - 263, - 274, - 440, - 379, - 674, - 591, - 454, - 650, - 718, - 556, - 360, - 449, - 634, - 451, - 526, - 539, - 442, - 474, - 367, - 380, - 371, - 420, - 357, - 385, - 369, - 386, - 422, - 469, - 454, - 290, - 281, - 350, - 337, - 304, - 463, - 373, - 311, - 493, - 396, - 278, - 374, - 209, - 528, - 396, - 311, - 398, - 545, - 396, - 437, - 389, - 714, - 347, - 414, - 364, - 368, - 409, - 363, - 364, - 457, - 327, - 261, - 385, - 386, - 442, - 293, - 380, - 367, - 349, - 262, - 318, - 265, - 453, - 753, - 393, - 794, - 599, - 388, - 680, - 483, - 630, - 397, - 493, - 613, - 401, - 337, - 350, - 491, - 496, - 380, - 435, - 533, - 533, - 528, - 479, - 643, - 426, - 564, - 531, - 565, - 542, - 447, - 281, - 548, - 331, - 461, - 380, - 423, - 384, - 389, - 453, - 483, - 306, - 449, - 278, - 364, - 298, - 328, - 358, - 334, - 302, - 495, - 463, - 437, - 395, - 422, - 372, - 310, - 432, - 380, - 359, - 352, - 845, - 337, - 557, - 306, - 475, - 434, - 526, - 317, - 383, - 500, - 409, - 469, - 447, - 371, - 382, - 642, - 363, - 437, - 479, - 303, - 464, - 567, - 562, - 460, - 426, - 385, - 475, - 307, - 565, - 368, - 592, - 540, - 553, - 519, - 374, - 629, - 447, - 450, - 499, - 507, - 548, - 542, - 586, - 659, - 635, - 334, - 609, - 748, - 537, - 509, - 613, - 425, - 622, - 719, - 378, - 759, - 526, - 544, - 438, - 602, - 490, - 534, - 644, - 706, - 574, - 477, - 533, - 511, - 456, - 550, - 402, - 383, - 382, - 363, - 422, - 501, - 430, - 501, - 467, - 398, - 255, - 450, - 453, - 496, - 422, - 388, - 307, - 398, - 328, - 326, - 534, - 389, - 845, - 403, - 430, - 320, - 492, - 399, - 521, - 399, - 400, - 528, - 477, - 451, - 640, - 559, - 397, - 227, - 338, - 208, - 563, - 406, - 568, - 383, - 170, - 394, - 454, - 271, - 419, - 227, - 292, - 432, - 296, - 255, - 368, - 314, - 336, - 386, - 554, - 505, - 307, - 357, - 251, - 234, - 485, - 353, - 305, - 238, - 223, - 504, - 398, - 381, - 410, - 438, - 232, - 357, - 422, - 428, - 406, - 443, - 301, - 304, - 320, - 327, - 377, - 303, - 322, - 410, - 445, - 389, - 370, - 240, - 359, - 433, - 388, - 488, - 249, - 335, - 501, - 248, - 181, - 335, - 250, - 249, - 279, - 267, - 531, - 384, - 345, - 287, - 529, - 371, - 281, - 298, - 373, - 307, - 366, - 402, - 419, - 234, - 325, - 325, - 392, - 412, - 352, - 361, - 281, - 353, - 269, - 260, - 379, - 254, - 220, - 347, - 336, - 309, - 283, - 367, - 374, - 330, - 294, - 220, - 231, - 258, - 243, - 260, - 205, - 161, - 254, - 362, - 403, - 218, - 482, - 204, - 215, - 156, - 406, - 382, - 334, - 425, - 360, - 287, - 293, - 307, - 257, - 332, - 302, - 215, - 328, - 271, - 323, - 218, - 218, - 303, - 236, - 272, - 219, - 162, - 270, - 248, - 262, - 285, - 266, - 286, - 221, - 301, - 215, - 151, - 364, - 538, - 533, - 520, - 416, - 530, - 282, - 762, - 601, - 582, - 592, - 582, - 827, - 363, - 390, - 368, - 460, - 786, - 556, - 291, - 617, - 440, - 380, - 384, - 285, - 516, - 710, - 319, - 360, - 698, - 317, - 276, - 377, - 242, - 250, - 429, - 317, - 314, - 362, - 343, - 221, - 265, - 447, - 243, - 343, - 369, - 307, - 241, - 342, - 340, - 363, - 272, - 335, - 323, - 320, - 376, - 179, - 304, - 217, - 265, - 371, - 371, - 381, - 285, - 503, - 444, - 326, - 355, - 291, - 299, - 454, - 219, - 434, - 316, - 320, - 447, - 323, - 495, - 367, - 322, - 458, - 669, - 317, - 368, - 623, - 456, - 707, - 573, - 359, - 359, - 432, - 247, - 394, - 564, - 542, - 536, - 370, - 379, - 557, - 301, - 426, - 233, - 288, - 419, - 358, - 388, - 386, - 484, - 289, - 216, - 366, - 743, - 448, - 453, - 463, - 453, - 490, - 501, - 222, - 345, - 326, - 385, - 275, - 247, - 303, - 287, - 247, - 475, - 497, - 335, - 332, - 554, - 344, - 575, - 301, - 296, - 280, - 798, - 414, - 509, - 357, - 316, - 175, - 404, - 367, - 558, - 449, - 474, - 535, - 460, - 500, - 352, - 505, - 319, - 561, - 453, - 303, - 294, - 374, - 342, - 427, - 310, - 394, - 421, - 412, - 351, - 511, - 380, - 441, - 784, - 576, - 302, - 334, - 417, - 275, - 435, - 327, - 317, - 357, - 304, - 299, - 459, - 364, - 623, - 428, - 263, - 185, - 377, - 207, - 380, - 256, - 350, - 306, - 222, - 415, - 419, - 565, - 378, - 457, - 293, - 404, - 650, - 379, - 302, - 542, - 441, - 368, - 377, - 326, - 431, - 336, - 356, - 516, - 530, - 433, - 180, - 313, - 520, - 236, - 472, - 417, - 287, - 329, - 261, - 508, - 620, - 242, - 342, - 586, - 438, - 455, - 320, - 385, - 279, - 452, - 344, - 338, - 366, - 373, - 375, - 488, - 403, - 372, - 354, - 474, - 398, - 388, - 238, - 225, - 278, - 311, - 241, - 259, - 255, - 488, - 496, - 246, - 374, - 320, - 285, - 632, - 543, - 406, - 387, - 421, - 512, - 318, - 471, - 276, - 270, - 511, - 525, - 377, - 250, - 396, - 212, - 424, - 333, - 296, - 362, - 340, - 325, - 353, - 522, - 420, - 306, - 466, - 417, - 370, - 817, - 172, - 276, - 334, - 242, - 365, - 424, - 259, - 310, - 339, - 307, - 260, - 250, - 375, - 215, - 274, - 308, - 258, - 338, - 320, - 229, - 336, - 262, - 294, - 326, - 249, - 293, - 296, - 334, - 301, - 215, - 287, - 353, - 283, - 403, - 298, - 276, - 455, - 530, - 339, - 339, - 397, - 335, - 419, - 594, - 280, - 248, - 261, - 221, - 260, - 243, - 296, - 299, - 362, - 257, - 272, - 382, - 328, - 275, - 210, - 418, - 297, - 231, - 255, - 317, - 234, - 305, - 283, - 257, - 303, - 368, - 382, - 429, - 333, - 323, - 436, - 294, - 329, - 253, - 266, - 346, - 417, - 318, - 381, - 330, - 347, - 315, - 286, - 450, - 346, - 323, - 413, - 279, - 379, - 363, - 287, - 364, - 388, - 378, - 371, - 909, - 332, - 517, - 295, - 230, - 190, - 369, - 178, - 293, - 231, - 371, - 294, - 428, - 170, - 359, - 230, - 355, - 417, - 281, - 292, - 230, - 190, - 328, - 350, - 246, - 320, - 459, - 282, - 416, - 416, - 388, - 307, - 393, - 274, - 330, - 252, - 288, - 301, - 262, - 505, - 797, - 336, - 311, - 208, - 353, - 262, - 244, - 322, - 247, - 301, - 322, - 277, - 280, - 361, - 195, - 322, - 321, - 337, - 187, - 173, - 284, - 254, - 357, - 385, - 351, - 297, - 235, - 287, - 613, - 292, - 347, - 284, - 254, - 269, - 302, - 329, - 348, - 310, - 342, - 420, - 230, - 280, - 298, - 306, - 314, - 272, - 351, - 339, - 317, - 364, - 343, - 368, - 319, - 412, - 300, - 281, - 324, - 335, - 346, - 369, - 530, - 366, - 466, - 381, - 387, - 560, - 449, - 262, - 465, - 319, - 406, - 398, - 416, - 303, - 334, - 377, - 567, - 491, - 404, - 682, - 311, - 338, - 287, - 333, - 484, - 433, - 312, - 364, - 373, - 531, - 351, - 606, - 429, - 639, - 539, - 584, - 390, - 565, - 320, - 545, - 527, - 435, - 435, - 649, - 666, - 579, - 479, - 527, - 328, - 326, - 502, - 464, - 510, - 442, - 678, - 575, - 529, - 293, - 527, - 520, - 444, - 727, - 768, - 384, - 549, - 547, - 639, - 389, - 339, - 438, - 230, - 419, - 268, - 226, - 220, - 353, - 296, - 239, - 294, - 271, - 229, - 243, - 514, - 320, - 445, - 426, - 538, - 286, - 523, - 478, - 495, - 531, - 399, - 360, - 351, - 219, - 331, - 369, - 296, - 330, - 458, - 370, - 311, - 321, - 379, - 353, - 384, - 282, - 409, - 266, - 295, - 231, - 333, - 407, - 473, - 365, - 282, - 304, - 354, - 334, - 308, - 238, - 256, - 315, - 431, - 292, - 579, - 306, - 419, - 388, - 387, - 236, - 280, - 409, - 329, - 479, - 309, - 484, - 416, - 231, - 397, - 454, - 360, - 430, - 482, - 500, - 399, - 375, - 451, - 405, - 390, - 527, - 610, - 331, - 360, - 362, - 382, - 328, - 409, - 465, - 384, - 423, - 367, - 892, - 260, - 243, - 303, - 354, - 333, - 619, - 323, - 370, - 289, - 365, - 334, - 382, - 426, - 427, - 209, - 400, - 563, - 239, - 399, - 469, - 475, - 233, - 354, - 297, - 616, - 366, - 258, - 451, - 364, - 332, - 265, - 285, - 330, - 586, - 386, - 327, - 395, - 344, - 234, - 595, - 436, - 327, - 315, - 358, - 272, - 489, - 238, - 312, - 364, - 254, - 288, - 378, - 372, - 274, - 326, - 270, - 322, - 278, - 319, - 406, - 299, - 439, - 300, - 317, - 381, - 257, - 462, - 392, - 333, - 547, - 306, - 340, - 201, - 386, - 271, - 368, - 284, - 226, - 293, - 165, - 293, - 340, - 251, - 341, - 215, - 237, - 319, - 354, - 401, - 206, - 377, - 251, - 521, - 281, - 326, - 204, - 301, - 252, - 215, - 331, - 313, - 304, - 373, - 340, - 339, - 296, - 300, - 330, - 344, - 360, - 241, - 371, - 341, - 315, - 384, - 317, - 345, - 339, - 383, - 277, - 406, - 271, - 315, - 474, - 456, - 441, - 493, - 408, - 325, - 404, - 344, - 444, - 494, - 472, - 331, - 320, - 331, - 209, - 347, - 443, - 299, - 287, - 361, - 243, - 310, - 339, - 250, - 284, - 298, - 402, - 312, - 251, - 374, - 333, - 404, - 307, - 429, - 348, - 353, - 348, - 232, - 347, - 536, - 274, - 315, - 427, - 343, - 373, - 391, - 421, - 241, - 384, - 399, - 584, - 417, - 420, - 542, - 420, - 280, - 466, - 207, - 489, - 453, - 515, - 387, - 237, - 439, - 406, - 342, - 226, - 360, - 568, - 526, - 577, - 290, - 279, - 421, - 542, - 485, - 447, - 449, - 831, - 390, - 362, - 394, - 589, - 263, - 550, - 497, - 366, - 445, - 345, - 388, - 493, - 506, - 400, - 430, - 598, - 178, - 205, - 447, - 513, - 375, - 445, - 328, - 287, - 363, - 228, - 337, - 278, - 266, - 340, - 373, - 269, - 269, - 297, - 300, - 427, - 374, - 305, - 352, - 225, - 284, - 317, - 314, - 377, - 439, - 380, - 440, - 324, - 305, - 371, - 344, - 360, - 271, - 351, - 257, - 348, - 432, - 319, - 316, - 368, - 434, - 415, - 321, - 373, - 489, - 363, - 734, - 413, - 675, - 694, - 537, - 612, - 798, - 904, - 648, - 1071, - 865, - 867, - 378, - 819, - 676, - 651, - 483, - 350, - 705, - 913, - 592, - 641, - 622, - 381, - 282, - 671, - 683, - 338, - 250, - 488, - 380, - 303, - 362, - 524, - 397, - 407, - 330, - 386, - 436, - 381, - 322, - 296, - 435, - 237, - 435, - 295, - 361, - 384, - 401, - 249, - 350, - 385, - 405, - 605, - 518, - 464, - 480, - 530, - 314, - 253, - 405, - 351, - 440, - 290, - 415, - 386, - 484, - 340, - 431, - 302, - 379, - 355, - 467, - 445, - 415, - 594, - 748, - 442, - 682, - 383, - 420, - 753, - 619, - 401, - 447, - 337, - 436, - 299, - 501, - 358, - 442, - 424, - 387, - 384, - 445, - 290, - 354, - 487, - 407, - 553, - 425, - 505, - 426, - 480, - 494, - 425, - 426, - 484, - 604, - 463, - 433, - 490, - 420, - 543, - 496, - 767, - 654, - 1088, - 613, - 1006, - 556, - 912, - 598, - 842, - 845, - 724, - 429, - 992, - 645, - 722, - 989, - 1082, - 413, - 974, - 735, - 921, - 770, - 462, - 476, - 429, - 418, - 461, - 488, - 462, - 714, - 875, - 495, - 596, - 667, - 576, - 358, - 762, - 803, - 591, - 476, - 827, - 716, - 761, - 638, - 746, - 437, - 923, - 679, - 588, - 559, - 512, - 547, - 461, - 691, - 730, - 467, - 443, - 514, - 580, - 466, - 610, - 411, - 537, - 777, - 765, - 555, - 403, - 492, - 562, - 629, - 452, - 638, - 507, - 712, - 522, - 462, - 404, - 488, - 355, - 254, - 622, - 419, - 507, - 381, - 680, - 310, - 440, - 570, - 528, - 624, - 479, - 564, - 303, - 375, - 556, - 441, - 552, - 588, - 474, - 517, - 526, - 531, - 538, - 437, - 463, - 213, - 361, - 461, - 382, - 251, - 474, - 416, - 194, - 312, - 271, - 331, - 357, - 213, - 226, - 364, - 204, - 277, - 427, - 251, - 346, - 316, - 444, - 337, - 375, - 294, - 469, - 455, - 353, - 511, - 273, - 408, - 413, - 365, - 361, - 360, - 413, - 395, - 418, - 497, - 280, - 222, - 485, - 365, - 187, - 282, - 251, - 435, - 307, - 289, - 385, - 419, - 245, - 301, - 250, - 373, - 383, - 293, - 395, - 349, - 244, - 330, - 376, - 191, - 320, - 314, - 346, - 371, - 257, - 264, - 301, - 354, - 398, - 265, - 396, - 490, - 291, - 322, - 455, - 324, - 359, - 330, - 369, - 299, - 404, - 701, - 265, - 300, - 228, - 250, - 367, - 306, - 205, - 378, - 330, - 547, - 400, - 382, - 118, - 481, - 587, - 248, - 329, - 402, - 541, - 529, - 503, - 589, - 447, - 503, - 426, - 634, - 618, - 445, - 357, - 340, - 487, - 529, - 559, - 493, - 344, - 670, - 428, - 408, - 256, - 224, - 247, - 322, - 239, - 296, - 208, - 366, - 198, - 199, - 329, - 323, - 472, - 255, - 226, - 423, - 259, - 368, - 362, - 407, - 606, - 536, - 344, - 356, - 296, - 481, - 645, - 423, - 309, - 472, - 427, - 246, - 459, - 419, - 434, - 433, - 550, - 307, - 294, - 455, - 561, - 529, - 448, - 267, - 377, - 265, - 425, - 505, - 336, - 349, - 277, - 528, - 391, - 401, - 453, - 290, - 240, - 503, - 666, - 366, - 427, - 331, - 465, - 437, - 326, - 450, - 404, - 198, - 656, - 342, - 351, - 296, - 415, - 568, - 464, - 470, - 376, - 444, - 242, - 429, - 326, - 419, - 522, - 860, - 298, - 369, - 545, - 465, - 582, - 497, - 349, - 586, - 352, - 492, - 474, - 468, - 353, - 497, - 361, - 276, - 390, - 378, - 319, - 310, - 276, - 517, - 216, - 346, - 402, - 637, - 578, - 354, - 294, - 430, - 439, - 377, - 313, - 791, - 1077, - 713, - 633, - 480, - 704, - 482, - 503, - 560, - 472, - 515, - 821, - 624, - 357, - 562, - 361, - 801, - 598, - 503, - 322, - 686, - 763, - 460, - 691, - 617, - 568, - 558, - 598, - 614, - 605, - 674, - 482, - 577, - 456, - 529, - 737, - 363, - 802, - 787, - 413, - 676, - 677, - 619, - 513, - 348, - 395, - 307, - 387, - 298, - 472, - 521, - 447, - 379, - 487, - 536, - 225, - 461, - 388, - 460, - 284, - 377, - 334, - 531, - 336, - 425, - 626, - 661, - 308, - 659, - 360, - 698, - 390, - 472, - 466, - 465, - 601, - 399, - 594, - 516, - 305, - 877, - 500, - 373, - 509, - 424, - 449, - 265, - 427, - 367, - 410, - 465, - 789, - 413, - 614, - 680, - 412, - 306, - 983, - 504, - 342, - 270, - 436, - 441, - 275, - 225, - 396, - 418, - 280, - 451, - 394, - 317, - 324, - 453, - 338, - 292, - 226, - 250, - 438, - 371, - 443, - 433, - 424, - 451, - 584, - 492, - 392, - 347, - 378, - 327, - 518, - 532, - 399, - 459, - 394, - 439, - 399, - 312, - 473, - 602, - 398, - 447, - 539, - 371, - 244, - 602, - 364, - 446, - 325, - 335, - 255, - 268, - 340, - 254, - 267, - 273, - 435, - 256, - 299, - 281, - 217, - 226, - 347, - 242, - 235, - 270, - 244, - 300, - 291, - 197, - 244, - 154, - 295, - 221, - 295, - 402, - 371, - 444, - 891, - 487, - 206, - 780, - 481, - 336, - 365, - 560, - 310, - 387, - 331, - 626, - 353, - 414, - 463, - 320, - 273, - 440, - 426, - 521, - 270, - 904, - 388, - 432, - 452, - 429, - 385, - 463, - 532, - 555, - 532, - 508, - 453, - 367, - 427, - 369, - 369, - 820, - 710, - 435, - 532, - 524, - 319, - 639, - 492, - 441, - 674, - 299, - 444, - 253, - 544, - 522, - 358, - 529, - 431, - 337, - 536, - 311, - 386, - 364, - 492, - 375, - 500, - 451, - 374, - 291, - 846, - 313, - 287, - 430, - 322, - 585, - 392, - 344, - 539, - 413, - 301, - 417, - 551, - 276, - 567, - 537, - 691, - 517, - 489, - 617, - 566, - 483, - 597, - 343, - 488, - 494, - 412, - 927, - 328, - 714, - 567, - 588, - 570, - 424, - 540, - 419, - 444, - 344, - 566, - 692, - 443, - 402, - 432, - 540, - 317, - 293, - 466, - 311, - 290, - 399, - 325, - 727, - 452, - 395, - 474, - 613, - 506, - 388, - 373, - 562, - 453, - 388, - 486, - 284, - 526, - 335, - 244, - 318, - 367, - 353, - 400, - 330, - 662, - 358, - 493, - 575, - 402, - 346, - 558, - 285, - 394, - 814, - 509, - 688, - 420, - 373, - 844, - 349, - 555, - 576, - 228, - 489, - 548, - 470, - 488, - 602, - 609, - 355, - 355, - 263, - 560, - 485, - 343, - 639, - 214, - 485, - 477, - 630, - 505, - 465, - 275, - 650, - 550, - 527, - 443, - 567, - 924, - 333, - 420, - 443, - 587, - 607, - 593, - 594, - 372, - 354, - 410, - 375, - 487, - 647, - 453, - 196, - 327, - 432, - 289, - 254, - 382, - 422, - 422, - 452, - 411, - 312, - 621, - 419, - 314, - 487, - 538, - 294, - 397, - 498, - 381, - 527, - 393, - 372, - 311, - 500, - 381, - 413, - 258, - 601, - 463, - 519, - 479, - 399, - 469, - 425, - 302, - 421, - 349, - 398, - 276, - 424, - 269, - 299, - 332, - 484, - 321, - 430, - 336, - 425, - 320, - 387, - 447, - 501, - 810, - 610, - 473, - 728, - 688, - 610, - 404, - 580, - 533, - 606, - 671, - 289, - 387, - 506, - 506, - 621, - 480, - 564, - 592, - 453, - 664, - 746, - 653, - 577, - 824, - 815, - 652, - 804, - 624, - 567, - 665, - 626, - 447, - 872, - 888, - 731, - 710, - 517, - 420, - 329, - 934, - 637, - 555, - 348, - 778, - 479, - 512, - 656, - 325, - 497, - 927, - 552, - 625, - 493, - 631, - 400, - 390, - 380, - 565, - 636, - 811, - 637, - 553, - 569, - 470, - 399, - 421, - 560, - 521, - 365, - 371, - 423, - 548, - 812, - 417, - 666, - 589, - 342, - 969, - 721, - 354, - 387, - 634, - 765, - 563, - 674, - 390, - 432, - 372, - 361, - 357, - 315, - 473, - 333, - 250, - 590, - 433, - 555, - 302, - 598, - 291, - 366, - 420, - 412, - 381, - 487, - 368, - 394, - 327, - 659, - 410, - 255, - 188, - 384, - 468, - 468, - 235, - 299, - 648, - 414, - 363, - 481, - 585, - 503, - 335, - 455, - 441, - 432, - 312, - 462, - 501, - 501, - 531, - 390, - 502, - 284, - 623, - 495, - 368, - 496, - 657, - 600, - 339, - 318, - 483, - 270, - 448, - 295, - 649, - 537, - 505, - 455, - 415, - 376, - 410, - 466, - 491, - 418, - 571, - 549, - 692, - 542, - 309, - 465, - 423, - 604, - 356, - 617, - 638, - 347, - 261, - 476, - 408, - 420, - 362, - 557, - 624, - 570, - 397, - 440, - 452, - 370, - 488, - 335, - 449, - 351, - 357, - 402, - 397, - 449, - 629, - 418, - 583, - 392, - 518, - 446, - 313, - 354, - 433, - 619, - 492, - 624, - 474, - 548, - 645, - 488, - 626, - 346, - 240, - 488, - 364, - 603, - 339, - 281, - 297, - 333, - 379, - 388, - 334, - 317, - 348, - 220, - 302, - 218, - 419, - 382, - 417, - 321, - 425, - 318, - 358, - 266, - 251, - 633, - 256, - 313, - 534, - 338, - 419, - 256, - 234, - 233, - 273, - 495, - 379, - 232, - 222, - 339, - 334, - 409, - 254, - 447, - 322, - 268, - 406, - 270, - 374, - 432, - 438, - 271, - 297, - 314, - 304, - 263, - 262, - 192, - 331, - 285, - 236, - 208, - 247, - 210, - 195, - 300, - 432, - 510, - 318, - 328, - 308, - 204, - 427, - 221, - 286, - 420, - 321, - 235, - 356, - 353, - 357, - 643, - 495, - 230, - 318, - 367, - 362, - 304, - 301, - 375, - 305, - 280, - 265, - 252, - 256, - 259, - 311, - 285, - 244, - 213, - 428, - 202, - 248, - 243, - 396, - 267, - 385, - 293, - 347, - 234, - 398, - 299, - 337, - 236, - 336, - 197, - 327, - 316, - 370, - 368, - 378, - 197, - 367, - 281, - 494, - 284, - 372, - 421, - 429, - 505, - 456, - 499, - 317, - 324, - 186, - 445, - 456, - 465, - 401, - 252, - 320, - 422, - 376, - 302, - 439, - 266, - 398, - 384, - 412, - 318, - 385, - 426, - 609, - 317, - 227, - 357, - 381, - 291, - 277, - 377, - 250, - 269, - 310, - 318, - 323, - 405, - 523, - 376, - 280, - 277, - 341, - 347, - 229, - 224, - 218, - 285, - 226, - 240, - 391, - 268, - 221, - 229, - 339, - 241, - 231, - 256, - 271, - 270, - 235, - 231, - 429, - 306, - 393, - 420, - 304, - 642, - 364, - 333, - 378, - 371, - 426, - 300, - 264, - 337, - 275, - 259, - 371, - 299, - 202, - 535, - 336, - 284, - 336, - 271, - 435, - 342, - 321, - 378, - 398, - 568, - 591, - 479, - 595, - 538, - 859, - 590, - 411, - 529, - 441, - 604, - 426, - 568, - 470, - 549, - 420, - 459, - 402, - 523, - 776, - 425, - 355, - 719, - 377, - 339, - 270, - 225, - 308, - 342, - 389, - 282, - 397, - 451, - 268, - 493, - 371, - 677, - 340, - 360, - 275, - 307, - 410, - 386, - 283, - 505, - 287, - 403, - 309, - 253, - 353, - 440, - 499, - 420, - 346, - 292, - 355, - 361, - 462, - 325, - 327, - 317, - 325, - 435, - 333, - 381, - 342, - 451, - 348, - 395, - 277, - 620, - 285, - 306, - 540, - 337, - 350, - 449, - 409, - 240, - 487, - 462, - 596, - 258, - 265, - 284, - 344, - 338, - 405, - 365, - 282, - 329, - 379, - 354, - 469, - 481, - 358, - 377, - 315, - 520, - 293, - 373, - 432, - 501, - 611, - 162, - 394, - 479, - 295, - 462, - 353, - 353, - 382, - 712, - 664, - 663, - 247, - 233, - 412, - 328, - 483, - 456, - 253, - 286, - 335, - 324, - 335, - 360, - 311, - 257, - 269, - 295, - 390, - 350, - 345, - 324, - 593, - 248, - 372, - 330, - 261, - 473, - 356, - 442, - 197, - 301, - 450, - 243, - 507, - 489, - 287, - 307, - 643, - 583, - 563, - 278, - 370, - 323, - 281, - 462, - 444, - 293, - 570, - 346, - 454, - 397, - 376, - 322, - 360, - 426, - 281, - 491, - 378, - 368, - 427, - 209, - 388, - 387, - 766, - 634, - 560, - 366, - 501, - 322, - 419, - 246, - 332, - 397, - 403, - 446, - 239, - 270, - 520, - 274, - 557, - 313, - 485, - 409, - 412, - 332, - 492, - 278, - 461, - 228, - 274, - 364, - 370, - 542, - 528, - 430, - 495, - 417, - 391, - 519, - 429, - 354, - 354, - 441, - 377, - 440, - 433, - 423, - 452, - 346, - 366, - 492, - 471, - 502, - 465, - 554, - 245, - 365, - 422, - 440, - 463, - 823, - 489, - 474, - 401, - 422, - 388, - 407, - 443, - 598, - 484, - 488, - 237, - 278, - 404, - 380, - 348, - 413, - 296, - 401, - 513, - 354, - 347, - 400, - 272, - 375, - 399, - 374, - 266, - 348, - 414, - 399, - 437, - 592, - 305, - 605, - 578, - 267, - 361, - 375, - 322, - 333, - 444, - 474, - 428, - 193, - 393, - 371, - 430, - 232, - 393, - 469, - 454, - 581, - 421, - 466, - 374, - 425, - 232, - 479, - 455, - 245, - 706, - 411, - 350, - 266, - 389, - 277, - 336, - 311, - 520, - 476, - 350, - 315, - 254, - 454, - 385, - 776, - 555, - 492, - 543, - 330, - 443, - 380, - 320, - 414, - 322, - 245, - 412, - 380, - 422, - 370, - 282, - 341, - 428, - 507, - 300, - 222, - 294, - 448, - 356, - 283, - 396, - 353, - 276, - 322, - 372, - 596, - 523, - 230, - 570, - 353, - 373, - 546, - 503, - 763, - 424, - 270, - 561, - 486, - 368, - 457, - 542, - 397, - 488, - 253, - 352, - 390, - 387, - 379, - 427, - 565, - 442, - 337, - 342, - 337, - 381, - 414, - 391, - 316, - 227, - 396, - 449, - 513, - 754, - 484, - 614, - 581, - 478, - 259, - 544, - 912, - 515, - 389, - 457, - 483, - 307, - 274, - 603, - 271, - 545, - 364, - 447, - 369, - 654, - 411, - 347, - 380, - 302, - 442, - 486, - 627, - 406, - 632, - 497, - 428, - 405, - 549, - 531, - 767, - 447, - 603, - 598, - 416, - 621, - 594, - 656, - 335, - 398, - 484, - 482, - 267, - 389, - 285, - 498, - 276, - 431, - 328, - 263, - 366, - 288, - 583, - 741, - 470, - 423, - 404, - 417, - 469, - 227, - 479, - 583, - 258, - 254, - 480, - 780, - 446, - 637, - 786, - 699, - 392, - 543, - 568, - 530, - 385, - 483, - 479, - 349, - 596, - 485, - 328, - 285, - 433, - 406, - 435, - 266, - 426, - 492, - 297, - 460, - 325, - 478, - 560, - 415, - 385, - 427, - 411, - 467, - 434, - 403, - 425, - 320, - 420, - 470, - 341, - 289, - 360, - 286, - 522, - 634, - 662, - 537, - 552, - 451, - 528, - 596, - 587, - 297, - 518, - 529, - 370, - 324, - 387, - 260, - 243, - 531, - 561, - 292, - 265, - 442, - 360, - 291, - 287, - 249, - 544, - 261, - 289, - 468, - 313, - 381, - 250, - 266, - 438, - 408, - 383, - 205, - 496, - 285, - 359, - 224, - 385, - 403, - 360, - 314, - 424, - 579, - 471, - 302, - 325, - 387, - 447, - 331, - 389, - 432, - 396, - 537, - 387, - 324, - 356, - 516, - 667, - 328, - 524, - 410, - 371, - 274, - 292, - 350, - 507, - 490, - 448, - 445, - 322, - 217, - 365, - 285, - 492, - 358, - 447, - 395, - 567, - 462, - 405, - 449, - 606, - 487, - 479, - 457, - 436, - 432, - 436, - 351, - 213, - 507, - 455, - 369, - 324, - 365, - 394, - 470, - 438, - 273, - 261, - 352, - 368, - 301, - 268, - 462, - 557, - 236, - 244, - 579, - 555, - 312, - 507, - 409, - 324, - 269, - 396, - 389, - 352, - 527, - 799, - 475, - 371, - 461, - 574, - 602, - 578, - 609, - 316, - 649, - 608, - 284, - 466, - 612, - 637, - 766, - 667, - 374, - 347, - 361, - 214, - 284, - 453, - 367, - 317, - 401, - 517, - 185, - 352, - 489, - 376, - 239, - 263, - 325, - 366, - 303, - 623, - 588, - 461, - 339, - 321, - 334, - 601, - 341, - 326, - 416, - 382, - 315, - 356, - 262, - 417, - 446, - 371, - 551, - 436, - 567, - 312, - 239, - 419, - 325, - 296, - 467, - 909, - 492, - 329, - 193, - 614, - 333, - 421, - 309, - 441, - 418, - 594, - 608, - 384, - 533, - 492, - 535, - 484, - 587, - 470, - 429, - 484, - 289, - 489, - 519, - 387, - 297, - 297, - 210, - 277, - 349, - 225, - 356, - 363, - 344, - 462, - 847, - 359, - 378, - 444, - 404, - 374, - 542, - 415, - 568, - 482, - 434, - 477, - 392, - 349, - 421, - 246, - 381, - 257, - 311, - 357, - 283, - 179, - 273, - 342, - 432, - 180, - 354, - 363, - 293, - 241, - 356, - 253, - 388, - 368, - 407, - 523, - 509, - 508, - 476, - 276, - 428, - 273, - 310, - 426, - 377, - 375, - 321, - 708, - 473, - 332, - 430, - 358, - 404, - 274, - 363, - 250, - 391, - 279, - 376, - 452, - 511, - 249, - 345, - 183, - 382, - 412, - 282, - 311, - 387, - 396, - 647, - 456, - 306, - 376, - 521, - 471, - 284, - 320, - 417, - 651, - 338, - 361, - 353, - 278, - 261, - 550, - 468, - 379, - 272, - 361, - 274, - 352, - 358, - 388, - 320, - 492, - 701, - 450, - 549, - 372, - 416, - 441, - 300, - 639, - 293, - 548, - 244, - 558, - 549, - 642, - 346, - 555, - 560, - 239, - 370, - 390, - 486, - 568, - 349, - 388, - 364, - 504, - 755, - 315, - 364, - 574, - 439, - 337, - 409, - 317, - 436, - 402, - 501, - 573, - 416, - 497, - 487, - 409, - 350, - 279, - 375, - 303, - 260, - 456, - 393, - 354, - 420, - 368, - 287, - 689, - 438, - 292, - 433, - 523, - 359, - 437, - 460, - 637, - 196, - 482, - 485, - 471, - 279, - 370, - 466, - 462, - 498, - 362, - 368, - 490, - 464, - 578, - 311, - 348, - 203, - 389, - 406, - 228, - 276, - 339, - 308, - 504, - 711, - 503, - 689, - 213, - 412, - 529, - 526, - 318, - 428, - 312, - 480, - 239, - 588, - 336, - 786, - 224, - 419, - 532, - 317, - 215, - 298, - 299, - 381, - 237, - 348, - 332, - 252, - 375, - 218, - 362, - 269, - 534, - 516, - 388, - 341, - 398, - 688, - 784, - 509, - 494, - 694, - 592, - 654, - 441, - 251, - 223, - 407, - 434, - 418, - 277, - 271, - 464, - 499, - 455, - 453, - 308, - 187, - 337, - 567, - 412, - 201, - 438, - 590, - 634, - 871, - 238, - 288, - 423, - 310, - 376, - 365, - 402, - 780, - 529, - 261, - 499, - 225, - 394, - 484, - 506, - 509, - 592, - 627, - 314, - 571, - 640, - 451, - 401, - 473, - 607, - 330, - 643, - 306, - 498, - 375, - 395, - 316, - 388, - 514, - 303, - 447, - 420, - 362, - 510, - 408, - 347, - 466, - 428, - 266, - 623, - 434, - 425, - 350, - 381, - 478, - 507, - 511, - 594, - 509, - 304, - 386, - 621, - 471, - 423, - 291, - 391, - 208, - 346, - 294, - 219, - 334, - 277, - 357, - 386, - 286, - 250, - 449, - 304, - 407, - 304, - 359, - 463, - 310, - 355, - 376, - 249, - 309, - 458, - 444, - 381, - 346, - 333, - 236, - 306, - 251, - 255, - 196, - 600, - 468, - 235, - 308, - 338, - 265, - 383, - 432, - 262, - 340, - 542, - 280, - 322, - 272, - 262, - 410, - 352, - 305, - 432, - 365, - 349, - 375, - 384, - 419, - 225, - 560, - 353, - 297, - 436, - 325, - 394, - 319, - 380, - 398, - 310, - 309, - 263, - 418, - 612, - 505, - 689, - 500, - 532, - 541, - 542, - 508, - 638, - 448, - 330, - 559, - 934, - 964, - 470, - 645, - 818, - 725, - 596, - 683, - 425, - 718, - 543, - 486, - 830, - 558, - 457, - 426, - 418, - 493, - 773, - 498, - 275, - 306, - 513, - 277, - 319, - 274, - 378, - 249, - 332, - 607, - 385, - 388, - 435, - 344, - 451, - 446, - 430, - 265, - 305, - 292, - 277, - 252, - 431, - 420, - 267, - 589, - 283, - 337, - 280, - 319, - 390, - 516, - 260, - 470, - 322, - 489, - 345, - 447, - 471, - 364, - 356, - 646, - 276, - 388, - 460, - 614, - 462, - 226, - 503, - 705, - 204, - 570, - 571, - 391, - 389, - 240, - 346, - 388, - 321, - 309, - 413, - 348, - 403, - 327, - 327, - 342, - 318, - 425, - 313, - 378, - 324, - 323, - 501, - 195, - 386, - 363, - 319, - 347, - 300, - 389, - 429, - 484, - 415, - 227, - 425, - 308, - 264, - 464, - 368, - 224, - 302, - 404, - 345, - 402, - 250, - 387, - 428, - 971, - 454, - 300, - 624, - 410, - 338, - 283, - 336, - 404, - 410, - 376, - 320, - 334, - 321, - 327, - 345, - 349, - 407, - 358, - 285, - 394, - 436, - 495, - 358, - 672, - 624, - 285, - 481, - 463, - 529, - 901, - 643, - 560, - 269, - 606, - 449, - 742, - 719, - 590, - 582, - 413, - 485, - 700, - 517, - 516, - 707, - 257, - 508, - 295, - 463, - 481, - 634, - 632, - 688, - 408, - 562, - 653, - 656, - 415, - 608, - 563, - 848, - 414, - 532, - 390, - 363, - 232, - 340, - 369, - 377, - 316, - 402, - 258, - 361, - 434, - 369, - 517, - 422, - 465, - 349, - 259, - 367, - 298, - 320, - 362, - 465, - 300, - 364, - 437, - 283, - 328, - 364, - 385, - 349, - 284, - 300, - 374, - 337, - 363, - 367, - 360, - 274, - 335, - 261, - 295, - 291, - 404, - 293, - 321, - 425, - 530, - 627, - 614, - 607, - 872, - 525, - 281, - 439, - 267, - 378, - 642, - 600, - 553, - 579, - 333, - 287, - 543, - 400, - 654, - 370, - 945, - 654, - 552, - 418, - 683, - 423, - 615, - 746, - 647, - 542, - 474, - 556, - 318, - 487, - 488, - 848, - 770, - 404, - 631, - 964, - 510, - 528, - 330, - 694, - 372, - 612, - 427, - 333, - 351, - 539, - 226, - 387, - 471, - 272, - 468, - 587, - 348, - 291, - 788, - 322, - 553, - 835, - 788, - 880, - 512, - 709, - 435, - 524, - 498, - 455, - 453, - 374, - 389, - 499, - 499, - 508, - 530, - 489, - 540, - 506, - 999, - 748, - 536, - 605, - 569, - 576, - 770, - 589, - 598, - 331, - 450, - 625, - 401, - 705, - 458, - 480, - 523, - 627, - 656, - 405, - 723, - 625, - 206, - 323, - 457, - 357, - 262, - 311, - 314, - 415, - 316, - 542, - 288, - 275, - 357, - 478, - 378, - 400, - 311, - 364, - 228, - 359, - 297, - 237, - 223, - 408, - 332, - 234, - 273, - 372, - 313, - 312, - 380, - 386, - 308, - 366, - 221, - 333, - 352, - 494, - 490, - 263, - 198, - 312, - 362, - 369, - 334, - 237, - 200, - 216, - 224, - 302, - 465, - 424, - 254, - 305, - 391, - 183, - 402, - 398, - 334, - 363, - 342, - 229, - 362, - 334, - 398, - 306, - 354, - 360, - 229, - 242, - 225, - 376, - 310, - 298, - 280, - 219, - 283, - 319, - 294, - 279, - 264, - 466, - 328, - 293, - 518, - 314, - 406, - 336, - 521, - 468, - 403, - 403, - 377, - 904, - 405, - 416, - 379, - 419, - 448, - 493, - 447, - 671, - 551, - 500, - 677, - 522, - 440, - 435, - 420, - 304, - 408, - 556, - 339, - 405, - 408, - 392, - 422, - 517, - 483, - 450, - 435, - 440, - 495, - 423, - 527, - 472, - 301, - 553, - 425, - 270, - 530, - 566, - 713, - 474, - 518, - 566, - 273, - 787, - 699, - 804, - 878, - 413, - 512, - 755, - 543, - 394, - 589, - 747, - 472, - 610, - 290, - 376, - 877, - 298, - 674, - 629, - 332, - 834, - 458, - 217, - 523, - 471, - 432, - 521, - 615, - 1085, - 649, - 730, - 521, - 859, - 933, - 688, - 784, - 485, - 472, - 477, - 455, - 407, - 304, - 297, - 546, - 483, - 718, - 611, - 636, - 1150, - 473, - 428, - 592, - 386, - 488, - 397, - 700, - 250, - 375, - 428, - 469, - 793, - 233, - 481, - 532, - 416, - 390, - 512, - 320, - 304, - 385, - 444, - 537, - 291, - 353, - 460, - 496, - 550, - 362, - 453, - 464, - 330, - 259, - 512, - 425, - 515, - 424, - 237, - 276, - 442, - 380, - 378, - 242, - 285, - 587, - 243, - 499, - 245, - 473, - 256, - 236, - 421, - 622, - 289, - 395, - 526, - 647, - 481, - 355, - 355, - 1188, - 632, - 434, - 347, - 583, - 438, - 571, - 472, - 540, - 544, - 306, - 321, - 464, - 330, - 746, - 519, - 365, - 383, - 434, - 498, - 326, - 374, - 504, - 940, - 468, - 359, - 424, - 373, - 392, - 352, - 461, - 552, - 394, - 354, - 416, - 490, - 347, - 384, - 482, - 356, - 396, - 498, - 455, - 828, - 486, - 583, - 495, - 304, - 632, - 313, - 431, - 566, - 557, - 511, - 597, - 499, - 564, - 326, - 935, - 958, - 768, - 652, - 489, - 632, - 726, - 1032, - 493, - 579, - 777, - 722, - 926, - 702, - 680, - 902, - 392, - 763, - 989, - 345, - 819, - 900, - 681, - 388, - 437, - 581, - 595, - 697, - 673, - 364, - 665, - 473, - 495, - 471, - 571, - 984, - 596, - 748, - 803, - 592, - 299, - 409, - 742, - 428, - 1129, - 876, - 1092, - 758, - 635, - 323, - 696, - 842, - 781, - 768, - 768, - 618, - 463, - 241, - 235, - 454, - 640, - 284, - 489, - 533, - 573, - 474, - 419, - 352, - 544, - 659, - 400, - 487, - 487, - 450, - 503, - 463, - 455, - 416, - 622, - 409, - 335, - 300, - 335, - 456, - 548, - 455, - 280, - 300, - 406, - 497, - 506, - 446, - 489, - 312, - 409, - 456, - 428, - 515, - 364, - 565, - 334, - 504, - 546, - 425, - 563, - 286, - 490, - 518, - 387, - 603, - 630, - 540, - 382, - 466, - 446, - 449, - 450, - 453, - 445, - 217, - 296, - 334, - 336, - 201, - 311, - 404, - 386, - 284, - 353, - 268, - 296, - 212, - 327, - 341, - 377, - 336, - 195, - 221, - 421, - 439, - 249, - 404, - 270, - 325, - 163, - 222, - 262, - 273, - 252, - 175, - 229, - 194, - 200, - 327, - 564, - 536, - 682, - 309, - 570, - 623, - 517, - 515, - 494, - 526, - 337, - 568, - 565, - 562, - 476, - 813, - 567, - 595, - 567, - 322, - 556, - 957, - 403, - 483, - 473, - 477, - 462, - 507, - 537, - 293, - 641, - 702, - 476, - 430, - 585, - 289, - 456, - 413, - 558, - 416, - 482, - 410, - 384, - 765, - 394, - 321, - 549, - 355, - 456, - 540, - 705, - 557, - 421, - 260, - 573, - 356, - 528, - 484, - 538, - 526, - 418, - 352, - 608, - 541, - 523, - 680, - 394, - 644, - 714, - 507, - 437, - 367, - 711, - 580, - 704, - 540, - 324, - 589, - 723, - 573, - 420, - 667, - 1027, - 484, - 635, - 485, - 521, - 758, - 540, - 542, - 404, - 310, - 529, - 819, - 396, - 624, - 560, - 691, - 393, - 565, - 438, - 306, - 676, - 439, - 563, - 482, - 1023, - 558, - 625, - 551, - 417, - 518, - 452, - 410, - 425, - 597, - 472, - 635, - 475, - 485, - 496, - 420, - 491, - 402, - 391, - 462, - 643, - 405, - 401, - 671, - 783, - 438, - 409, - 415, - 481, - 488, - 530, - 542, - 512, - 356, - 444, - 567, - 480, - 417, - 458, - 415, - 483, - 584, - 570, - 416, - 658, - 344, - 727, - 774, - 527, - 446, - 581, - 409, - 280, - 516, - 715, - 739, - 491, - 613, - 293, - 509, - 233, - 428, - 251, - 440, - 512, - 599, - 496, - 567, - 536, - 243, - 281, - 442, - 303, - 406, - 360, - 388, - 381, - 728, - 439, - 571, - 489, - 371, - 418, - 413, - 302, - 373, - 879, - 394, - 419, - 583, - 408, - 471, - 387, - 350, - 469, - 323, - 395, - 255, - 252, - 261, - 419, - 427, - 442, - 355, - 431, - 448, - 490, - 464, - 302, - 597, - 373, - 292, - 491, - 380, - 467, - 649, - 403, - 387, - 417, - 319, - 383, - 800, - 970, - 1242, - 879, - 825, - 915, - 739, - 599, - 957, - 693, - 1186, - 753, - 807, - 737, - 821, - 841, - 810, - 722, - 591, - 1136, - 1197, - 541, - 1050, - 889, - 895, - 603, - 612, - 659, - 769, - 526, - 474, - 987, - 906, - 556, - 684, - 1238, - 600, - 769, - 817, - 845, - 801, - 713, - 694, - 1201, - 685, - 823, - 1187, - 792, - 541, - 556, - 731, - 700, - 994, - 850, - 582, - 830, - 991, - 658, - 555, - 646, - 759, - 588, - 971, - 613, - 779, - 710, - 671, - 703, - 844, - 826, - 660, - 847, - 965, - 794, - 961, - 726, - 686, - 509, - 306, - 185, - 237, - 304, - 524, - 291, - 449, - 355, - 411, - 493, - 756, - 499, - 238, - 221, - 300, - 446, - 477, - 331, - 603, - 449, - 304, - 251, - 173, - 498, - 406, - 294, - 278, - 160, - 258, - 413, - 336, - 451, - 328, - 178, - 377, - 320, - 207, - 412, - 449, - 241, - 429, - 583, - 502, - 853, - 588, - 656, - 589, - 644, - 389, - 564, - 913, - 566, - 518, - 695, - 672, - 498, - 357, - 457, - 494, - 694, - 255, - 606, - 468, - 632, - 372, - 474, - 672, - 471, - 568, - 655, - 638, - 484, - 368, - 694, - 387, - 638, - 317, - 625, - 678, - 600, - 595, - 555, - 397, - 440, - 537, - 366, - 385, - 486, - 500, - 695, - 568, - 491, - 728, - 436, - 541, - 654, - 481, - 407, - 517, - 263, - 263, - 456, - 456, - 518, - 348, - 268, - 579, - 643, - 337, - 461, - 276, - 730, - 296, - 447, - 464, - 484, - 442, - 351, - 553, - 544, - 588, - 449, - 415, - 435, - 448, - 465, - 510, - 381, - 519, - 335, - 326, - 491, - 378, - 711, - 474, - 275, - 313, - 353, - 606, - 495, - 469, - 376, - 429, - 384, - 340, - 238, - 427, - 539, - 461, - 486, - 466, - 452, - 615, - 459, - 550, - 403, - 304, - 317, - 512, - 882, - 457, - 484, - 409, - 428, - 775, - 646, - 432, - 768, - 399, - 633, - 544, - 896, - 665, - 324, - 551, - 674, - 749, - 683, - 409, - 577, - 398, - 532, - 395, - 616, - 678, - 429, - 578, - 508, - 530, - 886, - 556, - 844, - 321, - 425, - 492, - 591, - 841, - 556, - 584, - 716, - 872, - 760, - 748, - 620, - 360, - 556, - 345, - 387, - 228, - 509, - 348, - 246, - 310, - 314, - 247, - 407, - 423, - 231, - 196, - 334, - 398, - 196, - 249, - 365, - 245, - 188, - 273, - 351, - 334, - 403, - 161, - 366, - 148, - 227, - 418, - 355, - 500, - 249, - 222, - 371, - 398, - 382, - 332, - 335, - 328, - 382, - 215, - 356, - 246, - 297, - 353, - 250, - 361, - 273, - 323, - 302, - 248, - 180, - 234, - 341, - 344, - 267, - 413, - 222, - 439, - 211, - 251, - 209, - 390, - 340, - 365, - 176, - 208, - 410, - 355, - 308, - 258, - 308, - 339, - 409, - 291, - 388, - 336, - 220, - 191, - 258, - 257, - 298, - 234, - 497, - 275, - 203, - 345, - 267, - 297, - 340, - 413, - 297, - 351, - 219, - 212, - 209, - 232, - 309, - 263, - 285, - 379, - 216, - 532, - 341, - 273, - 345, - 195, - 448, - 454, - 316, - 254, - 257, - 263, - 394, - 428, - 450, - 277, - 410, - 268, - 347, - 452, - 343, - 347, - 342, - 207, - 347, - 313, - 391, - 412, - 398, - 373, - 285, - 228, - 336, - 318, - 429, - 427, - 371, - 439, - 324, - 368, - 718, - 382, - 260, - 379, - 331, - 340, - 404, - 357, - 408, - 334, - 290, - 284, - 272, - 374, - 354, - 217, - 415, - 385, - 472, - 481, - 367, - 252, - 351, - 456, - 337, - 399, - 411, - 310, - 221, - 294, - 466, - 281, - 529, - 397, - 383, - 330, - 484, - 254, - 334, - 199, - 363, - 473, - 271, - 418, - 455, - 382, - 338, - 545, - 421, - 444, - 397, - 533, - 339, - 673, - 257, - 535, - 365, - 486, - 247, - 298, - 408, - 204, - 540, - 476, - 484, - 442, - 358, - 358, - 435, - 313, - 418, - 348, - 321, - 300, - 591, - 591, - 364, - 425, - 561, - 367, - 692, - 557, - 404, - 506, - 369, - 358, - 513, - 387, - 545, - 346, - 524, - 298, - 459, - 605, - 378, - 290, - 742, - 338, - 216, - 349, - 588, - 478, - 407, - 329, - 353, - 582, - 405, - 572, - 364, - 366, - 409, - 611, - 535, - 334, - 423, - 186, - 449, - 353, - 232, - 431, - 655, - 476, - 408, - 279, - 648, - 270, - 279, - 420, - 572, - 249, - 235, - 303, - 252, - 350, - 217, - 265, - 305, - 186, - 258, - 202, - 259, - 588, - 192, - 206, - 293, - 241, - 338, - 198, - 343, - 300, - 247, - 226, - 267, - 294, - 276, - 336, - 310, - 244, - 302, - 300, - 409, - 331, - 376, - 423, - 435, - 347, - 241, - 300, - 316, - 257, - 308, - 398, - 230, - 359, - 300, - 286, - 163, - 144, - 251, - 195, - 348, - 292, - 255, - 333, - 263, - 158, - 282, - 277, - 365, - 199, - 426, - 284, - 437, - 328, - 296, - 272, - 348, - 338, - 249, - 243, - 280, - 323, - 292, - 363, - 297, - 299, - 341, - 346, - 205, - 332, - 335, - 307, - 184, - 186, - 215, - 305, - 296, - 357, - 410, - 399, - 300, - 377, - 466, - 290, - 367, - 324, - 297, - 432, - 380, - 386, - 338, - 370, - 296, - 227, - 368, - 231, - 365, - 321, - 408, - 342, - 360, - 438, - 369, - 419, - 308, - 520, - 347, - 240, - 228, - 350, - 413, - 296, - 375, - 333, - 433, - 497, - 337, - 266, - 331, - 395, - 365, - 422, - 369, - 330, - 384, - 265, - 213, - 581, - 369, - 492, - 231, - 315, - 227, - 395, - 183, - 386, - 353, - 243, - 382, - 316, - 356, - 295, - 321, - 358, - 313, - 336, - 339, - 349, - 488, - 385, - 347, - 289, - 347, - 474, - 299, - 361, - 289, - 434, - 378, - 340, - 364, - 409, - 371, - 482, - 384, - 458, - 499, - 282, - 383, - 290, - 470, - 356, - 382, - 194, - 345, - 330, - 310, - 397, - 462, - 540, - 262, - 304, - 284, - 349, - 321, - 400, - 353, - 391, - 245, - 359, - 375, - 352, - 292, - 255, - 243, - 422, - 412, - 299, - 290, - 419, - 323, - 414, - 322, - 359, - 348, - 312, - 250, - 373, - 212, - 296, - 191, - 436, - 559, - 459, - 424, - 348, - 302, - 491, - 152, - 568, - 394, - 207, - 372, - 462, - 245, - 406, - 753, - 299, - 446, - 397, - 419, - 408, - 329, - 254, - 636, - 343, - 305, - 440, - 366, - 400, - 225, - 395, - 380, - 336, - 395, - 244, - 365, - 330, - 425, - 390, - 367, - 378, - 392, - 450, - 298, - 349, - 410, - 432, - 419, - 366, - 359, - 382, - 422, - 466, - 417, - 361, - 364, - 410, - 402, - 372, - 243, - 327, - 394, - 277, - 359, - 336, - 300, - 292, - 325, - 300, - 429, - 464, - 276, - 450, - 405, - 434, - 504, - 505, - 381, - 653, - 489, - 303, - 446, - 304, - 346, - 502, - 347, - 491, - 435, - 211, - 556, - 300, - 298, - 537, - 479, - 302, - 326, - 323, - 576, - 520, - 473, - 459, - 353, - 415, - 444, - 364, - 474, - 515, - 374, - 406, - 514, - 663, - 878, - 283, - 554, - 613, - 558, - 428, - 625, - 483, - 468, - 408, - 504, - 409, - 633, - 380, - 557, - 492, - 521, - 442, - 319, - 682, - 337, - 433, - 550, - 448, - 321, - 529, - 412, - 194, - 537, - 763, - 438, - 488, - 478, - 626, - 402, - 536, - 625, - 453, - 498, - 428, - 452, - 238, - 595, - 245, - 289, - 601, - 501, - 475, - 554, - 477, - 431, - 351, - 682, - 600, - 319, - 380, - 681, - 588, - 348, - 295, - 246, - 510, - 516, - 505, - 488, - 395, - 546, - 430, - 272, - 797, - 603, - 441, - 527, - 292, - 471, - 427, - 614, - 408, - 406, - 404, - 441, - 575, - 362, - 506, - 221, - 368, - 448, - 332, - 491, - 417, - 459, - 392, - 538, - 303, - 466, - 527, - 477, - 381, - 294, - 588, - 464, - 355, - 443, - 383, - 503, - 600, - 512, - 404, - 391, - 370, - 399, - 559, - 705, - 286, - 411, - 531, - 628, - 652, - 511, - 541, - 385, - 421, - 562, - 181, - 213, - 257, - 417, - 263, - 657, - 394, - 540, - 440, - 341, - 310, - 269, - 384, - 310, - 434, - 535, - 290, - 327, - 346, - 345, - 275, - 484, - 285, - 249, - 286, - 328, - 383, - 311, - 398, - 285, - 247, - 252, - 269, - 241, - 259, - 316, - 434, - 336, - 244, - 242, - 382, - 409, - 315, - 240, - 458, - 231, - 221, - 389, - 430, - 282, - 345, - 307, - 354, - 366, - 430, - 531, - 334, - 364, - 257, - 566, - 343, - 306, - 423, - 321, - 343, - 349, - 379, - 265, - 370, - 378, - 351, - 319, - 239, - 374, - 213, - 605, - 231, - 382, - 427, - 281, - 466, - 342, - 410, - 290, - 328, - 461, - 571, - 421, - 327, - 256, - 377, - 547, - 370, - 217, - 317, - 430, - 355, - 345, - 218, - 471, - 565, - 157, - 791, - 482, - 367, - 445, - 387, - 309, - 356, - 393, - 351, - 632, - 475, - 512, - 484, - 520, - 221, - 490, - 501, - 440, - 545, - 505, - 398, - 442, - 607, - 438, - 514, - 746, - 688, - 760, - 623, - 613, - 825, - 814, - 717, - 499, - 350, - 254, - 306, - 409, - 512, - 419, - 525, - 438, - 457, - 572, - 295, - 419, - 533, - 466, - 914, - 616, - 242, - 599, - 334, - 702, - 596, - 378, - 712, - 216, - 800, - 504, - 329, - 425, - 682, - 728, - 303, - 592, - 191, - 332, - 232, - 217, - 549, - 307, - 355, - 541, - 219, - 303, - 223, - 295, - 330, - 404, - 291, - 416, - 346, - 277, - 452, - 325, - 285, - 406, - 447, - 520, - 380, - 420, - 232, - 390, - 360, - 380, - 368, - 426, - 229, - 357, - 344, - 235, - 387, - 304, - 265, - 422, - 268, - 380, - 290, - 301, - 441, - 197, - 393, - 358, - 277, - 326, - 308, - 317, - 473, - 363, - 399, - 316, - 252, - 329, - 487, - 375, - 473, - 333, - 353, - 424, - 264, - 331, - 210, - 294, - 309, - 339, - 261, - 309, - 301, - 231, - 384, - 332, - 395, - 341, - 340, - 348, - 377, - 270, - 318, - 316, - 261, - 307, - 424, - 321, - 272, - 261, - 239, - 283, - 374, - 359, - 320, - 227, - 298, - 303, - 292, - 247, - 308, - 232, - 385, - 509, - 425, - 317, - 348, - 301, - 323, - 274, - 331, - 574, - 295, - 308, - 223, - 294, - 334, - 230, - 331, - 345, - 431, - 486, - 307, - 298, - 245, - 422, - 362, - 378, - 309, - 274, - 260, - 427, - 251, - 338, - 286, - 432, - 783, - 336, - 390, - 436, - 434, - 226, - 306, - 331, - 322, - 235, - 266, - 267, - 314, - 461, - 376, - 502, - 397, - 422, - 458, - 342, - 225, - 210, - 255, - 317, - 244, - 254, - 223, - 524, - 169, - 357, - 279, - 402, - 444, - 267, - 318, - 387, - 413, - 375, - 324, - 279, - 353, - 520, - 218, - 313, - 260, - 400, - 280, - 299, - 245, - 394, - 446, - 239, - 359, - 295, - 299, - 273, - 251, - 244, - 280, - 285, - 267, - 281, - 282, - 334, - 311, - 271, - 293, - 371, - 290, - 329, - 337, - 334, - 290, - 328, - 397, - 319, - 393, - 285, - 374, - 425, - 264, - 320, - 388, - 277, - 274, - 281, - 260, - 346, - 506, - 391, - 243, - 391, - 286, - 313, - 279, - 289, - 248, - 259, - 524, - 419, - 605, - 454, - 486, - 311, - 262, - 379, - 340, - 336, - 315, - 425, - 439, - 337, - 354, - 241, - 383, - 270, - 490, - 1248, - 896, - 486, - 709, - 692, - 603, - 602, - 517, - 728, - 599, - 444, - 555, - 698, - 502, - 476, - 547, - 710, - 535, - 559, - 733, - 506, - 568, - 448, - 649, - 681, - 593, - 545, - 294, - 704, - 396, - 327, - 507, - 442, - 336, - 249, - 490, - 364, - 717, - 710, - 556, - 235, - 302 - ], - "y0": " ", - "yaxis": "y" - } - ], - "layout": { - "boxmode": "group", - "legend": { - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting transformers[torch]\n", + " Downloading transformers-4.32.1-py3-none-any.whl (7.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.5/7.5 MB\u001b[0m \u001b[31m17.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (3.12.2)\n", + "Collecting huggingface-hub<1.0,>=0.15.1 (from transformers[torch])\n", + " Downloading huggingface_hub-0.16.4-py3-none-any.whl (268 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m27.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (1.23.5)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (23.1)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (6.0.1)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (2023.6.3)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (2.31.0)\n", + "Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers[torch])\n", + " Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m43.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting safetensors>=0.3.1 (from transformers[torch])\n", + " Downloading safetensors-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m44.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (4.66.1)\n", + "Requirement already satisfied: torch!=1.12.0,>=1.9 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (2.0.1+cu118)\n", + "Collecting accelerate>=0.20.3 (from transformers[torch])\n", + " Downloading accelerate-0.22.0-py3-none-any.whl (251 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m251.2/251.2 kB\u001b[0m \u001b[31m32.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.20.3->transformers[torch]) (5.9.5)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.15.1->transformers[torch]) (2023.6.0)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.15.1->transformers[torch]) (4.7.1)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.9->transformers[torch]) (1.12)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.9->transformers[torch]) (3.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.9->transformers[torch]) (3.1.2)\n", + "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.9->transformers[torch]) (2.0.0)\n", + "Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch!=1.12.0,>=1.9->transformers[torch]) (3.27.2)\n", + "Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch!=1.12.0,>=1.9->transformers[torch]) (16.0.6)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers[torch]) (3.2.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers[torch]) (3.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers[torch]) (2.0.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers[torch]) (2023.7.22)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch!=1.12.0,>=1.9->transformers[torch]) (2.1.3)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch!=1.12.0,>=1.9->transformers[torch]) (1.3.0)\n", + "Installing collected packages: tokenizers, safetensors, huggingface-hub, transformers, accelerate\n", + "Successfully installed accelerate-0.22.0 huggingface-hub-0.16.4 safetensors-0.3.3 tokenizers-0.13.3 transformers-4.32.1\n" ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 640, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "NUMTOTV" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "words per case summary" - } } - } - }, - "text/html": [ - "
" + ], + "source": [ + "!pip install transformers[torch]" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# statistics of summary length\n", - "df[\"words per case summary\"] = df[\"SUMMARY_EN\"].str.split().apply(len)\n", - "print(f\"Overall number of words by case summary: min {df['words per case summary'].min()}, \"\n", - " f\"average {df['words per case summary'].mean():.0f}, max {df['words per case summary'].max()}\")\n", - "fig = px.box(df, x=\"NUMTOTV\", y=\"words per case summary\", width=640)\n", - "fig.show(config={\"toImageButtonOptions\": {\"format\": 'svg', \"filename\": \"text_length\"}})" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "mrk7jvqtWNvZ" - }, - "source": [ - "Not surprisingly, the length of the descriptions correlates with the number of vehicles involved.\n", - "\n", - "The average length is above 400 words.\n", - "As we will see later in this notebook, this poses some challenges with the NLP models that we are using in this notebook,\n", - "because these are limited to text up to a length of 512 so-called \"tokens\" (vocabulary items).\n", - "Since a single word may be tokenized into more than one token, some accident descriptions will be truncated.\n", - "\n", - "Let's examine one of the English texts and its German translation:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 138 }, - "id": "A-eL7RyAWNva", - "outputId": "f55d85be-49e2-4221-ff01-b6b1c4ba7c5a", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "text/html": [ - "V1, a 2000 Pontiac Montana minivan, made a left turn from a private driveway onto a northbound 5-lane two-way, dry asphalt roadway on a downhill grade. The posted speed limit on this roadway was 80 kmph (50 MPH). V1 entered the roadway by crossing over the two southbound lanes and then entering the third northbound lane, which was a left turn-only lane at a 4-way intersection. The driver of V1 intended to travel straight through the intersection, and so he began to change lanes to the right. He did not see V2, a 1994 Pontiac Grand Am, that was traveling in the second northbound lane. The northbound roadway had curved to the right prior to the private driveway that V1 had exited. As V1 began to change lanes to the right, the front of V1 contacted the left rear of V2 before coming to final rest on the roadway.\r", - " \r", - " The driver of V1 was a 60-year old male who reported that he had been traveling between 2-17 kmph (1-10 mph) prior to the crash. He had no health-related problems, and had taken no medication prior to the crash. He was rested and traveling back home. He was wearing his prescribed lenses that corrected a myopic (nearsighted) condition. He did not sustain any injuries from the crash and refused treatment.\r", - " \r", - " The Critical Precrash Event for the driver of V1 was when he began to travel over the lane line on the right side of the travel lane. The Critical Reason for the Critical Precrash Event was inadequate surveillance (failed to look, looked but did not see). Associated factors coded to the driver of V1 include an illegal use of a left turn lane (cited by police) and an unfamiliarity with the roadway. As per the driver of V1, this was the first time he had driven on this roadway. \r", - " \r", - " The driver of V2 was a 28-year old woman who reported that she had been traveling between 66-80 kmph (41-50 mph) prior to the crash. She had no health-related problems, and had taken no medication prior to the crash. She was rested and on her way home. She does not wear corrective lenses. She sustained minor injuries and was transported to a local trauma facility.\r", - " \r", - " The Critical Precrash Event for the driver of V2 was when the other vehicle encroached into her lane, from an adjacent lane (same direction) over the left lane line. The Critical Reason for the Critical Precrash Event was not coded to the driver of V2 and no associated factors were coded to her." + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HDmc_CXBZmQz", + "outputId": "c6634041-ec17-42a0-de9d-95d21682dc7b" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting datasets\n", + " Downloading datasets-2.14.4-py3-none-any.whl (519 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m519.3/519.3 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (1.23.5)\n", + "Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (9.0.0)\n", + "Collecting dill<0.3.8,>=0.3.0 (from datasets)\n", + " Downloading dill-0.3.7-py3-none-any.whl (115 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.3/115.3 kB\u001b[0m \u001b[31m9.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (1.5.3)\n", + "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2.31.0)\n", + "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (4.66.1)\n", + "Collecting xxhash (from datasets)\n", + " Downloading xxhash-3.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting multiprocess (from datasets)\n", + " Downloading multiprocess-0.70.15-py310-none-any.whl (134 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m6.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n", + "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.8.5)\n", + "Requirement already satisfied: huggingface-hub<1.0.0,>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.16.4)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets) (23.1)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (6.0.1)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.1.0)\n", + "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (3.2.0)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.4)\n", + "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n", + "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.2)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.0)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0.0,>=0.14.0->datasets) (3.12.2)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0.0,>=0.14.0->datasets) (4.7.1)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2.0.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2023.7.22)\n", + "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.3)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n", + "Installing collected packages: xxhash, dill, multiprocess, datasets\n", + "Successfully installed datasets-2.14.4 dill-0.3.7 multiprocess-0.70.15 xxhash-3.3.0\n" + ] + } ], - "text/plain": [ - "" + "source": [ + "!pip install datasets" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "display(HTML(df.loc[0, \"SUMMARY_EN\"]))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 156 }, - "id": "74OyQip6WNva", - "outputId": "8ba860d0-896b-45c9-bbf3-591576815eda", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "text/html": [ - "V1, ein Minivan der Marke Pontiac Montana aus dem Jahr 2000, bog von einer privaten Einfahrt nach links auf eine zweispurige, trockene Asphaltstraße mit 5 Fahrspuren in nördlicher Richtung und einem Gefälle ab. Die zulässige Höchstgeschwindigkeit auf dieser Fahrbahn betrug 80 km/h (50 MPH). V1 fuhr auf die Fahrbahn, indem er die beiden Fahrspuren in Richtung Süden überquerte und dann auf die dritte Fahrspur in Richtung Norden einfuhr, die an einer Kreuzung mit vier Fahrspuren nur für Linksabbieger vorgesehen war. Der Fahrer von V1 beabsichtigte, geradeaus über die Kreuzung zu fahren, und begann daher, die Spur nach rechts zu wechseln. Dabei übersah er V2, einen Pontiac Grand Am von 1994, der auf der zweiten Fahrspur in Richtung Norden unterwegs war. Die Fahrbahn in nördlicher Richtung war vor der privaten Einfahrt, aus der V1 herausgefahren war, nach rechts gebogen. Als V1 begann, die Spur nach rechts zu wechseln, berührte die Front von V1 das linke Heck von V2, bevor er auf der Fahrbahn zum Stehen kam. Der Fahrer von V1 war ein 60-jähriger Mann, der angab, vor dem Unfall mit einer Geschwindigkeit von 2 bis 17 km/h unterwegs gewesen zu sein. Er hatte keine gesundheitlichen Probleme und hatte vor dem Unfall keine Medikamente eingenommen. Er war ausgeruht und auf dem Weg nach Hause. Er trug die ihm verschriebenen Kontaktlinsen, die eine Kurzsichtigkeit korrigieren. Er zog sich bei dem Unfall keine Verletzungen zu und lehnte eine Behandlung ab. Das kritische Ereignis vor dem Unfall war für den Fahrer von V1, als er begann, die Fahrspurlinie auf der rechten Seite der Fahrbahn zu überfahren. Der kritische Grund für das kritische Ereignis vor dem Unfall war unzureichende Überwachung (nicht hingesehen, hingesehen, aber nicht gesehen). Zu den assoziierten Faktoren, die dem Fahrer von V1 zugeschrieben werden, gehören das illegale Benutzen einer Linksabbiegerspur (von der Polizei verwarnt) und die Unkenntnis der Fahrbahn. Für den Fahrer von V1 war es das erste Mal, dass er diese Fahrbahn befuhr. \r", - " \r", - " Bei der Fahrerin von V2 handelte es sich um eine 28-jährige Frau, die angab, vor dem Unfall mit einer Geschwindigkeit von 66-80 km/h unterwegs gewesen zu sein. Sie hatte keine gesundheitlichen Probleme und hatte vor dem Unfall keine Medikamente eingenommen. Sie war ausgeruht und befand sich auf dem Heimweg. Sie trägt keine Korrekturgläser. Sie erlitt leichte Verletzungen und wurde in eine örtliche Unfallklinik gebracht. Das kritische Ereignis vor dem Unfall war für die Fahrerin von V2, als das andere Fahrzeug von einer benachbarten Fahrspur (gleiche Richtung) über die linke Fahrspurlinie in ihre Spur eindrang. Der kritische Grund für das kritische Vorunfallereignis wurde der Fahrerin von V2 nicht zugeordnet, und es wurden ihr keine zugehörigen Faktoren zugeordnet." + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fap9tsxwa5QR", + "outputId": "aeedeeb5-7779-4ed8-f34e-6e0d3526c601" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting transformers_interpret\n", + " Downloading transformers_interpret-0.10.0-py3-none-any.whl (45 kB)\n", + "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/45.8 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.8/45.8 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting captum>=0.3.1 (from transformers_interpret)\n", + " Downloading captum-0.6.0-py3-none-any.whl (1.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m19.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: ipython<8.0.0,>=7.31.1 in /usr/local/lib/python3.10/dist-packages (from transformers_interpret) (7.34.0)\n", + "Requirement already satisfied: transformers>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from transformers_interpret) (4.32.1)\n", + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from captum>=0.3.1->transformers_interpret) (3.7.1)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from captum>=0.3.1->transformers_interpret) (1.23.5)\n", + "Requirement already satisfied: torch>=1.6 in /usr/local/lib/python3.10/dist-packages (from captum>=0.3.1->transformers_interpret) (2.0.1+cu118)\n", + "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (67.7.2)\n", + "Collecting jedi>=0.16 (from ipython<8.0.0,>=7.31.1->transformers_interpret)\n", + " Downloading jedi-0.19.0-py2.py3-none-any.whl (1.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m71.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (4.4.2)\n", + "Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (0.7.5)\n", + "Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (5.7.1)\n", + "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (3.0.39)\n", + "Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (2.16.1)\n", + "Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (0.2.0)\n", + "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (0.1.6)\n", + "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (4.8.0)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (3.12.2)\n", + "Requirement already satisfied: huggingface-hub<1.0,>=0.15.1 in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (0.16.4)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (23.1)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (6.0.1)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (2023.6.3)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (2.31.0)\n", + "Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (0.13.3)\n", + "Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (0.3.3)\n", + "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (4.66.1)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.15.1->transformers>=3.0.0->transformers_interpret) (2023.6.0)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.15.1->transformers>=3.0.0->transformers_interpret) (4.7.1)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython<8.0.0,>=7.31.1->transformers_interpret) (0.8.3)\n", + "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython<8.0.0,>=7.31.1->transformers_interpret) (0.7.0)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython<8.0.0,>=7.31.1->transformers_interpret) (0.2.6)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.6->captum>=0.3.1->transformers_interpret) (1.12)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.6->captum>=0.3.1->transformers_interpret) (3.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6->captum>=0.3.1->transformers_interpret) (3.1.2)\n", + "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6->captum>=0.3.1->transformers_interpret) (2.0.0)\n", + "Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.6->captum>=0.3.1->transformers_interpret) (3.27.2)\n", + "Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.6->captum>=0.3.1->transformers_interpret) (16.0.6)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (0.11.0)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (4.42.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (1.4.4)\n", + "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (9.4.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (3.1.1)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (2.8.2)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=3.0.0->transformers_interpret) (3.2.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=3.0.0->transformers_interpret) (3.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=3.0.0->transformers_interpret) (2.0.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=3.0.0->transformers_interpret) (2023.7.22)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib->captum>=0.3.1->transformers_interpret) (1.16.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.6->captum>=0.3.1->transformers_interpret) (2.1.3)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.6->captum>=0.3.1->transformers_interpret) (1.3.0)\n", + "Installing collected packages: jedi, captum, transformers_interpret\n", + "Successfully installed captum-0.6.0 jedi-0.19.0 transformers_interpret-0.10.0\n" + ] + } ], - "text/plain": [ - "" + "source": [ + "!pip install transformers_interpret" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "display(HTML(df.loc[0, \"SUMMARY_GE\"]))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2Gb03bROWNva" - }, - "source": [ - "To get an impression of the most frequent words, we generate a simple word cloud form all English case descriptions.\n", - "By default, the word cloud excludes so-called stop words (such as articles, prepositions, pronouns, conjunctions, etc.),\n", - "which are the most common words and do not add much information to the text." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 542 }, - "id": "fUhYGO10WNvb", - "outputId": "12256faa-ccc0-4689-d1e3-84e69bc35dda", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "word_cloud", - "format": "svg" - } - }, - "data": [ + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "PzHnOM3JZq7G", + "outputId": "5b67ae59-6d9e-4442-a2e6-6eaf1abe0529" + }, + "outputs": [ { - "hovertemplate": "x: %{x}
y: %{y}
color: [%{z[0]}, %{z[1]}, %{z[2]}]", - "name": "0", - "source": "", - "type": "image", - "xaxis": "x", - "yaxis": "y" - } - ], - "layout": { - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: plotly in /usr/local/lib/python3.10/dist-packages (5.15.0)\n", + "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly) (8.2.3)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from plotly) (23.1)\n" ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 640, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "showticklabels": false - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "showticklabels": false } - } - }, - "text/html": [ - "
" + ], + "source": [ + "!pip install plotly" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "text = df[\"SUMMARY_EN\"].str.cat(sep=\" \")\n", - "\n", - "# Create and generate a word cloud image:\n", - "word_cloud = WordCloud(max_words=100, background_color=\"white\").generate(text)\n", - "\n", - "# Display the generated image:\n", - "fig = px.imshow(word_cloud, width=640)\n", - "fig.update_layout(xaxis_showticklabels=False, yaxis_showticklabels=False)\n", - "fig.show(config={\"toImageButtonOptions\": {\"format\": 'svg', \"filename\": \"word_cloud\"}})" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "n8NkwCGKWNvb" - }, - "source": [ - "\n", - "\n", - "## 2. A Brief Introduction to the HuggingFace Ecosystem\n", - "\n", - "This tutorial uses NLP models provided by [*HuggingFace*](https://huggingface.co/).\n", - "\n", - "HuggingFace is a community that builds, trains and deploys state-of-the-art models for natural language processing,\n", - "audio, computer vision etc. HuggingFace's model hub provides thousands of pre-trained models for these applications.\n", - "The [Transformers](https://huggingface.co/docs/transformers/index) library offers functionality to\n", - "quickly download and use those pre-trained models on a given input, fine-tune them on the own datasets\n", - "and then share them with the community.\n", - "The library is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow.\n", - "\n", - "In this notebook, the following elements of the HuggingFace ecosystem will be used:\n", - "\n", - "* datasets – a library to load and process inputs and outputs of the NLP model\n", - "* tokenizers – translating the raw input text into tokens, which are the vocabulary items of a given NLP model\n", - "* models – loading and saving models\n", - "* trainer - training of models, making predictions\n", - "\n", - "In the next sections we will briefly explore the first three components in turn.\n", - "The trainer functionality will be used in [Section 4](#finetuning) of this notebook." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "iBkzTtL6WNvb" - }, - "source": [ - "\n", - "\n", - "### 2.1. Loading the Data into a Dataset\n", - "\n", - "[*Datasets*](https://huggingface.co/docs/datasets/) is a library for easily accessing and sharing datasets,\n", - "and evaluation of metrics for NLP, computer vision, and audio tasks.\n", - "\n", - "A dataset can be loaded in a single line of code, in our case directly from the pandas DataFrame.\n", - "At the same time, we split the dataset into a training (80%) and a test dataset (20%).\n", - "We fix the random seed for the sake of reproducibility." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "id": "g5EUHu8NWNvc", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "dataset = Dataset.from_pandas(df).train_test_split(test_size=0.2, seed=0)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "xJQZP6vFWNvc" - }, - "source": [ - "Since the texts are relatively long, some parts of this notebook require computing resources. Uncomment the following line to reduce the size of the dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "Nw7H4keYWNvc", - "outputId": "2e1aa222-0c72-43b4-ed5e-c28780139651" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "DatasetDict({\n", - " train: Dataset({\n", - " features: ['level_0', 'index', 'SCASEID', 'SUMMARY_EN', 'SUMMARY_GE', 'INJSEVA', 'NUMTOTV', 'WEATHER1', 'WEATHER2', 'WEATHER3', 'WEATHER4', 'WEATHER5', 'WEATHER6', 'WEATHER7', 'WEATHER8', 'INJSEVB', 'words per case summary'],\n", - " num_rows: 5559\n", - " })\n", - " test: Dataset({\n", - " features: ['level_0', 'index', 'SCASEID', 'SUMMARY_EN', 'SUMMARY_GE', 'INJSEVA', 'NUMTOTV', 'WEATHER1', 'WEATHER2', 'WEATHER3', 'WEATHER4', 'WEATHER5', 'WEATHER6', 'WEATHER7', 'WEATHER8', 'INJSEVB', 'words per case summary'],\n", - " num_rows: 1390\n", - " })\n", - "})\n" - ] - } - ], - "source": [ - "# dataset = DatasetDict({\"train\": dataset[\"train\"].select(range(1000)), \"test\": dataset[\"train\"].select(range(250))})\n", - "print(dataset)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "GEYz-kTWWNvc" - }, - "source": [ - "The resulting `DatasetDict` behaves like a Python dictionary.\n", - "Therefore, you can access the `Dataset` corresponding to each split by" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "XJZ211STWNvd", - "outputId": "1cce6d42-a64e-4b5a-9b0f-e92e29d92223", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Dataset({\n", - " features: ['level_0', 'index', 'SCASEID', 'SUMMARY_EN', 'SUMMARY_GE', 'INJSEVA', 'NUMTOTV', 'WEATHER1', 'WEATHER2', 'WEATHER3', 'WEATHER4', 'WEATHER5', 'WEATHER6', 'WEATHER7', 'WEATHER8', 'INJSEVB', 'words per case summary'],\n", - " num_rows: 5559\n", - "})\n" - ] - } - ], - "source": [ - "ds_train = dataset[\"train\"]\n", - "print(ds_train)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "RL4dLtZ5WNvd" - }, - "source": [ - "The `Dataset` object behaves like a normal Python container.\n", - "You can query its length, get rows or columns, etc. For instance, its length is:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "V5KYuXD7WNvd", - "outputId": "1b72a9e6-135e-474e-9f2f-e17aa486114e", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "5559" + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cFmU2CO5Zxe-", + "outputId": "eb908e7d-8147-4661-a391-7e59a086d4d6" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting kaleido\n", + " Downloading kaleido-0.2.1-py2.py3-none-manylinux1_x86_64.whl (79.9 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.9/79.9 MB\u001b[0m \u001b[31m21.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: kaleido\n", + "Successfully installed kaleido-0.2.1\n" + ] + } + ], + "source": [ + "!pip install kaleido" ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(ds_train)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "rYPGO6cBWNvd" - }, - "source": [ - "To query a single row, you can use its index, like in a list: `ds_train[0]`.\n", - "This returns a dictionary representing the row.\n", - "Its elements can be accessed by the column names as keys,\n", - "e.g. `ds_train[0][\"SCASEID\"]`.\n", - "Multiple rows can be accessed by index slices, e.g. `dataset[\"train\"][:2]`,\n", - "or by a list of indices, e.g. `dataset[\"train\"][0, 2]`.\n", - "\n", - "You can list the column names and get their detailed types (called features):" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "m6RObDO1WNve", - "outputId": "489cbfbb-0a6f-4352-982c-e0f23f13088c", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "text/plain": [ - "{'level_0': Value(dtype='int64', id=None),\n", - " 'index': Value(dtype='int64', id=None),\n", - " 'SCASEID': Value(dtype='int64', id=None),\n", - " 'SUMMARY_EN': Value(dtype='string', id=None),\n", - " 'SUMMARY_GE': Value(dtype='string', id=None),\n", - " 'INJSEVA': Value(dtype='int64', id=None),\n", - " 'NUMTOTV': Value(dtype='int64', id=None),\n", - " 'WEATHER1': Value(dtype='int64', id=None),\n", - " 'WEATHER2': Value(dtype='int64', id=None),\n", - " 'WEATHER3': Value(dtype='int64', id=None),\n", - " 'WEATHER4': Value(dtype='int64', id=None),\n", - " 'WEATHER5': Value(dtype='int64', id=None),\n", - " 'WEATHER6': Value(dtype='int64', id=None),\n", - " 'WEATHER7': Value(dtype='int64', id=None),\n", - " 'WEATHER8': Value(dtype='int64', id=None),\n", - " 'INJSEVB': Value(dtype='int64', id=None),\n", - " 'words per case summary': Value(dtype='int64', id=None)}" + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "_z92uLSKWNvS", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "from datasets import Dataset, DatasetDict, load_from_disk\n", + "from transformers import AutoTokenizer, AutoModel, Trainer, TrainingArguments, trainer_utils, AutoModelForMaskedLM,\\\n", + " DataCollatorForLanguageModeling, AutoModelForSequenceClassification, pipeline\n", + "from transformers_interpret import SequenceClassificationExplainer\n", + "import torch\n", + "import pandas as pd\n", + "import numpy as np\n", + "from scipy.special import softmax\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.dummy import DummyClassifier\n", + "from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, f1_score\n", + "import plotly.express as px\n", + "from wordcloud import WordCloud\n", + "\n", + "from tutorial_utils import extract_sequence_encoding, get_xy, dummy_classifier, logistic_regression_classifier, evaluate_classifier" ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ds_train.features" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "yWaiHGOCWNve" - }, - "source": [ - "Later in this tutorial we will get to know methods to process datasets,\n", - "such as filtering the rows based on conditions, and processing the data in each row.\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ZTm6W4KUWNve" - }, - "source": [ - "\n", - "\n", - "### 2.2 Tokenization: Split Raw Text into Vocabulary Items\n", - "\n", - "Next, we convert the summary texts into tokens,\n", - "i.e., the text strings are split into elements of the vocabulary of the NLP model.\n", - "\n", - "As such, the tokenizer and the NLP model need to be aligned.\n", - "Changing the tokenizer after training the model would produce unpredictable results.\n", - "\n", - "Let's start with the model\n", - "[`distilbert-base-multilingual-cased`](https://huggingface.co/distilbert-base-multilingual-cased).\n", - "As the name implies, this model is cased: it does make a difference between \"english\" and \"English\".\n", - "\n", - "The model is trained on the concatenation of Wikipedia in 104 different languages listed\n", - "[here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages).\n", - "The model has 6 layers, 768 dimensions and 12 heads, totalizing 134 million parameters.\n", - "This model is a distilled version of the\n", - "[BERT base multilingual model](https://huggingface.co/bert-base-multilingual-cased)\n", - "which has 177 million parameters.\n", - "On average, the distilled model is twice as fast as the original model.\n", - "\n", - "**If you want to use another model throughout this notebook, please feel free to simply change the following line!**" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "Irl_VYLSWNve", - "outputId": "bff2c06d-4edf-43e8-ff41-f7607bba108f", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c41d4c566c594fa489612f9f492e0806", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "metadata": { + "id": "ut5VN51xWNvT" }, - "text/plain": [ - "Downloading: 0%| | 0.00/29.0 [00:00\n", + "\n", + "### 1.2. Exploring the Data\n", + "\n", + "The data used throughout this tutorial is derived from data of a vehicle crash causation study performed\n", + "in the United States from 2005 to 2007.\n", + "The dataset has almost 7'000 records, each relating to one accident.\n", + "For each case, a verbal description of the accident is available in English,\n", + "which summarizes road and weather conditions,\n", + "vehicles, drivers and passengers involved, preconditions, injury severities, etc.\n", + "The same information is also encoded in tabular form,\n", + "so that we can apply supervised learning techniques to train the NLP models and\n", + "compare the information extracted from the verbal descriptions with the encoded data.\n", + "\n", + "The original data consists of multiple tables. For this tutorial, we have aggregated it into a single dataset\n", + "and added German translations of the English accident descriptions.\n", + "The translations were generated using the new\n", + "[DeepL python API](https://pypi.org/project/deepl/).\n", + "\n", + "To explore the data, let's load it into a Pandas DataFrame and examine its shape, columns and data types:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0fc13388a3db46259b6e2c9d034067ed", - "version_major": 2, - "version_minor": 0 + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RJDyLey0WNvU", + "outputId": "ad5d39e6-986e-4884-d738-f1a4b745813a", + "pycharm": { + "name": "#%%\n" + } }, - "text/plain": [ - "Downloading: 0%| | 0.00/972k [00:00\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "fig = px.bar(df[\"NUMTOTV\"].value_counts().sort_index(), width=640)\n", + "fig.update_layout(title=\"number of cases by number of vehicles\", xaxis_title=\"number of vehicles\",\n", + " yaxis_title=\"number of cases\")\n", + "fig.show(config={\"toImageButtonOptions\": {\"format\": 'svg', \"filename\": \"num_vehicles\"}})" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "367f9396563741b3b2243f027eb039e6", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "metadata": { + "id": "pwcfXawvWNvX" }, - "text/plain": [ - " 0%| | 0/2 [00:00\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "fig=px.bar(x=range(1,9), y=[(df[\"WEATHER\"+str(i)]==1).sum() for i in range(1,9)], width=640)\n", + "fig.update_layout(title=\"number of cases by weather condition\", xaxis_title=\"weather condition\",\n", + " yaxis_title=\"number of cases\")\n", + "fig.show(config={\"toImageButtonOptions\": {\"format\": 'svg', \"filename\": \"weather\"}})" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a34add77047a4d38b88a76b96916b5f7", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "metadata": { + "id": "gVwOVGouWNvY" }, - "text/plain": [ - " 0%| | 0/2 [00:00\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "# statistics of summary length\n", + "df[\"words per case summary\"] = df[\"SUMMARY_EN\"].str.split().apply(len)\n", + "print(f\"Overall number of words by case summary: min {df['words per case summary'].min()}, \"\n", + " f\"average {df['words per case summary'].mean():.0f}, max {df['words per case summary'].max()}\")\n", + "fig = px.box(df, x=\"NUMTOTV\", y=\"words per case summary\", width=640)\n", + "fig.show(config={\"toImageButtonOptions\": {\"format\": 'svg', \"filename\": \"text_length\"}})" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "fba24976bb6a463cb0f12f0e5e6175fc", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "metadata": { + "id": "mrk7jvqtWNvZ" }, - "text/plain": [ - " 0%| | 0/6 [00:00" + ], + "text/html": [ + "V1, a 2000 Pontiac Montana minivan, made a left turn from a private driveway onto a northbound 5-lane two-way, dry asphalt roadway on a downhill grade. The posted speed limit on this roadway was 80 kmph (50 MPH). V1 entered the roadway by crossing over the two southbound lanes and then entering the third northbound lane, which was a left turn-only lane at a 4-way intersection. The driver of V1 intended to travel straight through the intersection, and so he began to change lanes to the right. He did not see V2, a 1994 Pontiac Grand Am, that was traveling in the second northbound lane. The northbound roadway had curved to the right prior to the private driveway that V1 had exited. As V1 began to change lanes to the right, the front of V1 contacted the left rear of V2 before coming to final rest on the roadway.\r \r The driver of V1 was a 60-year old male who reported that he had been traveling between 2-17 kmph (1-10 mph) prior to the crash. He had no health-related problems, and had taken no medication prior to the crash. He was rested and traveling back home. He was wearing his prescribed lenses that corrected a myopic (nearsighted) condition. He did not sustain any injuries from the crash and refused treatment.\r \r The Critical Precrash Event for the driver of V1 was when he began to travel over the lane line on the right side of the travel lane. The Critical Reason for the Critical Precrash Event was inadequate surveillance (failed to look, looked but did not see). Associated factors coded to the driver of V1 include an illegal use of a left turn lane (cited by police) and an unfamiliarity with the roadway. As per the driver of V1, this was the first time he had driven on this roadway. \r \r The driver of V2 was a 28-year old woman who reported that she had been traveling between 66-80 kmph (41-50 mph) prior to the crash. She had no health-related problems, and had taken no medication prior to the crash. She was rested and on her way home. She does not wear corrective lenses. She sustained minor injuries and was transported to a local trauma facility.\r \r The Critical Precrash Event for the driver of V2 was when the other vehicle encroached into her lane, from an adjacent lane (same direction) over the left lane line. The Critical Reason for the Critical Precrash Event was not coded to the driver of V2 and no associated factors were coded to her." + ] + }, + "metadata": {} + } + ], + "source": [ + "display(HTML(df.loc[0, \"SUMMARY_EN\"]))" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "def map_mixed(x, idx):\n", - " return {\"SUMMARY_MX\" : x[\"SUMMARY_GE\"] if idx % 5 == 0 else x[\"SUMMARY_EN\"]}\n", - "dataset = dataset.map(map_mixed, batched=False, with_indices=True)\n", - "dataset_mx = dataset.map(tokenize, batched=True, fn_kwargs={\"column\": \"SUMMARY_MX\"})" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ItDUbmVvWNvi" - }, - "source": [ - "Now we have created three datasets - with the tokenized English, German and mixed language texts, respectively.\n", - "\n", - "We could have stored the results in a single dataset (with different column names),\n", - "but keeping languages separately will make it easier to convince ourselves in the following examples\n", - "that the languages have not been mixed up!" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CMoSQ04TWNvi" - }, - "source": [ - "\n", - "\n", - "### 2.3. Transformer model\n", - "\n", - "After completing the tokenization of the raw texts, we are ready to apply the transformer model,\n", - "in our case the multilingual DistilBERT model.\n", - "\n", - "First, we load the model.\n", - "To speed up the following calculations, we opt for GPU support if available.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "-iKVTkH_WNvi", - "outputId": "fb57c9a2-6c21-4d5d-c854-91446083b71c", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "78af46f672764221a9a83c9d8b3fbd5c", - "version_major": 2, - "version_minor": 0 + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 173 + }, + "id": "74OyQip6WNva", + "outputId": "e96ea679-9fa9-4e56-c666-6318cf34310d", + "pycharm": { + "name": "#%%\n" + } }, - "text/plain": [ - "Downloading: 0%| | 0.00/517M [00:00" + ], + "text/html": [ + "V1, ein Minivan der Marke Pontiac Montana aus dem Jahr 2000, bog von einer privaten Einfahrt nach links auf eine zweispurige, trockene Asphaltstraße mit 5 Fahrspuren in nördlicher Richtung und einem Gefälle ab. Die zulässige Höchstgeschwindigkeit auf dieser Fahrbahn betrug 80 km/h (50 MPH). V1 fuhr auf die Fahrbahn, indem er die beiden Fahrspuren in Richtung Süden überquerte und dann auf die dritte Fahrspur in Richtung Norden einfuhr, die an einer Kreuzung mit vier Fahrspuren nur für Linksabbieger vorgesehen war. Der Fahrer von V1 beabsichtigte, geradeaus über die Kreuzung zu fahren, und begann daher, die Spur nach rechts zu wechseln. Dabei übersah er V2, einen Pontiac Grand Am von 1994, der auf der zweiten Fahrspur in Richtung Norden unterwegs war. Die Fahrbahn in nördlicher Richtung war vor der privaten Einfahrt, aus der V1 herausgefahren war, nach rechts gebogen. Als V1 begann, die Spur nach rechts zu wechseln, berührte die Front von V1 das linke Heck von V2, bevor er auf der Fahrbahn zum Stehen kam. Der Fahrer von V1 war ein 60-jähriger Mann, der angab, vor dem Unfall mit einer Geschwindigkeit von 2 bis 17 km/h unterwegs gewesen zu sein. Er hatte keine gesundheitlichen Probleme und hatte vor dem Unfall keine Medikamente eingenommen. Er war ausgeruht und auf dem Weg nach Hause. Er trug die ihm verschriebenen Kontaktlinsen, die eine Kurzsichtigkeit korrigieren. Er zog sich bei dem Unfall keine Verletzungen zu und lehnte eine Behandlung ab. Das kritische Ereignis vor dem Unfall war für den Fahrer von V1, als er begann, die Fahrspurlinie auf der rechten Seite der Fahrbahn zu überfahren. Der kritische Grund für das kritische Ereignis vor dem Unfall war unzureichende Überwachung (nicht hingesehen, hingesehen, aber nicht gesehen). Zu den assoziierten Faktoren, die dem Fahrer von V1 zugeschrieben werden, gehören das illegale Benutzen einer Linksabbiegerspur (von der Polizei verwarnt) und die Unkenntnis der Fahrbahn. Für den Fahrer von V1 war es das erste Mal, dass er diese Fahrbahn befuhr. \r \r Bei der Fahrerin von V2 handelte es sich um eine 28-jährige Frau, die angab, vor dem Unfall mit einer Geschwindigkeit von 66-80 km/h unterwegs gewesen zu sein. Sie hatte keine gesundheitlichen Probleme und hatte vor dem Unfall keine Medikamente eingenommen. Sie war ausgeruht und befand sich auf dem Heimweg. Sie trägt keine Korrekturgläser. Sie erlitt leichte Verletzungen und wurde in eine örtliche Unfallklinik gebracht. Das kritische Ereignis vor dem Unfall war für die Fahrerin von V2, als das andere Fahrzeug von einer benachbarten Fahrspur (gleiche Richtung) über die linke Fahrspurlinie in ihre Spur eindrang. Der kritische Grund für das kritische Vorunfallereignis wurde der Fahrerin von V2 nicht zugeordnet, und es wurden ihr keine zugehörigen Faktoren zugeordnet." + ] + }, + "metadata": {} + } + ], + "source": [ + "display(HTML(df.loc[0, \"SUMMARY_GE\"]))" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "Some weights of the model checkpoint at distilbert-base-multilingual-cased were not used when initializing DistilBertModel: ['vocab_transform.weight', 'vocab_layer_norm.bias', 'vocab_transform.bias', 'vocab_projector.weight', 'vocab_layer_norm.weight', 'vocab_projector.bias']\n", - "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", - "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" - ] - } - ], - "source": [ - "# load model\n", - "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", - "torch.manual_seed(42) # for reproducibility, set random seed before instantiating the model \n", - "model = AutoModel.from_pretrained(model_name).to(device)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "6SjLBsnHWNvi" - }, - "source": [ - "The warning message can be ignored for our application.\n", - "\n", - "Let's examine the model structure:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "G9_RcTV-WNvj", - "outputId": "ddf78938-3405-4237-b229-81a0d42edd06", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "DistilBertModel(\n", - " (embeddings): Embeddings(\n", - " (word_embeddings): Embedding(119547, 768, padding_idx=0)\n", - " (position_embeddings): Embedding(512, 768)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " (transformer): Transformer(\n", - " (layer): ModuleList(\n", - " (0): TransformerBlock(\n", - " (attention): MultiHeadSelfAttention(\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " (q_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (k_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (v_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (out_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " )\n", - " (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", - " (ffn): FFN(\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " (lin1): Linear(in_features=768, out_features=3072, bias=True)\n", - " (lin2): Linear(in_features=3072, out_features=768, bias=True)\n", - " (activation): GELUActivation()\n", - " )\n", - " (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", - " )\n", - " (1): TransformerBlock(\n", - " (attention): MultiHeadSelfAttention(\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " (q_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (k_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (v_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (out_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " )\n", - " (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", - " (ffn): FFN(\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " (lin1): Linear(in_features=768, out_features=3072, bias=True)\n", - " (lin2): Linear(in_features=3072, out_features=768, bias=True)\n", - " (activation): GELUActivation()\n", - " )\n", - " (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", - " )\n", - " (2): TransformerBlock(\n", - " (attention): MultiHeadSelfAttention(\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " (q_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (k_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (v_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (out_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " )\n", - " (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", - " (ffn): FFN(\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " (lin1): Linear(in_features=768, out_features=3072, bias=True)\n", - " (lin2): Linear(in_features=3072, out_features=768, bias=True)\n", - " (activation): GELUActivation()\n", - " )\n", - " (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", - " )\n", - " (3): TransformerBlock(\n", - " (attention): MultiHeadSelfAttention(\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " (q_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (k_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (v_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (out_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " )\n", - " (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", - " (ffn): FFN(\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " (lin1): Linear(in_features=768, out_features=3072, bias=True)\n", - " (lin2): Linear(in_features=3072, out_features=768, bias=True)\n", - " (activation): GELUActivation()\n", - " )\n", - " (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", - " )\n", - " (4): TransformerBlock(\n", - " (attention): MultiHeadSelfAttention(\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " (q_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (k_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (v_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (out_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " )\n", - " (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", - " (ffn): FFN(\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " (lin1): Linear(in_features=768, out_features=3072, bias=True)\n", - " (lin2): Linear(in_features=3072, out_features=768, bias=True)\n", - " (activation): GELUActivation()\n", - " )\n", - " (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", - " )\n", - " (5): TransformerBlock(\n", - " (attention): MultiHeadSelfAttention(\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " (q_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (k_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (v_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " (out_lin): Linear(in_features=768, out_features=768, bias=True)\n", - " )\n", - " (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", - " (ffn): FFN(\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " (lin1): Linear(in_features=768, out_features=3072, bias=True)\n", - " (lin2): Linear(in_features=3072, out_features=768, bias=True)\n", - " (activation): GELUActivation()\n", - " )\n", - " (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", - " )\n", - " )\n", - " )\n", - ")" + "cell_type": "markdown", + "metadata": { + "id": "2Gb03bROWNva" + }, + "source": [ + "To get an impression of the most frequent words, we generate a simple word cloud form all English case descriptions.\n", + "By default, the word cloud excludes so-called stop words (such as articles, prepositions, pronouns, conjunctions, etc.),\n", + "which are the most common words and do not add much information to the text." ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "X3lhtdAsWNvj", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "As we can see, the first block of the model deals with embeddings, with the word embedding as the first layer.\n", - "This is followed by the transformer which consists of 6 transformer blocks.\n", - "\n", - "Let's first explore the word embedding.\n", - "\n", - "The goal of the word embedding layer is to assign each element of the vocabulary a vector of length $E$.\n", - "\n", - "The multilingual DistilBERT model has a vocabulary of size $V=119'547$ and a word embedding size of $E=768$.\n", - "We can confirm this by looking at the dimension of the word embedding weight tensor:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "k9yHSGD0WNvj", - "outputId": "8c3ea6f3-0b8a-48a6-8a59-c79d03c7f7c1" - }, - "outputs": [ { - "data": { - "text/plain": [ - "Embedding(119547, 768, padding_idx=0)" + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 542 + }, + "id": "fUhYGO10WNvb", + "outputId": "6e65c641-c672-4f47-dabd-b3fe523e63ec", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "text = df[\"SUMMARY_EN\"].str.cat(sep=\" \")\n", + "\n", + "# Create and generate a word cloud image:\n", + "word_cloud = WordCloud(max_words=100, background_color=\"white\").generate(text)\n", + "\n", + "# Display the generated image:\n", + "fig = px.imshow(word_cloud, width=640)\n", + "fig.update_layout(xaxis_showticklabels=False, yaxis_showticklabels=False)\n", + "fig.show(config={\"toImageButtonOptions\": {\"format\": 'svg', \"filename\": \"word_cloud\"}})" ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.embeddings.word_embeddings" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "zPHwjjcAWNvj" - }, - "source": [ - "To see the outputs of the transformer encoder, let's apply the transformer to the first record of the dataset,\n", - "more precisely to its columns `input_ids` and `attention_mask`, the outputs of the tokenizer:" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "S7E9tRVZWNvk", - "outputId": "d943aa09-e288-4b2a-a233-6627faf829a7", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BaseModelOutput(last_hidden_state=tensor([[[ 0.1148, -0.0254, 0.1447, ..., 0.1937, 0.0804, -0.2158],\n", - " [ 0.1216, -0.5199, 0.6924, ..., 0.2711, -0.2492, -0.0172],\n", - " [-0.4065, -0.0786, 0.3362, ..., -0.2183, 0.0278, 0.1635],\n", - " ...,\n", - " [-0.1276, -0.4791, -0.1539, ..., 0.0442, -0.2272, 0.1089],\n", - " [-0.1577, -0.4097, -0.2176, ..., 0.0154, -0.2008, -0.1374],\n", - " [-0.1855, -0.4261, -0.1884, ..., -0.0515, -0.0600, -0.3426]]],\n", - " device='cuda:0'), hidden_states=None, attentions=None)\n" - ] - } - ], - "source": [ - "example = dataset_en[\"train\"][:1]\n", - "\n", - "input_ids = torch.tensor(example[\"input_ids\"]).to(device)\n", - "attention_mask = torch.tensor(example[\"attention_mask\"]).to(device)\n", - "with torch.no_grad():\n", - " output = model(input_ids, attention_mask)\n", - "print(output)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "U9cBNUetWNvk", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "This produces a `BaseModelOutput` object which has a named property `last_hidden_state`,\n", - "a tensor that represents the hidden state of the final transformer block, i.e. the encoded text sequence!\n", - "\n", - "The dimension of the last hidden state is:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "hkenZ_7pWNvk", - "outputId": "eaa565c5-abc7-4b3d-8ddc-dc32f465cff1", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "dimensions of last hidden state: torch.Size([1, 512, 768])\n" - ] - } - ], - "source": [ - "print(\"dimensions of last hidden state: \", output.last_hidden_state.size())" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ImR3xLwLWNvl" - }, - "source": [ - "i.e., \\[number of samples (1), sequence length $T$ (maximum 512 tokens), embedding size $E$ (768)\\].\n", - "\n", - "In what follows, we will use the information contained in this tensor to make predictions.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "4D2hUjC1WNvl", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "\n", - "\n", - "## 3. Using Transformers to Extract Features for Classification or Regression Tasks \n", - "\n", - "In this section you will learn how transformers can be used to extract features from text data for a classification\n", - "or regression problem.\n", - "\n", - "The idea is simple: The tokenized raw text data is encoded by the transformer model,\n", - "and the features are extracted from the last hidden state.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "yowxi5sPWNvl" - }, - "source": [ - "\n", - "\n", - "### 3.1. Extracting the Encoded Text\n", - "\n", - "Before we have seen that the DistilBERT model encodes *each token* of each input sample into a tensor\n", - "of length $E=768$.\n", - "As such, the output of the transformer model depends on the length of the input sequences.\n", - "To make predictions, we would prefer having a single vector per input sample, independent of the sequence length.\n", - "\n", - "Different approaches are available to achieve this goal:\n", - "* Use the tensor corresponding to the `CLS` token, which is the first token of the input sequence in BERT models.\n", - "* *Mean pooling*: Taking the average of the tensors over all elements of the sequence.\n", - " Here, the tensors corresponding to a `PAD` token should be excluded because they don't carry any information.\n", - "\n", - "We will implement both techniques and compare results.\n", - "\n", - "In the following cell we display a short function which applies the NLP model to a batch of encoded input samples,\n", - "extracts the last hidden state, and returns two tensors of length 768 for each input sample,\n", - "corresponding to the two methods explained before.\n", - "\n", - "The cell is not executable, because the function is already defined in the module `tutorial_utils` we imported initially." - ] - }, - { - "cell_type": "raw", - "metadata": { - "id": "b31jpyUBWNvl", - "pycharm": { - "name": "#%%\n" - } - }, - "source": [ - "```\n", - "def extract_sequence_encoding(batch, model):\n", - " input_ids = torch.tensor(batch[\"input_ids\"]).to(model.device)\n", - " attention_mask = torch.tensor(batch[\"attention_mask\"]).to(model.device)\n", - " with torch.no_grad():\n", - " # apply transformer model and extract last hidden state\n", - " model_output = model(input_ids, attention_mask)\n", - " last_hidden_state = model_output.last_hidden_state\n", - "\n", - " # extract the tensor corresponding to the CLS token, i.e. the first element in the encoded sequence\n", - " batch[\"cls_hidden_state\"] = last_hidden_state[:,0,:].cpu().numpy()\n", - "\n", - " # mean pooling: take average over input sequence, but mask sequence elements corresponding to the PAD token\n", - " last_hidden_state = last_hidden_state.cpu().numpy()\n", - " lhs_shape = last_hidden_state.shape\n", - " boolean_mask = ~np.array(batch[\"attention_mask\"]).astype(bool)\n", - " boolean_mask = np.repeat(boolean_mask, lhs_shape[-1], axis=-1)\n", - " boolean_mask = boolean_mask.reshape(lhs_shape)\n", - " masked_mean = np.ma.array(last_hidden_state, mask=boolean_mask).mean(axis=1)\n", - " batch[\"mean_hidden_state\"] = masked_mean.data\n", - " return batch\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ikSaZs83WNvm" - }, - "source": [ - "Let's apply this function to the first sample of the training data:" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "n8tYVkL4WNvn", - "outputId": "ce8f5a48-c248-4b77-bda0-d80ac2ed829b", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "dict_keys(['level_0', 'index', 'SCASEID', 'SUMMARY_EN', 'SUMMARY_GE', 'INJSEVA', 'NUMTOTV', 'WEATHER1', 'WEATHER2', 'WEATHER3', 'WEATHER4', 'WEATHER5', 'WEATHER6', 'WEATHER7', 'WEATHER8', 'INJSEVB', 'words per case summary', 'input_ids', 'attention_mask', 'cls_hidden_state', 'mean_hidden_state'])\n" - ] - } - ], - "source": [ - "example = dataset_en[\"train\"][:1]\n", - "result = extract_sequence_encoding(example, model)\n", - "print(result.keys())" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Fly05NyXWNvo" - }, - "source": [ - "As desired, two additional columns `cls_hidden_state` and `mean_hidden_state` were appended.\n", - "\n", - "Therefore, the function can be supplied to the familiar `map` function\n", - "to add corresponding columns to the original dataset.\n", - "The following lines do this for the full datasets.\n", - "\n", - "On an AWS EC2 p2.xlarge instance, the run time is amore than 10 minutes.\n", - "We save the resulting datasets to disk." - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 209, - "referenced_widgets": [ - "1e350ddc7a184e9fb01ec7f490836576", - "3094d38a8ac9479d92caaa5444ecb62a", - "d5e05cd88ad14e41980d1b253f93c542", - "cf01bb4ec1144cacb886b25b44af67ed", - "281149b222b045c991ab3c9fea53ceec", - "b13d3704f3c6432a9408375be0556c97", - "267f7d6137de4e1b88240e6483da2dad", - "9a441cf6f75747eeac6310b9e0fe08cc", - "7824dc97640847608bb97da2db2d6aa4", - "5d9e94a4feb34784b24bc513599d4a54", - "1bb5e367be52440fb8add911e22eeb83", - "7ce2f7d8bc6a44618688936353a37330", - "e966521802074ba68f04424740130e08", - "69633d2fa8234b52bb3f3eb4dbd87d08", - "9b59a70648a14c4cbf6b1e6df6383ab8", - "265f5fc84e73428691c772ce3426b6f6", - "60d39ea12b874769a4d223296d67152c", - "cd550bcf6961407bb6c8f75577f7ca08", - "ff9ac90ff816467d963f9b51f2effef4", - "d06add58c8164c1ebffa2b65c1e87ad7", - "c5e7f5e9f939416cb2af307a98c83bb1", - "7347cba438154bc8aed73868dc35c445", - "2353cbea224443e5b5c36ab284fd13ef", - "a32b4fb588d84aceac9704d835a7bf72", - "18ab3dfbab15469b9fda4a07deea726a", - "07cabc97a6344587b695bc1db82eb0d9", - "4d6de2caee2842778b91db4d8ee24679", - "cfce1c3c74d64cc4a9c4cb7f0c371d9d", - "4bbdb34f5c334aeca6e644ce38beeab5", - "2a0c5948df1546eca18eb1cb27471210", - "494d49177a3342b19f7a73b4269a8caa", - "046ba28d144d4f0487e62d2b80b9391d", - "32096c15964a435bb3f070d98ce14d35", - "ac9f6b5594c648008dca380d0149defc", - "e392ec75d57e4e29a217381936effffe", - "3fe0965263de4256ad37e812299876dd", - "70e0eef3de3e4df793d40ec2e9351edc", - "3f59b5c329444641bf18458306413f5d", - "e04b516ce7564b08aa97d9b160d3e130", - "e677db525c604d3dab52d6f136eb392a", - "bcb79ae229064500a151d4a8ecab751f", - "7eb43988b32d4f24a307ff02a806b632", - "5f39226ffc4048fc856499f43a13b39b", - "59784aba641549b7b11f2973cadc9f86", - "77015a5bca3842babc35a6c65c7bff7e", - "3c5344baa2334f52abf6d78bd89a6fc8", - "cccf48967d2c44efa89c29a2f9de402e", - "5a78a1ea17394ed6962c0c7c32ae19c6", - "a15544954d0e4baba31c152d42dadc8c", - "b75b3ba25009492bbad854d7112f1346", - "99b1f562cb6c4003adf1bdfa4f398305", - "0e0a1ba9359c485b8061285dedb6e13f", - "75407e9f3abb40069a72eecd51786b5d", - "1c73d68385a748de8346f790a31502c1", - "63cd13ae90fa44d1901adc868f181c0a", - "9e2d45e11af74aec8a296d945421c994", - "ad627b80e74c4416b41e6fb27a9c7b30", - "ebf4686e27b1464daea3bb1972ee2b78", - "95ddaeea7f3b4865878ec58175504159", - "3e1551afeac1478f9099ffd6e61ac492", - "b8280e22b8b744ef9029cf61b4708227", - "f4338786226b43fa9a74e856ad80e100", - "c37f24466c254b0bbb33fff09d4ddb30", - "c90825a6812347f7bc1d17a917e95c2a", - "7ef7f55f8af64a23be8ca73bee56cf04", - "3c54d43506f24c9198f2900c01869613" - ] + "cell_type": "markdown", + "metadata": { + "id": "n8NkwCGKWNvb" + }, + "source": [ + "\n", + "\n", + "## 2. A Brief Introduction to the HuggingFace Ecosystem\n", + "\n", + "This tutorial uses NLP models provided by [*HuggingFace*](https://huggingface.co/).\n", + "\n", + "HuggingFace is a community that builds, trains and deploys state-of-the-art models for natural language processing,\n", + "audio, computer vision etc. HuggingFace's model hub provides thousands of pre-trained models for these applications.\n", + "The [Transformers](https://huggingface.co/docs/transformers/index) library offers functionality to\n", + "quickly download and use those pre-trained models on a given input, fine-tune them on the own datasets\n", + "and then share them with the community.\n", + "The library is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow.\n", + "\n", + "In this notebook, the following elements of the HuggingFace ecosystem will be used:\n", + "\n", + "* datasets – a library to load and process inputs and outputs of the NLP model\n", + "* tokenizers – translating the raw input text into tokens, which are the vocabulary items of a given NLP model\n", + "* models – loading and saving models\n", + "* trainer - training of models, making predictions\n", + "\n", + "In the next sections we will briefly explore the first three components in turn.\n", + "The trainer functionality will be used in [Section 4](#finetuning) of this notebook." + ] }, - "id": "B6vH7oZ8WNvo", - "outputId": "a7c06bb5-b8b0-41de-eeb3-e4b49cd56c23", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "06561ab395c642038aa26010867a695f", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "metadata": { + "id": "iBkzTtL6WNvb" }, - "text/plain": [ - " 0%| | 0/348 [00:00\n", + "\n", + "### 2.1. Loading the Data into a Dataset\n", + "\n", + "[*Datasets*](https://huggingface.co/docs/datasets/) is a library for easily accessing and sharing datasets,\n", + "and evaluation of metrics for NLP, computer vision, and audio tasks.\n", + "\n", + "A dataset can be loaded in a single line of code, in our case directly from the pandas DataFrame.\n", + "At the same time, we split the dataset into a training (80%) and a test dataset (20%).\n", + "We fix the random seed for the sake of reproducibility." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "5af5a48ac97c4376b105eabb22067904", - "version_major": 2, - "version_minor": 0 + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "g5EUHu8NWNvc", + "pycharm": { + "name": "#%%\n" + } }, - "text/plain": [ - " 0%| | 0/87 [00:00\n", - "\n", - "### 3.2. ... and Using It in a Classification Model\n", - "\n", - "We will now use the encoded texts as features to predict labels taken from certain tabular information available in the dataset.\n", - "\n", - "To this end, we use the following convenience functions implemented in `tutorial_utils.py`:\n", - "\n", - "* `x_train, y_train, x_test, y_test = get_xy(dataset, features, label)`
\n", - " get numpy arrays corresponding features (x) and label (y) corresponding to the train and test split of the `dataset`where the encoded sentences are stored in the column `features` and the labels in the column `label`.

\n", - " \n", - "* `clf = logistic_regression_classifier(x, y, c=1)`
\n", - " fit and return a multinomial [Logistic Regression classifier](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) to features `x`, and labels `y`. L2-penalty is controlled by the hyper-parameter `c`.

\n", - " \n", - "* `clf = dummy_classifier(x, y):`
\n", - " fit and return a [Dummy classifier](https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html) to features `x`, and labels `y`. This classifier predicts always the most frequent class and `predict_proba` always returns the empirical class distribution of `y`.

\n", - " \n", - "* `score_accuracy, score_log, score_brier, confusion_matrix, fig = evaluate_classifier(y_true, y_pred, p_pred, target_names, display_title_string, file_name)`
\n", - " Calculate and display performance metrics of a classifier. The return value `fig` is a ploty figure representing the confusion matrix plot. The following inputs are expected:
\n", - " * the true labels `y_true` (array-like);\n", - " * either the predicted labels `y_pred` (array_like), in which case the log loss and Brier score are not evaluated;\n", - " * or the predicted probabilities `p_pred` (array_like);\n", - " * a display title string;\n", - " * a file name for exporting the figure, or `None`.\n", - "\n", - "Now the toolbox is ready!\n", - "\n", - "Next, we apply it to a simple classification task." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "XKHtvwGHWNvp" - }, - "source": [ - "\n", - "\n", - "### 3.3. Case Study: Use Accident Descriptions to Predict the Number of Vehicles Involved\n", - "\n", - "In this case study, we will predict the number of vehicles involved in an accident from the verbal accident description.\n", - "\n", - "Since the data set contains the column `NUMTOTV`, we can adopt a supervised learning approach.\n", - "\n", - "We might consider framing the problem as a regression task, e.g. using Poisson regression. However, looking at the frequenca distribution of `NUMTOTV`, it apears unlikely that the Poisson distribution is a good reflection of reality. First, there are no accidents with zero vehicles involved - it takes at least one. So we might consider using a zero-truncated Poisson model. However, the empirical frequency distribution has low mass at high vehicle counts, so that this would not be a plausible model either.\n", - "\n", - "Therefore, we frame the prediction task as multinomial classification. Given that only a small fraction of cases involves four or more vehicles,\n", - "and to avoid a heavily imbalanced classification problem, we map these cases to an aggregated class \"3+\".\n", - "\n", - "To achieve this, we map the column `NUMTOTV` to a new column `labels`, with levels 0 (1 vehicle), 1 (2 vehicles) and 2 (3 or more vehicles).\n", - "We choose the column name `labels` because this is expected by the sequence classification model which we fit in Section [4.2](#task_finetuning)." - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 244, - "referenced_widgets": [ - "430bf1b21606472aa541e6423c0ac43b", - "42145c3ccc5e48b4bb23d974715d0b11", - "5a4b4b1adb4e4bb188dd1f7ed71f089f", - "1c00c9c5fd234c54a3ab8756699b4d40", - "d6825d6f10924739bf10d81edfd5c84a", - "a73186191ecf4353b3f5e3bb7f2d94d3", - "1e62dbd1fa1745ab908c9a8d5db0f750", - "86f94bad311044eb8066703b39e40121", - "a6c33606d46d400e98e46fafb586c5d2", - "35344cd7a45b44128daad7df28986f37", - "517772e266044ac1a1e1407dc5d12227", - "763ffc72756941a1854763b294b5c871", - "d5f1c97cdad848068fed6b0f06c07afb", - "6d59e06f5db94fe4818dc85ffc8c3089", - "3e34eba0f8e34c8f814433e24e07d436", - "b3eb57f4e79f4f3c9d6d62efae5da1d3", - "3618eac4a80a4e2e9677d19b544135c5", - "439e2eee786f4272aed8b684a17cdafa", - "028a6d6a89c447b7bba4753295476731", - "257d359deb9a4cdb83eb2164ce48083a", - "cf988d969ef04a3aa5bbcde0d7ac09e2", - "5d719c4d45f141fa8b328bbce59b5d98", - "141f11d2514341c3bd399fadf7d429ae", - "73ca783459a646d5aec2d5eee52265f4", - "56ffb36a4f8948d48e747a9cbe3db97c", - "131900aa273a480c852f75ec3caf9378", - "7b2870dee15b445ea4498915a6c4543f", - "85f11446b83142ec8415fa1f04899c75", - "8243f6ee3d974869bbb22616367e64c4", - "0db71979d1ad44e3a1e519ddf5763b99", - "95ca6fa48aa44adaa25d982f1b214d46", - "db62481b1ae647c5a122f5359c51b40a", - "04a9331c6058401bb5dd23d473347658", - "4bd82d5e76dc43c89cce1a002ae082e5", - "99b9e940f3d1401ca2532b4ec64eeb93", - "d79c62b38d814bc7b63c8a91b427aa09", - "84273afd4621449dbd6c0229e439764a", - "975e6ad2a3644593ae306df519065845", - "e894b1842a64465987af3b474b77bf36", - "e30939ad29f04037b8d878488d9a99e4", - "cc371b372fd44de0931a6758dd815034", - "e4c534694dbd42d3a1384bcae064f07b", - "d518b8cb9c094af2ac47fc6df5909433", - "e893479db5354115a76f1f25c9ff8457", - "18d026f74f9949b2b3ac898b17b03cb4", - "071a8d5ef72341c8ad8bbc5c9d4d3cf5", - "29efaa3369d34f53a4b2a62c3d7cfcad", - "5d25939a166e46268687e1f00cafbcae", - "a83cdbe2f5e9405585a5149de379d4fe", - "4038760426604230ab1b194ce03ab272", - "4524d9dd9ba04c309532068036c14d14", - "4d50610424d44ed49053b14220c36f13", - "b00ae04a358d44d0982defa9376db171", - "2829641b00e348d897f413a85a71a50c", - "fe65a6feeb894beb9c5739b11d87ec02", - "3c5bd797dd4b4b03a43bc549500e1e4c", - "10aea956d59c47168b714d45e5cf5594", - "f7ade8392b1642c99f15a0d86211a8d4", - "1236b2afd7f2459ba184a0595fdc9873", - "62ffc944ecfa45c0ae0e9eb9cd699be0", - "94595135c7ad457fa6188a66d4c03ec1", - "9f44c5ab3c5241dcbf6d28983e940b09", - "8b1ed8c83a104aacb955b714661de181", - "2487db3328ab4c0d96a883f58ab66a1e", - "c1561595e0744aa3a9eb5a4aa2f1cca6", - "1d17eacf5f8343cb82e645d31134d145" - ] + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Dataset({\n", + " features: ['level_0', 'index', 'SCASEID', 'SUMMARY_EN', 'SUMMARY_GE', 'INJSEVA', 'NUMTOTV', 'WEATHER1', 'WEATHER2', 'WEATHER3', 'WEATHER4', 'WEATHER5', 'WEATHER6', 'WEATHER7', 'WEATHER8', 'INJSEVB', 'words per case summary'],\n", + " num_rows: 5559\n", + "})\n" + ] + } + ], + "source": [ + "ds_train = dataset[\"train\"]\n", + "print(ds_train)" + ] }, - "id": "LFE7syyMWNvp", - "outputId": "54d674fb-de07-4428-d7b1-a76ba8b1bc61", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a2d31bc0bade498daee30b90900905b3", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "metadata": { + "id": "RL4dLtZ5WNvd" }, - "text/plain": [ - " 0%| | 0/5559 [00:00\n", + "\n", + "### 2.2 Tokenization: Split Raw Text into Vocabulary Items\n", + "\n", + "Next, we convert the summary texts into tokens,\n", + "i.e., the text strings are split into elements of the vocabulary of the NLP model.\n", + "\n", + "As such, the tokenizer and the NLP model need to be aligned.\n", + "Changing the tokenizer after training the model would produce unpredictable results.\n", + "\n", + "Let's start with the model\n", + "[`distilbert-base-multilingual-cased`](https://huggingface.co/distilbert-base-multilingual-cased).\n", + "As the name implies, this model is cased: it does make a difference between \"english\" and \"English\".\n", + "\n", + "The model is trained on the concatenation of Wikipedia in 104 different languages listed\n", + "[here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages).\n", + "The model has 6 layers, 768 dimensions and 12 heads, totalizing 134 million parameters.\n", + "This model is a distilled version of the\n", + "[BERT base multilingual model](https://huggingface.co/bert-base-multilingual-cased)\n", + "which has 177 million parameters.\n", + "On average, the distilled model is twice as fast as the original model.\n", + "\n", + "**If you want to use another model throughout this notebook, please feel free to simply change the following line!**" ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[2, 1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 3, 2, 1, 3, 4, 1, 3, 1, 2, 1, 2, 2, 4, 2, 2, 2, 4, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2]\n", - "[1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 0, 2, 2, 0, 2, 0, 1, 0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1]\n" - ] - } - ], - "source": [ - "dataset_en = load_from_disk(\"./datasets/dataset_en\")\n", - "dataset_ge = load_from_disk(\"./datasets/dataset_ge\")\n", - "dataset_mx = load_from_disk(\"./datasets/dataset_mx\")\n", - "\n", - "# map number of vehicles to a new column \"labels\"\n", - "labels = [\"1\", \"2\", \"3+\"]\n", - "d = {i: min(i-1, 2) for i in range(1,10)}\n", - "dataset_en = dataset_en.map(lambda x: {\"labels\": d[x[\"NUMTOTV\"]]}) \n", - "dataset_ge = dataset_ge.map(lambda x: {\"labels\": d[x[\"NUMTOTV\"]]})\n", - "dataset_mx = dataset_mx.map(lambda x: {\"labels\": d[x[\"NUMTOTV\"]]})\n", - "print(dataset_en[\"train\"][\"NUMTOTV\"][:40])\n", - "print(dataset_en[\"train\"][\"labels\"][:40])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Tpr-a2TqWNvp", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "As explained in Section [3.1](#extract_encoding), we will explore two different ways to use encoded texts:\n", - "1. Use the hidden state corresponding to the `CLS` token, which is the first token of the input sequence in BERT models.\n", - "2. *Mean pooling*: Taking the average of the tensors over all elements of the sequence.\n", - "\n", - "Let's start with the first approach by using the feature `cls_hidden_state` produced in Section [3.1](#extract_encoding).\n", - "\n", - "Using the toolbox developed before we fit a dummy classifier and a logistic regression classifier to the features and\n", - "labels of the English dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 768 - }, - "id": "fnUHw7xVWNvp", - "outputId": "b0a346e9-3c0e-4f59-be6d-8b2fe5be0a72", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Dummy classifier\n", - "accuracy score = 57.2%, log loss = 0.961, Brier loss = 0.574\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 0.00 0.00 0.00 389\n", - " 2 0.57 1.00 0.73 795\n", - " 3+ 0.00 0.00 0.00 206\n", - "\n", - " accuracy 0.57 1390\n", - " macro avg 0.19 0.33 0.24 1390\n", - "weighted avg 0.33 0.57 0.42 1390\n", - "\n" - ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_dummy", - "format": "svg" + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 180, + "referenced_widgets": [ + "98b5663a1ddb40c6981d40238ed75f0a", + "cf5434b668cd4c1ea48d50451781aa2c", + "5f51063c060747c29258f3397d95cd41", + "f1f57bc9762a474c8c5f58a1a3382432", + "9f6b3d091fac4b73a7abf40d2330ea8d", + "fbda555247024cd88ba591b185de48b9", + "551c0cda446244f0aee1623fe4de7b71", + "9bfa5a1f66f84deba2e358a2b6cb286b", + "b825b5d945624e7c946f6a0411343f49", + "f2f1d5051b414acd8b940e078f255cdf", + "5aa9ca17b85f4170b7515fca94a27c04", + "9e025774336d41f99202cc8e783f2aa9", + "fda84d00961941af87410431b8f12a63", + "3a6351a4a95b46e6b1b527bb2a62082e", + "530508480403461687b31c9e3c9092d0", + "a3c3f1d46daa46089c29e6367db80e32", + "eb1ad44d35c0469a9f234c159ac8874a", + "455195e642434214baf41acf37e91cf4", + "e70f13f1083845deade56d7911329d53", + "f5c739f99241476990b02cf2630239ef", + "4d748059485244c0bacdcea2f4978d41", + "2f7ede5d9a41405882ad73c0299c129e", + "0a31ec3ef0b042dd8683584ca8c6aec7", + "e9f6a793519c4fb6ae4eeb74752e80ac", + "ee58735741864d3c9bb2cf67bdac6cf7", + "36e0caf7c4c44f46bc96f17ac11464e5", + "5c53b40e78354a6da75ef6dce51fd203", + "05f7ce05e9894d6bb49b5d259328fb9d", + "765d8c6396f448868fae13a882772d7d", + "aa6d0b49af9f45569e9988d38992cbf2", + "7a2e04cb21e342f38852298090a4506f", + "5a94aa5351724f14a53395b48709222f", + "029dc684cefb4c629e7897330a60dec0", + "f152d155899045b48182b775041a6a27", + "0e3d52305d8d4c0f85eb090fe00e5cde", + "6ba99193f9bf4838b35bae8493283a44", + "6c1f962313024cb28cde3bee68f4c9a2", + "3675a709a80d45e8aa9c29183c65f1f9", + "aa5e0dd4211048029a6e6846ae26d91f", + "5d16e5d516d44604974be29732afd396", + "fd7fde3740594e89b5ee68e9bc5d7a13", + "d18d23296a904667ab6a7f85f599e79f", + "085f58f3e0d043f8b5b2831a1e2a1b54", + "fcec0374bfd3446cbc183057a3f8e28f" + ] + }, + "id": "Irl_VYLSWNve", + "outputId": "775f3917-2423-4cf0-b860-22d70b3411e9", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading (…)okenizer_config.json: 0%| | 0.00/29.0 [00:00y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 0, - 389, - 0 - ], - [ - 0, - 795, - 0 - ], - [ - 0, - 206, - 0 + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading (…)lve/main/config.json: 0%| | 0.00/466 [00:00predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + ], + "source": [ + "model_name = \"distilbert-base-multilingual-cased\"\n", + "\n", + "# load tokenizer\n", + "tokenizer = AutoTokenizer.from_pretrained(model_name)\n", + "print(f\"Tokenizer vocab_size: {tokenizer.vocab_size}\")\n", + "print(f\"Tokenizer model_max_length (maximum context size): {tokenizer.model_max_length}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0vvS4YIWNvf" + }, + "source": [ + "As we can see, the tokenizer has a vocabulary of size 119'547.\n", + "The maximum sequence length of the model is 512 tokens.\n", + "\n", + "To see the tokenizer in action, we tokenize the first sentence of an accident description:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "x8B8xjQMWNvf", + "pycharm": { + "name": "#%%\n" } - } }, - "text/html": [ - "
" + "outputs": [], + "source": [ + "text = \"V1, a 2000 Pontiac Montana minivan, made a left turn from a private driveway onto a northbound 5-lane two-way, dry asphalt roadway on a downhill grade.\"\n", + "result = tokenizer(text)" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# extract the transformer encoding corresponding to the the CLS token\n", - "x_train_en, y_train_en, x_test_en, y_test_en = get_xy(dataset_en, \"cls_hidden_state\", \"labels\")\n", - "\n", - "# fit dummy classifier\n", - "clf_dummy = dummy_classifier(x_train_en, y_train_en)\n", - "_ = evaluate_classifier(y_test_en, None, clf_dummy.predict_proba(x_test_en), labels, \"Dummy classifier\", \"cm_nv_dummy\")" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 768 }, - "id": "lIzPeTfEWNvq", - "outputId": "97c2cefb-ad14-4732-9113-8d37f523a079", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Logistic regression (a)\n", - "accuracy score = 90.9%, log loss = 0.275, Brier loss = 0.146\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 0.94 0.93 0.93 389\n", - " 2 0.89 0.96 0.92 795\n", - " 3+ 0.92 0.68 0.78 206\n", - "\n", - " accuracy 0.91 1390\n", - " macro avg 0.92 0.85 0.88 1390\n", - "weighted avg 0.91 0.91 0.91 1390\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "kIlaAMtDWNvf" + }, + "source": [ + "Calling the tokenizer returns a `BatchEncoding` object,\n", + "which behaves just like a standard Python dictionary that holds input items used by the NP model.\n", + "`input_ids` is the list of token IDs for each token.\n", + "`attention_mask` is a list containing 1 for all elements that corresponds to tokens of the input text,\n", + "and 0 for padding tokens that are appended to attain a specified sequence length.\n", + "\n", + "To illustrate the meaning of the input IDs, we convert them back to token strings:" + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_lr_a", - "format": "svg" + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qrGAeN6tWNvf", + "outputId": "17c35b1e-5bad-4d72-ccbd-bd838f52e124", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 360, - 29, - 0 - ], - [ - 20, - 763, - 12 - ], - [ - 2, - 64, - 140 - ] - ] - } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } + "output_type": "stream", + "name": "stdout", + "text": [ + "{'input_ids': [101, 159, 10759, 117, 169, 10180, 23986, 46917, 24408, 25103, 12955, 117, 11019, 169, 12153, 18923, 10188, 169, 14591, 23806, 14132, 31095, 169, 12756, 47755, 126, 118, 23636, 10551, 118, 13170, 117, 36796, 28438, 27015, 15485, 14132, 10135, 169, 12935, 32049, 21958, 119, 102], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}\n", + "['[CLS]', 'V', '##1', ',', 'a', '2000', 'Pont', '##iac', 'Montana', 'mini', '##van', ',', 'made', 'a', 'left', 'turn', 'from', 'a', 'private', 'drive', '##way', 'onto', 'a', 'north', '##bound', '5', '-', 'lane', 'two', '-', 'way', ',', 'dry', 'asp', '##halt', 'road', '##way', 'on', 'a', 'down', '##hill', 'grade', '.', '[SEP]']\n" ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Logistic regression (a)" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } } - } - }, - "text/html": [ - "
" + ], + "source": [ + "print(result)\n", + "print(tokenizer.convert_ids_to_tokens(result[\"input_ids\"]))" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# fit a classifier to the encoded English texts\n", - "clf_en = logistic_regression_classifier(x_train_en, y_train_en, c=10)\n", - "_ = evaluate_classifier(y_test_en, None, clf_en.predict_proba(x_test_en), labels, \"Logistic regression (a)\", \"cm_nv_lr_a\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qED73tnMWNvq" - }, - "source": [ - "We obtain an accuracy score of 91%, compared to 57% with the dummy classifier.\n", - "This is already a very good result!\n", - "\n", - "Remember, we have just used the DistilBERT transformer off the shelf, with no tuning whatsoever,\n", - "to extract a vector of length 768 representing the information contained in the accident descriptions.\n", - "During this entire text encoding, the transformer model was unaware that its output was going to be used to predict the number of vehicles.\n", - "\n", - "How about the second approach, which uses the feature `mean_hidden_state` that was extracted\n", - "by mean pooling over the entire encoded sequence?\n", - "\n", - "Let's see:" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 768 }, - "id": "Vx1LdIg5WNvq", - "outputId": "f40f2287-caaa-4f8a-cd6a-f87df2d9f3e2", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Logistic regression (b), train EN, test EN\n", - "accuracy score = 96.0%, log loss = 0.127, Brier loss = 0.063\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 0.96 0.97 0.97 389\n", - " 2 0.95 0.98 0.97 795\n", - " 3+ 0.99 0.86 0.92 206\n", - "\n", - " accuracy 0.96 1390\n", - " macro avg 0.97 0.94 0.95 1390\n", - "weighted avg 0.96 0.96 0.96 1390\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "6iRVhlrDWNvf", + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "We observe that words like \"V1\", \"Pontiac\", \"minivan\", \"driveway\" etc. are split into multiple tokens each.\n", + "This is typical for WordPiece tokenization adopted by BERT, an approach designed to reduce vocabulary size.\n", + "This tokenizer marks sub-words by the prefix `##`.\n", + "\n", + "It is interesting to note that `2000` is a separate element of the vocabulary.\n", + "\n", + "The first and last tokens of the tokenized sequence are `CLS` and `SEP`, respectively.\n", + "* `CLS` stands for \"classification\".\n", + "The output of the BERT encoder corresponding to this input token is sometimes interpreted to represent the meaning of\n", + "the entire sequence (we will check this in [Section 3.2](#classification) of this notebook).\n", + "* `SEP` stands for \"separation\".\n", + "In next-sequence prediction tasks, it is used to separate the first from the second sequence.\n", + "\n", + "Here is a list of other special tokens used by the BERT tokenizer:\n", + "* The `UNK` token is used to represent tokens that are not available in the dictionary.\n", + "* The `PAD` token is used to pad the length of the tokenized sequence to a fixed length.\n", + "A fixed length is required when multiple sequences of different length are tokenized and fed into a BERT model\n", + "at the same time.\n", + "* The `MASK` token is used for pre-training the BERT model by masked language modeling.\n", + "For this task, the model is used to predict the masked token." + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_EN_EN", - "format": "svg" + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "e7HqEAAUWNvg", + "outputId": "7bddf89d-104e-4bd0-e6b1-b2d3d5455408", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 379, - 10, - 0 - ], - [ - 15, - 778, - 2 - ], - [ - 1, - 28, - 177 - ] - ] - } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } + "output_type": "stream", + "name": "stdout", + "text": [ + "Tokenizer special_tokens_map: {'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'}\n" ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Logistic regression (b), train EN, test EN" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } } - } - }, - "text/html": [ - "
" + ], + "source": [ + "print(f\"Tokenizer special_tokens_map: {tokenizer.special_tokens_map}\")" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "x_train_en, y_train_en, x_test_en, y_test_en = get_xy(dataset_en, \"mean_hidden_state\", \"labels\")\n", - "clf_en = logistic_regression_classifier(x_train_en, y_train_en, c=10)\n", - "_ = evaluate_classifier(y_test_en, None, clf_en.predict_proba(x_test_en), labels, \"Logistic regression (b), train EN, test EN\", \"cm_nv_EN_EN\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "SB0K-NinWNvq" - }, - "source": [ - "Again, we have used DistilBERT without any fine-tuning.\n", - "\n", - "For the present task, by any of the considered scores, mean pooling performs much better than using the encoding of the `CLS` token.\n", - "For this reason, we use mean pooling in what follows.\n", - "\n", - "What would you guess - will the classifier model exhibit a similar performance when trained on the encoded German dataset?\n", - "\n", - "Let's check:" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 768 }, - "id": "oLaoeTQgWNvr", - "outputId": "578b6a8b-d8c8-4a90-c760-2268d7f985e4", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "train GE, test GE\n", - "accuracy score = 96.0%, log loss = 0.120, Brier loss = 0.062\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 0.97 0.98 0.97 389\n", - " 2 0.95 0.98 0.97 795\n", - " 3+ 0.96 0.86 0.91 206\n", - "\n", - " accuracy 0.96 1390\n", - " macro avg 0.96 0.94 0.95 1390\n", - "weighted avg 0.96 0.96 0.96 1390\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "PwVPgPCJWNvg" + }, + "source": [ + "It is instructive to look at the tokenization of the German translation of the same text:" + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_GE_GE", - "format": "svg" + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6r2vF-hyWNvg", + "outputId": "9f7cb543-aaaa-4073-eb94-d0cd054bcbcf", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 380, - 9, - 0 - ], - [ - 10, - 778, - 7 - ], - [ - 1, - 28, - 177 + "output_type": "stream", + "name": "stdout", + "text": [ + "{'input_ids': [101, 159, 10759, 117, 10290, 32930, 12955, 10118, 73879, 23986, 46917, 24408, 10441, 10268, 11218, 10180, 117, 66298, 10166, 10599, 73655, 12210, 25131, 10496, 23608, 10329, 10359, 11615, 54609, 13091, 10525, 117, 42169, 21181, 10112, 10882, 37590, 72847, 43968, 10221, 126, 44271, 16757, 54609, 30064, 10106, 28253, 10165, 20139, 10130, 10745, 144, 16822, 38064, 11357, 119, 102], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}\n", + "['[CLS]', 'V', '##1', ',', 'ein', 'Mini', '##van', 'der', 'Marke', 'Pont', '##iac', 'Montana', 'aus', 'dem', 'Jahr', '2000', ',', 'bog', 'von', 'einer', 'privaten', 'Ein', '##fahrt', 'nach', 'links', 'auf', 'eine', 'zwei', '##sp', '##uri', '##ge', ',', 'tro', '##cken', '##e', 'As', '##pha', '##lts', '##traße', 'mit', '5', 'Fa', '##hr', '##sp', '##uren', 'in', 'nördlich', '##er', 'Richtung', 'und', 'einem', 'G', '##ef', '##älle', 'ab', '.', '[SEP]']\n" ] - ] } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" + ], + "source": [ + "text = \"V1, ein Minivan der Marke Pontiac Montana aus dem Jahr 2000, bog von einer privaten Einfahrt nach links auf eine zweispurige, trockene Asphaltstraße mit 5 Fahrspuren in nördlicher Richtung und einem Gefälle ab.\"\n", + "result = tokenizer(text)\n", + "print(result)\n", + "print(tokenizer.convert_ids_to_tokens(result[\"input_ids\"]))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wGEujP4IWNvg" + }, + "source": [ + "Tokenizers of multi-lingual models use the same vocabulary for all languages.\n", + "Obviously, the tokenizer simply splits the input string into pieces and does not perform any translation:\n", + "the English pronoun \"a\" (169) is a different token than the equivalent German \"ein\" (10290).\n", + "\n", + "We observe that the tokenizer is case-sensitive:\n", + "It differentiates between the tokens `mini` (25103) and `Mini` (32930).\n", + "\n", + "So far, we have tokenized single sentences only.\n", + "Next, we want to tokenize the entire dataset.\n", + "This is easily achieved by applying the `map` function to the dataset.\n", + "\n", + "All we need to provide to the `map` function is a function that takes a record or a batch of records from the dataset,\n", + "applies an operation to it, and returns a `DataSet` or a `dict` which defines the columns to be added or updated.\n", + "\n", + "In our case, we supply a function that calls the `tokenizer` as shown before.\n", + "As we have seen, calling the tokenizer returns a dict with the keys `input_ids` and `attention_mask`.\n", + "Therefore, the `map` function will add columns with these names to the original dataset.\n", + "\n", + "Since we plan to feed the tokenized sequences into a transformer model,\n", + "we need to truncate their length to the maximum length accepted by the transformer.\n", + "Moreover, the shorter sequences need to be padded at the end, so that all tokenized sequences have the same length.\n", + "\n", + "Overall, only a few lines of code are required to complete the tokenization:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 98, + "referenced_widgets": [ + "7ce0b5785c2448cea7d0d1f1a87ebc2d", + "89e3a11241384650b8965245dbd3792c", + "a34a732dd35742e4a4824c8d8a3ad802", + "df639efa669d4f79aacb986358d51ce3", + "348702e795c84a73962c96b921e50717", + "edb157f92e984a01a21ae2b06f3498ab", + "9999a4e4578d41b2a26ed13be0828f9f", + "e9958a996eed4d56b4ba278d1d0636d6", + "eaf861a0c98d40be96de756da12c5c8a", + "00c02c2cc2784e42b04c439efd858d6e", + "5ae6713d303d4e8cb40d1bb8193d2808", + "2ff3aa3cbc084b018e532313e3a62868", + "df5bdc4dbbc24f518a9b6a729b0e4465", + "8190c12611bd4b1181d109f8b266d12e", + "fbcc9f281d42422f8c584dbc7248cf25", + "d82ebc1918b04278aaa7a3424876d512", + "215db69430ac4835b14a0208ee8e4c2a", + "f6a251a9d3a8407b9bd5bdd849ce3e7e", + "791078cacb4740fabdaf8eae3b5bb7f1", + "8906283631694146b18824265be2b6f6", + "bad4ae381c224f108ace413c9af946b0", + "34063b2bc88a4ae7a965d1d882104b32" ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "train GE, test GE" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + }, + "id": "JVZoXdpWWNvh", + "outputId": "38ccfac1-b504-4cac-a0c3-3ed5574d6092", + "pycharm": { + "name": "#%%\n" } - } }, - "text/html": [ - "
" + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/5559 [00:00\n", - "\n", - "### 3.4. Cross-Lingual Transfer\n", - "\n", - "In practice, it might happen that training data is available (predominantly) in one language,\n", - "but we would like to apply the model to test data in another language.\n", - "Translating the test data to the language of the training data would be an option,\n", - "but let's see how the multilingual transformer model performs.\n", - "\n", - "In our small experiment, we simply switch the languages of the test sets.\n", - "This might be hard for the models, since in the entire training process each model has seen only encoded input\n", - "from text samples in one language!\n", - "\n", - "First, use the German test set for the model trained on English input:" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 768 }, - "id": "247Aj4I5WNvr", - "outputId": "329569ba-d582-47aa-af64-4b398356935f", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "train EN, test GE\n", - "accuracy score = 66.0%, log loss = 1.083, Brier loss = 0.527\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 1.00 0.16 0.27 389\n", - " 2 0.67 0.86 0.75 795\n", - " 3+ 0.57 0.85 0.68 206\n", - "\n", - " accuracy 0.66 1390\n", - " macro avg 0.75 0.62 0.57 1390\n", - "weighted avg 0.75 0.66 0.61 1390\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "GUQ2SaowWNvh" + }, + "source": [ + "The additional argument `column` is passed to `tokenize` via the the dictionary `fn_kwargs`.\n", + "As we can see from the progress bars, the map function gets called twice - once for each split.\n", + "As expected, new columns `input_ids` and `attention_mask` have been added to the dataset.\n", + "\n", + "We repeat the same procedure for the German texts." + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_EN_GE", - "format": "svg" + "cell_type": "code", + "execution_count": 26, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 81, + "referenced_widgets": [ + "9c43faef3dbd4919b84622bf311a055f", + "8940ed6274f1413cb57b9823131be494", + "c2fdcaeb805f41a9aafad35cee5f0d4e", + "f1dcb8ed4eeb470fb6802d72fdfaab5a", + "3d0f159182e3457492d6f1b70d6f04c2", + "b287cbb03a264654968d10d85d32e365", + "7e761125a9684685b8b845bbab01b297", + "bf1053a919fb47aebc4971c1b86fcab8", + "c5799a3b73464728afc0f23b2b25188a", + "791c1687dc4b47928e8075658f238f7b", + "1814292c69d34a758378760127308ef9", + "010ec2102cb64726b037d15a26a88b65", + "b200a63fc8d24eafb67958aea139b90f", + "6008d614d11c4120add33abdb91a8985", + "df0d33aaf9a54f1fbdd0f785cb6ca7c6", + "557d06369ad04c63aec623d8fc1fa218", + "607fd46718fa41dfacdbc6341623c8e8", + "f61c59bab83a442c87d5f2e16ded8f1d", + "8eb37a97384a4b6f811f51b4de9c9a32", + "449fb956db964fa98a6a1c8b530fd218", + "baef974696724608a22aca48f4b9c846", + "b2c3a629122d454dafea780c3722666f" + ] + }, + "id": "v6O4XM7vWNvh", + "outputId": "c2862cbf-281b-4b6a-f548-dd9146d69610", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 62, - 310, - 17 - ], - [ - 0, - 680, - 115 - ], - [ - 0, - 31, - 175 - ] - ] + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/5559 [00:00predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + }, + "id": "J_Mve0bUWNvh", + "outputId": "da7de7c3-5beb-49e9-a9c3-b7d4f9676c44" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/5559 [00:00
" + "source": [ + "Now we have created three datasets - with the tokenized English, German and mixed language texts, respectively.\n", + "\n", + "We could have stored the results in a single dataset (with different column names),\n", + "but keeping languages separately will make it easier to convince ourselves in the following examples\n", + "that the languages have not been mixed up!" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "_ = evaluate_classifier(y_test_ge, None, clf_en.predict_proba(x_test_ge), labels, \"train EN, test GE\", \"cm_nv_EN_GE\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "rQQ0Ql2bWNvr" - }, - "source": [ - "From these rather poor results, we conclude that this approach to cross-language transferability does not work.\n", - "\n", - "Vice versa, use the English test set for the model based on German input:" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 768 }, - "id": "j90XLzGZWNvr", - "outputId": "31d2d902-e336-42e2-807e-2f2d77ba5257", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "train GE, test EN\n", - "accuracy score = 24.3%, log loss = 8.053, Brier loss = 1.361\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 0.00 0.00 0.00 389\n", - " 2 0.40 0.17 0.24 795\n", - " 3+ 0.19 0.99 0.32 206\n", - "\n", - " accuracy 0.24 1390\n", - " macro avg 0.20 0.39 0.19 1390\n", - "weighted avg 0.26 0.24 0.18 1390\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "CMoSQ04TWNvi" + }, + "source": [ + "\n", + "\n", + "### 2.3. Transformer model\n", + "\n", + "After completing the tokenization of the raw texts, we are ready to apply the transformer model,\n", + "in our case the multilingual DistilBERT model.\n", + "\n", + "First, we load the model.\n", + "To speed up the following calculations, we opt for GPU support if available.\n" + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_GE_EN", - "format": "svg" + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "8f0d224cfe294944a7bd161d995d7bda", + "42f3a829c2fb45749368dbee5e490a35", + "867649fd4e3341ab9ce5a6926b10ce78", + "433519f7276b4fddb38e862c414df5fd", + "5b80083779a54d34954d8af7a8a9fcd6", + "f3e243c3c2224641babb7629a42f0248", + "2f6e3c1bab9b43d49976e890255d7c28", + "3cf4034994f24ca6be2a1a24ded77627", + "b98d787fb58d4c00b277999cb4e81a6d", + "5fac8e3703a54610a862d115063debdd", + "8579b0149f574b36bcf9641481e2f834" + ] + }, + "id": "-iKVTkH_WNvi", + "outputId": "e4888dba-ef62-415c-ad31-e184259857c8", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 0, - 201, - 188 - ], - [ - 0, - 135, - 660 - ], - [ - 0, - 3, - 203 - ] - ] + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading model.safetensors: 0%| | 0.00/542M [00:00predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "metadata": {}, + "execution_count": 29 + } + ], + "source": [ + "model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X3lhtdAsWNvj", + "pycharm": { + "name": "#%% md\n" } - } }, - "text/html": [ - "
" + "source": [ + "As we can see, the first block of the model deals with embeddings, with the word embedding as the first layer.\n", + "This is followed by the transformer which consists of 6 transformer blocks.\n", + "\n", + "Let's first explore the word embedding.\n", + "\n", + "The goal of the word embedding layer is to assign each element of the vocabulary a vector of length $E$.\n", + "\n", + "The multilingual DistilBERT model has a vocabulary of size $V=119'547$ and a word embedding size of $E=768$.\n", + "We can confirm this by looking at the dimension of the word embedding weight tensor:" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "k9yHSGD0WNvj", + "outputId": "261e9e7a-f773-4546-c22b-f5453aaf10da" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Embedding(119547, 768, padding_idx=0)" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ], + "source": [ + "model.embeddings.word_embeddings" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "_ = evaluate_classifier(y_test_en, None, clf_ge.predict_proba(x_test_en), labels, \"train GE, test EN\", \"cm_nv_GE_EN\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5FFjmHzBWNvs" - }, - "source": [ - "Again, performance is unsatisfactory.\n", - "\n", - "To improve results, we need to change the approach.\n", - "\n", - "\n", - "\n", - "\n", - "### 3.5. Multi-Lingual Training\n", - "\n", - "In a multilingual situation, a possible approach is to train the classifier with a training set consisting\n", - "of encoded samples from both languages.\n", - "This can always be achieved by translating a fraction of the text data and then use it to train the model.\n", - "\n", - "This is exactly what we are going to do next.\n", - "In order to simulate a situation where one language is underrepresented, we create a mixed-language dataset\n", - "with about 80% English and 20% German samples, our dataset `dataset_mx` produced in [Section 2.2](#tokenize).\n", - "\n", - "Since we are already using a multilingual transformer model, no further changes are required." - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 }, - "id": "BdCe6OIDWNvs", - "outputId": "32fe4681-c6e7-401a-91e7-fc0862159c3d", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "train EN/GE, test EN\n", - "accuracy score = 95.7%, log loss = 0.136, Brier loss = 0.068\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 0.96 0.98 0.97 389\n", - " 2 0.95 0.97 0.96 795\n", - " 3+ 0.97 0.85 0.90 206\n", - "\n", - " accuracy 0.96 1390\n", - " macro avg 0.96 0.93 0.95 1390\n", - "weighted avg 0.96 0.96 0.96 1390\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "zPHwjjcAWNvj" + }, + "source": [ + "To see the outputs of the transformer encoder, let's apply the transformer to the first record of the dataset,\n", + "more precisely to its columns `input_ids` and `attention_mask`, the outputs of the tokenizer:" + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_MX_EN", - "format": "svg" + "cell_type": "code", + "execution_count": 31, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "S7E9tRVZWNvk", + "outputId": "a44caa27-b257-4f48-a0e7-97719e3a3ed2", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 380, - 9, - 0 - ], - [ - 14, - 775, - 6 - ], - [ - 1, - 30, - 175 + "output_type": "stream", + "name": "stdout", + "text": [ + "BaseModelOutput(last_hidden_state=tensor([[[ 0.1148, -0.0254, 0.1447, ..., 0.1937, 0.0804, -0.2158],\n", + " [ 0.1216, -0.5199, 0.6924, ..., 0.2711, -0.2492, -0.0172],\n", + " [-0.4065, -0.0786, 0.3362, ..., -0.2183, 0.0278, 0.1635],\n", + " ...,\n", + " [-0.1276, -0.4791, -0.1539, ..., 0.0442, -0.2272, 0.1089],\n", + " [-0.1577, -0.4097, -0.2176, ..., 0.0154, -0.2008, -0.1374],\n", + " [-0.1855, -0.4261, -0.1884, ..., -0.0515, -0.0600, -0.3426]]],\n", + " device='cuda:0'), hidden_states=None, attentions=None)\n" ] - ] } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" + ], + "source": [ + "example = dataset_en[\"train\"][:1]\n", + "\n", + "input_ids = torch.tensor(example[\"input_ids\"]).to(device)\n", + "attention_mask = torch.tensor(example[\"attention_mask\"]).to(device)\n", + "with torch.no_grad():\n", + " output = model(input_ids, attention_mask)\n", + "print(output)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "U9cBNUetWNvk", + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "This produces a `BaseModelOutput` object which has a named property `last_hidden_state`,\n", + "a tensor that represents the hidden state of the final transformer block, i.e. the encoded text sequence!\n", + "\n", + "The dimension of the last hidden state is:" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hkenZ_7pWNvk", + "outputId": "e5520d4d-178a-4ba8-a65b-710ba68e39e7", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "dimensions of last hidden state: torch.Size([1, 512, 768])\n" ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "train EN/GE, test EN" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } } - } - }, - "text/html": [ - "
" + ], + "source": [ + "print(\"dimensions of last hidden state: \", output.last_hidden_state.size())" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "train EN/GE, test GE\n", - "accuracy score = 95.2%, log loss = 0.160, Brier loss = 0.080\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 0.96 0.97 0.97 389\n", - " 2 0.95 0.97 0.96 795\n", - " 3+ 0.94 0.85 0.90 206\n", - "\n", - " accuracy 0.95 1390\n", - " macro avg 0.95 0.93 0.94 1390\n", - "weighted avg 0.95 0.95 0.95 1390\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "ImR3xLwLWNvl" + }, + "source": [ + "i.e., \\[number of samples (1), sequence length $T$ (maximum 512 tokens), embedding size $E$ (768)\\].\n", + "\n", + "In what follows, we will use the information contained in this tensor to make predictions.\n" + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_MX_GE", - "format": "svg" - } - }, - "data": [ - { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 379, - 10, - 0 - ], - [ - 16, - 768, - 11 - ], - [ - 1, - 29, - 176 - ] - ] + "cell_type": "markdown", + "metadata": { + "id": "4D2hUjC1WNvl", + "pycharm": { + "name": "#%% md\n" } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "train EN/GE, test GE" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + }, + "source": [ + "\n", + "\n", + "## 3. Using Transformers to Extract Features for Classification or Regression Tasks\n", + "\n", + "In this section you will learn how transformers can be used to extract features from text data for a classification\n", + "or regression problem.\n", + "\n", + "The idea is simple: The tokenized raw text data is encoded by the transformer model,\n", + "and the features are extracted from the last hidden state.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yowxi5sPWNvl" + }, + "source": [ + "\n", + "\n", + "### 3.1. Extracting the Encoded Text\n", + "\n", + "Before we have seen that the DistilBERT model encodes *each token* of each input sample into a tensor\n", + "of length $E=768$.\n", + "As such, the output of the transformer model depends on the length of the input sequences.\n", + "To make predictions, we would prefer having a single vector per input sample, independent of the sequence length.\n", + "\n", + "Different approaches are available to achieve this goal:\n", + "* Use the tensor corresponding to the `CLS` token, which is the first token of the input sequence in BERT models.\n", + "* *Mean pooling*: Taking the average of the tensors over all elements of the sequence.\n", + " Here, the tensors corresponding to a `PAD` token should be excluded because they don't carry any information.\n", + "\n", + "We will implement both techniques and compare results.\n", + "\n", + "In the following cell we display a short function which applies the NLP model to a batch of encoded input samples,\n", + "extracts the last hidden state, and returns two tensors of length 768 for each input sample,\n", + "corresponding to the two methods explained before.\n", + "\n", + "The cell is not executable, because the function is already defined in the module `tutorial_utils` we imported initially." + ] + }, + { + "cell_type": "raw", + "metadata": { + "id": "b31jpyUBWNvl", + "pycharm": { + "name": "#%%\n" } - } }, - "text/html": [ - "
" + "source": [ + "```\n", + "def extract_sequence_encoding(batch, model):\n", + " input_ids = torch.tensor(batch[\"input_ids\"]).to(model.device)\n", + " attention_mask = torch.tensor(batch[\"attention_mask\"]).to(model.device)\n", + " with torch.no_grad():\n", + " # apply transformer model and extract last hidden state\n", + " model_output = model(input_ids, attention_mask)\n", + " last_hidden_state = model_output.last_hidden_state\n", + "\n", + " # extract the tensor corresponding to the CLS token, i.e. the first element in the encoded sequence\n", + " batch[\"cls_hidden_state\"] = last_hidden_state[:,0,:].cpu().numpy()\n", + "\n", + " # mean pooling: take average over input sequence, but mask sequence elements corresponding to the PAD token\n", + " last_hidden_state = last_hidden_state.cpu().numpy()\n", + " lhs_shape = last_hidden_state.shape\n", + " boolean_mask = ~np.array(batch[\"attention_mask\"]).astype(bool)\n", + " boolean_mask = np.repeat(boolean_mask, lhs_shape[-1], axis=-1)\n", + " boolean_mask = boolean_mask.reshape(lhs_shape)\n", + " masked_mean = np.ma.array(last_hidden_state, mask=boolean_mask).mean(axis=1)\n", + " batch[\"mean_hidden_state\"] = masked_mean.data\n", + " return batch\n", + "```" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "x_train_mx, y_train_mx, x_test_mx, y_test_mx = get_xy(dataset_mx, \"mean_hidden_state\", \"labels\")\n", - "clf_mx = logistic_regression_classifier(x_train_mx, y_train_mx, c=10)\n", - "_ = evaluate_classifier(y_test_en, None, clf_mx.predict_proba(x_test_en), labels, \"train EN/GE, test EN\", \"cm_nv_MX_EN\")\n", - "_ = evaluate_classifier(y_test_ge, None, clf_mx.predict_proba(x_test_ge), labels, \"train EN/GE, test GE\", \"cm_nv_MX_GE\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0Ew5aqySWNvs" - }, - "source": [ - "This is a very good outcome. The scores are close to those achieved in the situation with a single-language!\n", - "\n", - "To conclude, a multi-lingual situation can be handled by a multi-lingual transformer model. For the best performance, the classifier should be trained on the encoded sequences from all languages." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "C_CEp4ShWNvs", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "\n", - "\n", - "## 4. Fine-Tuning – Improving the Model\n", - "\n", - "In the previous case study, we have used the DistilBERT model without any adaptation to the text data at hand,\n", - "simply by using the sequence encoding produced by the model.\n", - "As such, the language representation, which the model has learned from a large corpus of multilingual data, is transferred\n", - "to the text data at hand.\n", - "This approach is called transfer learning.\n", - "The advantage of transfer learning is that a powerful (but relatively complex) model can be trained on a large corpus\n", - "of data, using large-scale computing power, and then be applied to situations where availability of data or computing\n", - "power would not allow for such complex models.\n", - "\n", - "For the task at hand, the results are already very good.\n", - "However, in certain situations it might be required to further improve model performance.\n", - "\n", - "In the following sections you will learn how to fine-tune a transformer model.\n", - "We will explore two approaches to fine-tuning:\n", - "\n", - "* *Domain-specific fine-tuning* involves updating the parameters of the transformer model using text data which is\n", - " relevant to the domain where the model will be applied.\n", - " However, the model is not necessarily tuned for a specific downstream task of interest.\n", - "* *Task-specific fine-tuning* uses domain-specific text data and tunes the parameters of the transformer model\n", - " while training it for a given downstream task of interest.\n", - "\n", - "The advantage of the first approach is that it can be performed in an unsupervised fashion,\n", - "i.e., it does not require labeled data.\n", - "\n", - "On the other hand, task-specific fine-tuning is expected to produce better performance on the particular task\n", - "which the model was tuned for, so it might be the method of choice if there is a single down-stream task\n", - "and sufficient labeled data.\n", - "\n", - "Let's explore these two fine-tuning approaches in turn." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "I1pU2x-JWNvs" - }, - "source": [ - "\n", - "\n", - "### 4.1. Domain-specific fine-tuning\n", - "\n", - "Domain-specific fine-tuning can be achieved by applying the model to a \"masked language modeling\" task.\n", - "This involves taking a sentence, randomly masking a certain percentage of the words in the input,\n", - "and then running the entire masked sentence through the model which has to predict the masked words.\n", - "This self-supervised approach is an automatic process to generate inputs and labels from the texts and does not require\n", - "any humans labelling in any way.\n", - "\n", - "This is very easy to implement using the Transformers library.\n", - "You will see three new elements of the Transformer library in action:\n", - "\n", - "* the `AutoModelForMaskedLM` class loads the DistilBERT model with a model head suitable for the masked language\n", - " modeling task.\n", - "* The `DataCollatorForLanguageModeling` class forms training batches from the dataset and handles the masking.\n", - "* The `Trainer` class provides the interface to train the model.\n", - "\n", - "Depending on the hardware available, training might take a rather long time.\n", - "Therefore, if available, we use GPU support.\n", - "On an AWS EC2 p2.xlarge instance, the run time is about 55 minutes.\n", - "We store the trained model for later use.\n", - "\n", - "If you do not have enough time to perform this step right now, you can skip this section and return later. The remainder of this notebook does not depend on it." - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 530 }, - "id": "R5-TPov4WNvt", - "outputId": "8e6828ea-0fbb-475d-abbe-e821528896a8", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "The following columns in the training set don't have a corresponding argument in `DistilBertForMaskedLM.forward` and have been ignored: WEATHER7, WEATHER4, SUMMARY_GE, cls_hidden_state, WEATHER1, WEATHER6, SUMMARY_MX, INJSEVA, SCASEID, mean_hidden_state, NUMTOTV, WEATHER8, SUMMARY_EN, WEATHER3, index, words per case summary, WEATHER2, INJSEVB, level_0, WEATHER5. If WEATHER7, WEATHER4, SUMMARY_GE, cls_hidden_state, WEATHER1, WEATHER6, SUMMARY_MX, INJSEVA, SCASEID, mean_hidden_state, NUMTOTV, WEATHER8, SUMMARY_EN, WEATHER3, index, words per case summary, WEATHER2, INJSEVB, level_0, WEATHER5 are not expected by `DistilBertForMaskedLM.forward`, you can safely ignore this message.\n", - "/home/ubuntu/anaconda3/envs/pytorch_latest_p37/lib/python3.7/site-packages/transformers/optimization.py:309: FutureWarning:\n", - "\n", - "This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n", - "\n", - "***** Running training *****\n", - " Num examples = 5559\n", - " Num Epochs = 2\n", - " Instantaneous batch size per device = 4\n", - " Total train batch size (w. parallel, distributed & accumulation) = 4\n", - " Gradient Accumulation steps = 1\n", - " Total optimization steps = 2780\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "ikSaZs83WNvm" + }, + "source": [ + "Let's apply this function to the first sample of the training data:" + ] }, { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " [2780/2780 08:20, Epoch 2/2]\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
StepTraining Loss
5001.414500
10001.119100
15001.020200
20000.938100
25000.877800

" + "cell_type": "code", + "execution_count": 33, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "n8tYVkL4WNvn", + "outputId": "9d67c353-eeb2-4558-f6a3-99de7c2d7b99", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "dict_keys(['level_0', 'index', 'SCASEID', 'SUMMARY_EN', 'SUMMARY_GE', 'INJSEVA', 'NUMTOTV', 'WEATHER1', 'WEATHER2', 'WEATHER3', 'WEATHER4', 'WEATHER5', 'WEATHER6', 'WEATHER7', 'WEATHER8', 'INJSEVB', 'words per case summary', 'input_ids', 'attention_mask', 'cls_hidden_state', 'mean_hidden_state'])\n" + ] + } ], - "text/plain": [ - "" + "source": [ + "example = dataset_en[\"train\"][:1]\n", + "result = extract_sequence_encoding(example, model)\n", + "print(result.keys())" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Training completed. Do not forget to share your model on huggingface.co/models =)\n", - "\n", - "\n", - "Saving model checkpoint to models/distilbert-base-multilingual-cased_mlm\n", - "Configuration saved in models/distilbert-base-multilingual-cased_mlm/config.json\n", - "Model weights saved in models/distilbert-base-multilingual-cased_mlm/pytorch_model.bin\n" - ] - } - ], - "source": [ - "# load model and tokenizer and define the DataCollator\n", - "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", - "torch.manual_seed(42) # for reproducibility, set random seed before instantiating the model \n", - "model_mlm = AutoModelForMaskedLM.from_pretrained(model_name).to(device)\n", - "tokenizer = AutoTokenizer.from_pretrained(model_name)\n", - "data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=True, mlm_probability=0.15)\n", - "dataset_mx = load_from_disk(\"./datasets/dataset_mx\")\n", - "\n", - "# define training arguments\n", - "training_args = TrainingArguments(\n", - " output_dir=\"models/\" + model_name + \"_mlm_epochs\",\n", - " overwrite_output_dir=True,\n", - " num_train_epochs=2,\n", - " per_device_train_batch_size=4,\n", - " save_strategy=trainer_utils.IntervalStrategy.NO,\n", - ")\n", - "trainer = Trainer(\n", - " model=model_mlm,\n", - " args=training_args,\n", - " data_collator=data_collator,\n", - " train_dataset=dataset_mx[\"train\"]\n", - ")\n", - "trainer.train()\n", - "trainer.save_model(\"models/\" + model_name + \"_mlm\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "n8if8dfPWNvt" - }, - "source": [ - "Now, `model_mlm` holds the DistilBERT model, fine-tuned to the mixed-language accident descriptions\n", - "using masked-language-modeling.\n", - "\n", - "Next, we apply this model to all input sequences and extract the last hidden state.\n", - "The procedure is the same as in section [3.1](#extract_encoding).\n", - "To avoid confusion, we create new datasets, and store them on disk for later use,\n", - "so that this step does not need to be repeated all over when this notebook is re-run." - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 782, - "referenced_widgets": [ - "b830796e9a7b4b51872e5e133ffd6385", - "9894bc1c506d4cdd829de89303aba5dd", - "995c886eb30b402dab3075d8172e9a42", - "3fb8621386ab443c8fdbac113695a033", - "0eb299bd75f24074bdf56f83cf128964", - "174e6e93f84d481f90ac2e37c0874ded", - "c6eda87cd5854a4fbf29e92598db7ce8", - "ceed53741c6b4fb6ad06a24e931bbc25", - "a4dc6b9ab25a41f393f007d05a4ace6e", - "8715c68bc26f4815a6644aa6573f0765", - "e640a164272c486ab9b3fb0d9f3848ba", - "456b7d4baa2c427a96831b081843bb6d", - "c04c80a33b3b4e03bf7641f53f24c08e", - "1eeaf4e87c944989ade794ccfe98424e", - "ef477427275a4b07b3c00a85e73dfdf4", - "08572971e55140b28147066fbb7828fd", - "f4fcea01a9694d64b2a3d81e3347db4d", - "8787bad12eba4ced80f770dbd028e500", - "a4df33335f0c4a888a67baa8611d6ef6", - "7559f44cafa0438b8fb90ed5f5573406", - "ee77df6293664a51bc6c0580fd2b8e2c", - "7cc76a2a5a70454d81ac2153aed7498b", - "6d01fecfaa764097991c334de8a85e7d", - "59abb7ecd3924913bd7084138cc4c7c3", - "4c6346ccc35148df8790a4f48f6949dd", - "675d8962e93a41389baa051168a6c28e", - "473eeeedd3b14a348af13eed50af826c", - "34d2be270be84cb79a75315c4b11041b", - "8b341bbf1518496eb707aba6263b523c", - "96314a4ceeae470d9c26965c56d3490e", - "d7f43494330348f79161842b68658325", - "5d350041565f42cd93fc6fd9f2d243ce", - "6b2c065c4f0640f3a994f40728ad5938", - "d2b44643fe8948eeaf21eef08ded9fed", - "e8d26f87aec1422b8d4da624a34fb05d", - "93f90634559347f4b4fce4f7ca390dcf", - "13503be2fdf246e9a30950aa0c2d09f8", - "e114366faf864294a333be4bf1dbe834", - "3d14bc34a374496c9b3ac127aca7cc40", - "ac0b73c4cd9b429281384a6fe8cb24e0", - "c59b01390fa2453585b5463adcad6fc4", - "9ebb0d96722140c0a84c12996bb2d0b8", - "cc775b0ea3e1413aadeaf96faedc3aa0", - "089d11c10a90488fa0e2bae2d30db364", - "6e2e75bcc4bd4007b1144f6184c11dcc", - "1f4c163682a24e8386474e0691289196", - "d50fc7e0a2444d24a8c9027953cc965f", - "9ab237cdfad847f3bb05b724b1f84ccd", - "a6e376972605447b87958296183f6e3a", - "af86f2f0f0f1404da3be037467a04ad7", - "b513367b741f446a99d50e15527428ab", - "4aec86337b92412f8fae2380f4f0ebbb", - "6c16e528db4d4795bad8ed6e52e2c6fb", - "55e3cfb117a146fba4648576dac8dd43", - "93ecb5d4179d4d60923bc03f3db1bb39", - "aeffe4c1a7fc402b89c89f836d7e3666", - "1163753548f74cf49ed4dbdb6fe7c590", - "107422e02ead438c8450a25165f850e8", - "9871f24a7bfd40a5851e246921a4a0ea", - "37e246298d2a459ca3ed31d5c81cf5fd", - "c4968307f9dc4c64b016a7944f5179c1", - "bf7bf86c9a364966a3188685888f9742", - "f99c9ddacd6d4429890e7e86c9b372ae", - "c3171dd2f43040749bb37f0581cce1f0", - "b48a4e7bebbb48698de3cba03407c6a2", - "e88e61a013df46068de3c0196644cab0" - ] + "cell_type": "markdown", + "metadata": { + "id": "Fly05NyXWNvo" + }, + "source": [ + "As desired, two additional columns `cls_hidden_state` and `mean_hidden_state` were appended.\n", + "\n", + "Therefore, the function can be supplied to the familiar `map` function\n", + "to add corresponding columns to the original dataset.\n", + "The following lines do this for the full datasets.\n", + "\n", + "On an AWS EC2 p2.xlarge instance, the run time is more than 10 minutes.\n", + "We save the resulting datasets to disk." + ] }, - "id": "ULV0Ffx4WNvt", - "outputId": "cc20315a-8f1b-4560-b8eb-55ae802e1c07", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "loading configuration file models/distilbert-base-multilingual-cased_mlm/config.json\n", - "Model config DistilBertConfig {\n", - " \"_name_or_path\": \"models/distilbert-base-multilingual-cased_mlm\",\n", - " \"activation\": \"gelu\",\n", - " \"architectures\": [\n", - " \"DistilBertForMaskedLM\"\n", - " ],\n", - " \"attention_dropout\": 0.1,\n", - " \"dim\": 768,\n", - " \"dropout\": 0.1,\n", - " \"hidden_dim\": 3072,\n", - " \"initializer_range\": 0.02,\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"distilbert\",\n", - " \"n_heads\": 12,\n", - " \"n_layers\": 6,\n", - " \"output_past\": true,\n", - " \"pad_token_id\": 0,\n", - " \"qa_dropout\": 0.1,\n", - " \"seq_classif_dropout\": 0.2,\n", - " \"sinusoidal_pos_embds\": false,\n", - " \"tie_weights_\": true,\n", - " \"torch_dtype\": \"float32\",\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"vocab_size\": 119547\n", - "}\n", - "\n", - "loading weights file models/distilbert-base-multilingual-cased_mlm/pytorch_model.bin\n", - "Some weights of the model checkpoint at models/distilbert-base-multilingual-cased_mlm were not used when initializing DistilBertModel: ['vocab_transform.weight', 'vocab_layer_norm.bias', 'vocab_transform.bias', 'vocab_projector.weight', 'vocab_layer_norm.weight', 'vocab_projector.bias']\n", - "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", - "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", - "All the weights of DistilBertModel were initialized from the model checkpoint at models/distilbert-base-multilingual-cased_mlm.\n", - "If your task is similar to the task the model of the checkpoint was trained on, you can already use DistilBertModel for predictions without further training.\n" - ] + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 401, + "referenced_widgets": [ + "8ed80abd5ea7459580c458fff0089acc", + "d855649c9dcd4b4e9c4b377616d527a7", + "d8a740862ec0449e9a9ea38eadf6549e", + "cc2a4ba35e0e4d55a96715545f60cbf0", + "d14760dd70124ceab4a356f3ea480ef9", + "e4c79a204fd142b6a307c72d7dc10a38", + "694ecf5bbe544e228a98e8caa343a9e7", + "22a3dbd954e343229d64b8b6e81697d3", + "3ea26ec5e4474ede9bfa10cf598f622d", + "308a0ac18d7549e69572e3dd810494e5", + "d2900942f9df47b28947c30c92de734f", + "85f532274aa34a19a5cadf440768d30b", + "844681227c484b3398e7efb9fea80ee1", + "a5a2bfe6a8464279b8cc5e0e6ebb1082", + "521033f81bdb4bc5b841095d1441f8dc", + "8b7cac926a404a8c975a1b534254d6b5", + "b115e3e3a6c74950ac1531366d3d1335", + "222842b061834510af99839d3b2310f1", + "d3b19d20d3394eb088c6fa1e88e00b8b", + "2daeb74a35b34ddfb932960196636047", + "7a098858446147ccac3d996486da40ac", + "9c70d0b152df49e5827eaf7c4c680b2e", + "a2cf47da7e8a450aa8d5c77881873287", + "47b97501f50d4fd793af73e5f7ceaa4a", + "2dfda44036cb4cb88a24f0cb7d34804c", + "56a31f46d7554b3da300d363edc1b8dc", + "751fe4e50bdb4cc29bc615a7b212bf3a", + "8ca31c08b7da43819df07badc22a179e", + "d72b1c4807db42d2a3969e57e8e9a636", + "a484c9d090fb4cecaf781a0ae5f43f3e", + "0bcbc8fe0861455f99c5a0784ae64c7a", + "259af91263c2451c8835deb8764a9241", + "9d7a6e1b52474cb884814647469ee6d5", + "5976809ff3b649b4a501c31a5679ac4e", + "50a5071b535a47a0b88b728a47b89d11", + "93dde85e17294ddd9e601f5bea74cbb6", + "2b92e8b310de4efd8cec36f3552c9a6c", + "8c6f897388704644a23244153179b827", + "584fb7f0e37e4f07be0065d76e908606", + "f22f1a8cbed842afadde3eac96a11c44", + "8628e5935fb84f3593602277332ade4a", + "91f304d326d7495e9556161390588d27", + "5c6167eaa65b45d68fba432b79090a59", + "62494f3d853b4398b57450d9990f9f91", + "94e9b0b82ef24d50bcd22a69d330b8e3", + "04c38476fb474cfca97cd39ba4d7b7d6", + "ea57a35d4bec43dfb17bc720f66760ef", + "ed7412d2d61241169f992d269eade30a", + "4263e489831f4695915a85d63e155f78", + "0c260d91e8c541d0800dab48c561532f", + "291c668611224d0bbe003d4afdb940d0", + "3595004ad04e440596caf9a909d0cb3a", + "633543a5e3474380a4dc02f1705e6381", + "9ac77dbf03b1450390506cf95bcaa6e4", + "08dc380285794f59bf458b3c7553f7fb", + "fe3b8ce1b4804ba69782b7a9266496fb", + "5668f91584334ed5b07509969388b7f2", + "e9aa55c59bf7444aa2e2abe71eb6f134", + "37662a39e78f4cb1b601f0a32ad6e65c", + "42931f45c63e48b1a99b7820a9ce4a4e", + "78fe6770e8f144279c6be6200b79ecfd", + "7bd734cbe6c6497a9b21ed39c5da686d", + "5d2c1928ecb04230bc15718f0da5245b", + "55e730f7626749079541f5ed86db447e", + "f4af04ec1e2f4e5d94b667119fa68f8c", + "f7d2f7967b9348e793c9d250bda79da9", + "c0c0c6952f1d48f7be957066bac19ed5", + "90b5ffd8825a4a1c9fc243723652a4d6", + "af3079f2882443b79eb737a209c1787a", + "acfbfccc008248c6b74509cddc0e2fe7", + "5f1db7f024f847bd93618601750b474c", + "ca72995210bd43408f96cc36f7577b92", + "959ae0c6077548e9bd64fd7a4bf9b7f5", + "a03f8f70ac384db29225f51790acf56c", + "b0c5f79e2d2e4851918c1ed2c2b33064", + "7be8a5052a174fa9b05e53b0c07117fe", + "364ed0dfa11d496a81e3e2d95455b5cb", + "6ddeec81eeab4e60b7426bf313960252", + "6caf1b50b88940c78df8ffaed4075c82", + "c88e1931c8774b1a98dfb91eef23a56c", + "200c49e4925246a7a92969be34dc80de", + "98253db133754a49a1ac090560140e33", + "b2ff5b74b18c4c20ac24649c94f89d6b", + "54d8348db2c348aa8148fe990ed1b33a", + "dd0e419bf01340b8b3350490ab322439", + "85478fcd7ee04a2f8a1fe891d3818c3a", + "efe396a9fce84ddfb95794d1d6e5ab54", + "ece09fe9319e45aa8fc925360be92e09", + "6e0ff75463754489a5174cac1d9b5822", + "738a0639d9bc40fc8f69f0c766038536", + "7edb817203b449f68ff239b8712c592d", + "3c8040823b5343f8aa1988035358d62e", + "545359cafd1048ffa7c815ed5534aa79", + "380ad081adba47d087ff581aaae181b0", + "88ace3f672e04c1d9999692ff85ba4ea", + "91afd40d9d1a48f58d3178c049fe0af7", + "4183d077fe4a4a60a67bf93c051ea600", + "92feef36eed0474696c5fd819a30e8ea", + "da2a9434bb7f4d08bed438e2360be212", + "d17de88295f24936bb07e02bdde1ef18", + "e91ff5ce47b64722a011e3d227c1e5d8", + "62960d7214e549e4aa236dae77b3adcc", + "2534601ee1494d0ea3ed3fdeee9e409c", + "c695710cb07048549d1c0ee460798838", + "680fa3c642974c18ba47e1c4f4ff8a0e", + "72d551809cbc4b2eb497db44c5adc46c", + "19ab9163969d4ba1aedd890e8456b3f2", + "d65c3ae998494d1fa592052257e66c58", + "9258f33f48714db0856c57e8efccba3e", + "967d9e918cdc44f8a6a1afebe8f35049", + "9aba4419261f433babdbacf2cddbaaae", + "c4d27da25d7b46fe98a95b5f6f0c0ce8", + "2df81efc712b4533acf87f15de43714d", + "1d3171780d8e42988102b4cca3c113c6", + "e260174df0ad4d47864ed4ec99b25fea", + "0c0a76b141ce4c48b951c3f4e8406ce0", + "f15f80503f43492fba9c88cd3c624edb", + "ea01494848f64ee197d761be6236273c", + "7769aa1581144b6db3198fc9c6c94927", + "3f5ba3ff8b474e2780ce0f87edd73d26", + "af395a656b45411784c0f53579de2e4a", + "c69bc5a9ef494ff1be688d3345b47951", + "047ca1cddbe74f378ce360e1df50937b", + "283e7d7c9610439696622eac021cb1fa", + "c29cd6ad1acb4a0d883ec60ac23ec295", + "c57ea7deb5b143b99e06357c41528cf1", + "6e889c250ea94043bad8867ddc10ec92", + "85e59a7172294e76b4e2f83bd60c1f2e", + "914c186c1d5e4353b0881142cd23c52e", + "b79e41c92a56412a824ef3b87636694f", + "56f7bd66913546b790cac64698f47d1f", + "e8dd5c4ec763417c9c01fda0e23af7dc" + ] + }, + "id": "B6vH7oZ8WNvo", + "outputId": "492b56db-b77e-4b9f-a72e-be3916308c01", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/5559 [00:00\n", + "\n", + "### 3.2. ... and Using It in a Classification Model\n", + "\n", + "We will now use the encoded texts as features to predict labels taken from certain tabular information available in the dataset.\n", + "\n", + "To this end, we use the following convenience functions implemented in `tutorial_utils.py`:\n", + "\n", + "* `x_train, y_train, x_test, y_test = get_xy(dataset, features, label)`
\n", + " get numpy arrays corresponding features (x) and label (y) corresponding to the train and test split of the `dataset`where the encoded sentences are stored in the column `features` and the labels in the column `label`.

\n", + " \n", + "* `clf = logistic_regression_classifier(x, y, c=1)`
\n", + " fit and return a multinomial [Logistic Regression classifier](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) to features `x`, and labels `y`. L2-penalty is controlled by the hyper-parameter `c`.

\n", + " \n", + "* `clf = dummy_classifier(x, y):`
\n", + " fit and return a [Dummy classifier](https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html) to features `x`, and labels `y`. This classifier predicts always the most frequent class and `predict_proba` always returns the empirical class distribution of `y`.

\n", + " \n", + "* `score_accuracy, score_log, score_brier, confusion_matrix, fig = evaluate_classifier(y_true, y_pred, p_pred, target_names, display_title_string, file_name)`
\n", + " Calculate and display performance metrics of a classifier. The return value `fig` is a ploty figure representing the confusion matrix plot. The following inputs are expected:
\n", + " * the true labels `y_true` (array-like);\n", + " * either the predicted labels `y_pred` (array_like), in which case the log loss and Brier score are not evaluated;\n", + " * or the predicted probabilities `p_pred` (array_like);\n", + " * a display title string;\n", + " * a file name for exporting the figure, or `None`.\n", + "\n", + "Now the toolbox is ready!\n", + "\n", + "Next, we apply it to a simple classification task." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6e4514e8397841fc82ab54554e3a8932", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "metadata": { + "id": "XKHtvwGHWNvp" }, - "text/plain": [ - " 0%| | 0/87 [00:00\n", + "\n", + "### 3.3. Case Study: Use Accident Descriptions to Predict the Number of Vehicles Involved\n", + "\n", + "In this case study, we will predict the number of vehicles involved in an accident from the verbal accident description.\n", + "\n", + "Since the data set contains the column `NUMTOTV`, we can adopt a supervised learning approach.\n", + "\n", + "We might consider framing the problem as a regression task, e.g. using Poisson regression. However, looking at the frequenca distribution of `NUMTOTV`, it apears unlikely that the Poisson distribution is a good reflection of reality. First, there are no accidents with zero vehicles involved - it takes at least one. So we might consider using a zero-truncated Poisson model. However, the empirical frequency distribution has low mass at high vehicle counts, so that this would not be a plausible model either.\n", + "\n", + "Therefore, we frame the prediction task as multinomial classification. Given that only a small fraction of cases involves four or more vehicles,\n", + "and to avoid a heavily imbalanced classification problem, we map these cases to an aggregated class \"3+\".\n", + "\n", + "To achieve this, we map the column `NUMTOTV` to a new column `labels`, with levels 0 (1 vehicle), 1 (2 vehicles) and 2 (3 or more vehicles).\n", + "We choose the column name `labels` because this is expected by the sequence classification model which we fit in Section [4.2](#task_finetuning)." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "57f2c2d7d49f4d2dbabd2d8b1930d082", - "version_major": 2, - "version_minor": 0 + "cell_type": "code", + "execution_count": 35, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 244, + "referenced_widgets": [ + "8859929b31c548eaa0fceb367568af33", + "f0f547acc2c44f10be2f6c7ffd5db923", + "815ca085199c4f6a9dc202d3a174fdd5", + "dc0772cdfd4d42ac9211675e32f48f44", + "c4703cc30b76400cbb482ef52d6d3791", + "3ecfc0861d334e8391ad99b43ab7b723", + "514b6b97e18e4dd897b082cfe5b36bcf", + "da418dbc160c4b82a1c35722798a28e4", + "f9e8fbba70044acfa947d2dd6e4c2d43", + "8b97e9202169463792af0302a19f6af8", + "2c347ab097bb4170908b355dd7b71d9f", + "37bb3b9cd750470580d42d0792ea8e3b", + "c457da46eced414bab1662ca2953b86f", + "f762156b82c5482a878a0c1c42da6836", + "5c7f3a804425438da85a57efc4521a2e", + "da3addaf251f48cbb48533d0a115bef2", + "9459bb2fa5574d7fbed332a76760365e", + "ad926e85837b43f7b23dd42b1c8e977c", + "c18d64ce39c643beb6dfec5cbb1034c9", + "96b808e296584cd6b405d92bacb33857", + "a78fc8e06cd84d3d93000149a0f8b783", + "c7f80157d6f84c239ea6ee339354101c", + "a38d4960d8b347d5a27e3b6e4e1fb113", + "e778619f05884fc6a625a4b4d791324c", + "f4b2e06f854044a2b39d3c44f2e581c8", + "3ae6c793683f4204a6c0a2e94c8c0f38", + "d09b95acf723434d8efc0441bb70c42b", + "cf0d5b8201ab49d193edb2699eb83ec5", + "031029d1c7154f67aa36703d8c500d81", + "202292e0000146dda5d3d4947d912a0c", + "7d10f210fd1245c59a0339e183c515cf", + "ebdcd3076e304521aff61740d639b38f", + "ec6167948240441b9261d5448b3237ec", + "0c3537ff57e04d7db9262aab594bcd5f", + "2d74142f04f349e19e808a98746390f2", + "f6221bb71bc34c918db36e1aebe1aac4", + "6206181637814e5b8e4213187a9dedb0", + "ee6b155dd8744028b375e56594d2b48a", + "8ce81913402e4ea49de86a20651add07", + "9ec9ef006d004103907e24442f7c80fe", + "dff32c0ac16d4f14a39096288f1aa8b8", + "fad7778daf544f62bd8d74cbb1b015dc", + "db1d68dfb3fe437f9b8c67268f5a4ab2", + "f34edd60534c4f17b75fcff5fba45589", + "ac73a156c46644d7970e16e7781a5183", + "b688e34e55b94fdb9d2cabb20fef3053", + "775a6250bd854c1aa0247923d97ff9fd", + "93549c8a61fa4894b4a19c3fca99a118", + "fec529325496499c94c6177b5d54c3eb", + "557d9c1161664117a7cf83affd6d3980", + "a501b1086d6a4d8ab3518b23cf02789d", + "6c8190f1fcdc45f0939a82f9eefc5cad", + "acac3bd9c181437eade41fca54c92646", + "575523c10a5f40de80d8135c76fccb76", + "ca7e438ad5904494809d67935892bb2d", + "56ab07e2da3340d7a5548ad251b507fa", + "5981828186cd4cfc8c4d9965b22d3718", + "d84b745464254fcabdfd97422f03ee50", + "fdfc7556cc4c4d1588fa53412a33a7ca", + "f822c415536240868446e730383ab21d", + "061e5070e4d44f79b35a87f07647c265", + "756f1da19f454852af074af6e9767b16", + "df7ced2045694585bf5caab44d2219de", + "3680dc3182db4b0994d21e70d86a9fb1", + "ca4efa3ede794e85b856adbf87edb53b", + "9da06a1fcd77401e926701eb80bd7619" + ] + }, + "id": "LFE7syyMWNvp", + "outputId": "8662795c-6dbe-4db1-9d43-0a651db6a02a", + "pycharm": { + "name": "#%%\n" + } }, - "text/plain": [ - " 0%| | 0/348 [00:00\n", + "\n", + "\n", + "

\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "# extract the transformer encoding corresponding to the the CLS token\n", + "x_train_en, y_train_en, x_test_en, y_test_en = get_xy(dataset_en, \"cls_hidden_state\", \"labels\")\n", + "\n", + "# fit dummy classifier\n", + "clf_dummy = dummy_classifier(x_train_en, y_train_en)\n", + "_ = evaluate_classifier(y_test_en, None, clf_dummy.predict_proba(x_test_en), labels, \"Dummy classifier\", \"cm_nv_dummy\")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c951b413644740a2b6548a1cb1732a22", - "version_major": 2, - "version_minor": 0 + "cell_type": "code", + "execution_count": 37, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 768 + }, + "id": "lIzPeTfEWNvq", + "outputId": "091df1a2-7414-45ee-89da-d4ed4f4d8028", + "pycharm": { + "name": "#%%\n" + } }, - "text/plain": [ - " 0%| | 0/87 [00:00\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "# fit a classifier to the encoded English texts\n", + "clf_en = logistic_regression_classifier(x_train_en, y_train_en, c=10)\n", + "_ = evaluate_classifier(y_test_en, None, clf_en.predict_proba(x_test_en), labels, \"Logistic regression (a)\", \"cm_nv_lr_a\")" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "dataset_en = load_from_disk(\"./datasets/dataset_en\")\n", - "dataset_ge = load_from_disk(\"./datasets/dataset_ge\")\n", - "dataset_mx = load_from_disk(\"./datasets/dataset_mx\")\n", - "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", - "model = AutoModel.from_pretrained(\"models/\" + model_name + \"_mlm\").to(device)\n", - "dataset_en_pretrained = dataset_en.map(extract_sequence_encoding, fn_kwargs={\"model\": model}, batched=True, batch_size=16)\n", - "dataset_ge_pretrained = dataset_ge.map(extract_sequence_encoding, fn_kwargs={\"model\": model}, batched=True, batch_size=16)\n", - "dataset_mx_pretrained = dataset_mx.map(extract_sequence_encoding, fn_kwargs={\"model\": model}, batched=True, batch_size=16)\n", - "dataset_en_pretrained.save_to_disk(\"./datasets/dataset_en_pretrained\")\n", - "dataset_ge_pretrained.save_to_disk(\"./datasets/dataset_ge_pretrained\")\n", - "dataset_mx_pretrained.save_to_disk(\"./datasets/dataset_mx_pretrained\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "BKct-oVhWNvt", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "Now let's see to what extent domain-specific fine-tuning is able to improve the performance of the classification model.\n", - "\n", - "To this end, we perform the same steps as in Sections [3.3](#case_study_nvehicles)-[3.5](#multi_lingual_training):" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 209, - "referenced_widgets": [ - "a8ac2436045a4563ae3486bdb87c1dfc", - "a79f1d8d86f24cf79827ee87c25464af", - "99b919698526404f9649193c29ba0369", - "025f58ef2eb34c2788a81330856c3550", - "4270b211964347489aac78ed936b72b9", - "d381ba546b2a462cb7c2bba2548f4aeb", - "e7405686adac427896e009dcffd7e7bf", - "f5987015973545138492026a9a477f8d", - "94469cf42d06456789448ac7762087c7", - "ec3609c9a6a94ab28c12886ece2950ef", - "991092a330274e498caa71a8e8568299", - "7674895db83c4975ac943ad6cd8b3a7d", - "8af626b74e1a42f79526f8e9431c0e57", - "cfab1677de114ed6809b1d80e54ca0c1", - "f1a4a3b05b8d489b92765eb91eb98a7b", - "454707c78bb44c0fa0e6cbdddd6fbc22", - "62cea98127e4435f8dee9b9e08f89d2e", - "3afa79ae4c524f16af14a8645e1e6b65", - "bdea16c1d7914ef2a5ce667d09214471", - "42ba3f4756ba4857a1bf43b1d040a329", - "13c3298103f64f5d957d6966c88fa260", - "2c06aec09c874cc6b28adcf5953e4f84", - "bae2ab858a344334ac9aab135fdea558", - "0ef1ec02312d45a98e1375526b408d89", - "39f4abeb66b4468880961db6e7342b07", - "d840f155f4c1469f96c71247ec94528e", - "8a89d66b69054f4db3272c2be5fb1431", - "2785da2491d14c5894b8fd67d0e0bb47", - "aee3b8f33eb84e27b10394459d14a3dc", - "b109a334d560490ab46976a506ed0c18", - "01f20b23a70841348756a4828c15e0b2", - "82a50e05623b451d8177406bc4fef1d4", - "6ca8b6d28a054650b07c1010ea732995", - "144920dfe3b646b1aa6a4159c02bc0b1", - "6f10df8509ce49a48aea26206f66ad40", - "d1df9aa896b44c259b01478290c1cb9b", - "c62c355fb8de48a7bdc2807ea185e9ba", - "586ca98ec28f46e38cfcbd22224f6b26", - "833fa49649f547b8885d4e83aeab34e8", - "9e438c2b755d4022b9b54d8fdc2a19c2", - "dd46029c8ff74c95b3dcbe8d365c2357", - "1828be6b5d7b402b80002147b72767e6", - "d28aa9842ac6468b9e8c7adaeed7a4df", - "825a2e865b8d4ac696a467105c2f725a", - "3044bf0757b0429a979a967e11ee723d", - "7a23dd3abaeb4f49b071c024e077639a", - "6fa4ba0653d2410e90d91bdf13b557c9", - "5419a464ac25425f89e7fde2a727091a", - "4943b4c6a96947ecb7c1d5f0ddadeb27", - "07d6482f951f46d7bb40f0b773cbb047", - "fb73dc3c0b6a45b99a69d7dd09602c8b", - "bbc5f76f188349e5b812de73ab844ea0", - "dbd8f871a6fe4a98abff08db47a7aa67", - "cecc68219c5a479e9792c72e4fde2bdc", - "b908cbe4105046beba03abfe1b2600d0", - "406d1b30996f4f899db4253eb0000fd2", - "df40f0dc5577447992a6b0bf24d75527", - "11d5e2fc6dca4b2da83ca69c1597eeb7", - "86c5d4ab9b234240bb26560a28f2138a", - "d9fe8aa27e694187b244165228c4a7f7", - "18bf213b47ef4bb487bbc0d38ce800df", - "f7acee00f37545969425d3c507de87ea", - "ef4e1ee660e548c2a60bd1b20fcb6ffc", - "7f951eed18b740179218b3361ca082d7", - "2bf8c6aef5f749358039f2b0ad89ec0a", - "2833ed36ab7f4c2bb4abbb117b6c4396" - ] }, - "id": "JD6cDqXDWNvt", - "outputId": "b570ff43-49d9-46db-8028-52065b53cb81", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "91f9913d451c4690991760e2928c6c26", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "metadata": { + "id": "qED73tnMWNvq" }, - "text/plain": [ - " 0%| | 0/5559 [00:00\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "x_train_en, y_train_en, x_test_en, y_test_en = get_xy(dataset_en, \"mean_hidden_state\", \"labels\")\n", + "clf_en = logistic_regression_classifier(x_train_en, y_train_en, c=10)\n", + "_ = evaluate_classifier(y_test_en, None, clf_en.predict_proba(x_test_en), labels, \"Logistic regression (b), train EN, test EN\", \"cm_nv_EN_EN\")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ab3d67551e20490fa7002af5b4427d98", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "metadata": { + "id": "SB0K-NinWNvq" }, - "text/plain": [ - " 0%| | 0/5559 [00:00\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "x_train_ge, y_train_ge, x_test_ge, y_test_ge = get_xy(dataset_ge, \"mean_hidden_state\", \"labels\")\n", + "clf_ge = logistic_regression_classifier(x_train_ge, y_train_ge, c=10)\n", + "_, _, _, _, _ = evaluate_classifier(y_test_ge, None, clf_ge.predict_proba(x_test_ge), labels, \"train GE, test GE\", \"cm_nv_GE_GE\")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "5f4e44590ca64c65b98ce4c4ed6b5190", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "metadata": { + "id": "fYKoqK3eWNvr" }, - "text/plain": [ - " 0%| | 0/5559 [00:00\n", + "\n", + "### 3.4. Cross-Lingual Transfer\n", + "\n", + "In practice, it might happen that training data is available (predominantly) in one language,\n", + "but we would like to apply the model to test data in another language.\n", + "Translating the test data to the language of the training data would be an option,\n", + "but let's see how the multilingual transformer model performs.\n", + "\n", + "In our small experiment, we simply switch the languages of the test sets.\n", + "This might be hard for the models, since in the entire training process each model has seen only encoded input\n", + "from text samples in one language!\n", + "\n", + "First, use the German test set for the model trained on English input:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "dc2726fde54748a9a9e2e57bdaf9b5a3", - "version_major": 2, - "version_minor": 0 + "cell_type": "code", + "execution_count": 40, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 768 + }, + "id": "247Aj4I5WNvr", + "outputId": "f111a82a-bf4b-4480-b7f2-c8c959b33efe", + "pycharm": { + "name": "#%%\n" + } }, - "text/plain": [ - " 0%| | 0/1390 [00:00\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "_ = evaluate_classifier(y_test_ge, None, clf_en.predict_proba(x_test_ge), labels, \"train EN, test GE\", \"cm_nv_EN_GE\")" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "dataset_en_pretrained = load_from_disk(\"./datasets/dataset_en_pretrained\")\n", - "dataset_ge_pretrained = load_from_disk(\"./datasets/dataset_ge_pretrained\")\n", - "dataset_mx_pretrained = load_from_disk(\"./datasets/dataset_mx_pretrained\")\n", - "\n", - "# map number of vehicles to a new column \"labels\"\n", - "labels = [\"1\", \"2\", \"3+\"]\n", - "d = {i: min(i-1, 2) for i in range(1,10)}\n", - "dataset_en = dataset_en_pretrained.map(lambda x: {\"labels\": d[x[\"NUMTOTV\"]]})\n", - "dataset_ge = dataset_ge_pretrained.map(lambda x: {\"labels\": d[x[\"NUMTOTV\"]]})\n", - "dataset_mx = dataset_mx_pretrained.map(lambda x: {\"labels\": d[x[\"NUMTOTV\"]]})\n", - "\n", - "# extract features and labels and creade multi-lingual dataset\n", - "x_train_en, y_train_en, x_test_en, y_test_en = get_xy(dataset_en, \"mean_hidden_state\", \"labels\")\n", - "x_train_ge, y_train_ge, x_test_ge, y_test_ge = get_xy(dataset_ge, \"mean_hidden_state\", \"labels\")\n", - "x_train_mx, y_train_mx, x_test_mx, y_test_mx = get_xy(dataset_mx, \"mean_hidden_state\", \"labels\")" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 }, - "id": "jmGm2stNWNvu", - "outputId": "08a4ed7e-db6a-4af2-db14-3de971671ebd", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "train EN, test EN\n", - "accuracy score = 97.1%, log loss = 0.091, Brier loss = 0.044\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 0.96 0.99 0.97 389\n", - " 2 0.97 0.98 0.97 795\n", - " 3+ 0.98 0.91 0.94 206\n", - "\n", - " accuracy 0.97 1390\n", - " macro avg 0.97 0.96 0.96 1390\n", - "weighted avg 0.97 0.97 0.97 1390\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "rQQ0Ql2bWNvr" + }, + "source": [ + "From these rather poor results, we conclude that this approach to cross-language transferability does not work.\n", + "\n", + "Vice versa, use the English test set for the model based on German input:" + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_pr_EN_EN", - "format": "svg" + "cell_type": "code", + "execution_count": 41, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 768 + }, + "id": "j90XLzGZWNvr", + "outputId": "d55a168a-c348-439b-f53f-f44755f48ff6", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 384, - 5, - 0 - ], - [ - 14, - 777, - 4 - ], - [ - 1, - 17, - 188 + "output_type": "stream", + "name": "stdout", + "text": [ + "train GE, test EN\n", + "accuracy score = 24.3%, log loss = 8.052, Brier loss = 1.360\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 1 0.00 0.00 0.00 389\n", + " 2 0.40 0.17 0.24 795\n", + " 3+ 0.19 0.99 0.32 206\n", + "\n", + " accuracy 0.24 1390\n", + " macro avg 0.20 0.39 0.19 1390\n", + "weighted avg 0.26 0.24 0.18 1390\n", + "\n" ] - ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "train EN, test EN" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } - } - } - }, - "text/html": [ - "
" + ], + "source": [ + "_ = evaluate_classifier(y_test_en, None, clf_ge.predict_proba(x_test_en), labels, \"train GE, test EN\", \"cm_nv_GE_EN\")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "train EN, test GE\n", - "accuracy score = 41.4%, log loss = 1.801, Brier loss = 0.890\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 1.00 0.08 0.16 389\n", - " 2 0.58 0.43 0.49 795\n", - " 3+ 0.26 0.99 0.42 206\n", - "\n", - " accuracy 0.41 1390\n", - " macro avg 0.61 0.50 0.35 1390\n", - "weighted avg 0.65 0.41 0.39 1390\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "5FFjmHzBWNvs" + }, + "source": [ + "Again, performance is unsatisfactory.\n", + "\n", + "To improve results, we need to change the approach.\n", + "\n", + "\n", + "\n", + "\n", + "### 3.5. Multi-Lingual Training\n", + "\n", + "In a multilingual situation, a possible approach is to train the classifier with a training set consisting\n", + "of encoded samples from both languages.\n", + "This can always be achieved by translating a fraction of the text data and then use it to train the model.\n", + "\n", + "This is exactly what we are going to do next.\n", + "In order to simulate a situation where one language is underrepresented, we create a mixed-language dataset\n", + "with about 80% English and 20% German samples, our dataset `dataset_mx` produced in [Section 2.2](#tokenize).\n", + "\n", + "Since we are already using a multilingual transformer model, no further changes are required." + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_pr_EN_GE", - "format": "svg" + "cell_type": "code", + "execution_count": 42, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "BdCe6OIDWNvs", + "outputId": "ac237125-2c4f-4cad-9ce0-376c900307db", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 33, - 245, - 111 - ], - [ - 0, - 340, - 455 - ], - [ - 0, - 3, - 203 - ] - ] - } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } + "output_type": "stream", + "name": "stdout", + "text": [ + "train EN/GE, test EN\n", + "accuracy score = 95.7%, log loss = 0.136, Brier loss = 0.068\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 1 0.96 0.98 0.97 389\n", + " 2 0.95 0.97 0.96 795\n", + " 3+ 0.97 0.85 0.90 206\n", + "\n", + " accuracy 0.96 1390\n", + " macro avg 0.96 0.93 0.95 1390\n", + "weighted avg 0.96 0.96 0.96 1390\n", + "\n" ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "train EN/GE, test GE\n", + "accuracy score = 95.2%, log loss = 0.160, Brier loss = 0.080\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 1 0.96 0.97 0.97 389\n", + " 2 0.95 0.97 0.96 795\n", + " 3+ 0.94 0.85 0.90 206\n", + "\n", + " accuracy 0.95 1390\n", + " macro avg 0.95 0.93 0.94 1390\n", + "weighted avg 0.95 0.95 0.95 1390\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "train EN, test GE" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "metadata": {} } - } - }, - "text/html": [ - "
" + ], + "source": [ + "x_train_mx, y_train_mx, x_test_mx, y_test_mx = get_xy(dataset_mx, \"mean_hidden_state\", \"labels\")\n", + "clf_mx = logistic_regression_classifier(x_train_mx, y_train_mx, c=10)\n", + "_ = evaluate_classifier(y_test_en, None, clf_mx.predict_proba(x_test_en), labels, \"train EN/GE, test EN\", \"cm_nv_MX_EN\")\n", + "_ = evaluate_classifier(y_test_ge, None, clf_mx.predict_proba(x_test_ge), labels, \"train EN/GE, test GE\", \"cm_nv_MX_GE\")" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# fit logistic regression classifiers to each of the three datasets and (cross-) evaluate them\n", - "clf_en = logistic_regression_classifier(x_train_en, y_train_en, c=10)\n", - "_ = evaluate_classifier(y_test_en, None, clf_en.predict_proba(x_test_en), labels, \"train EN, test EN\", \"cm_nv_pr_EN_EN\")\n", - "_ = evaluate_classifier(y_test_ge, None, clf_en.predict_proba(x_test_ge), labels, \"train EN, test GE\", \"cm_nv_pr_EN_GE\")" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 }, - "id": "L5NPXt8VWNvu", - "outputId": "53eadf84-902c-4b75-c17c-62e9a6dc3ee3", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "train GE, test GE\n", - "accuracy score = 96.9%, log loss = 0.104, Brier loss = 0.051\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 0.97 0.98 0.98 389\n", - " 2 0.97 0.98 0.97 795\n", - " 3+ 0.96 0.91 0.94 206\n", - "\n", - " accuracy 0.97 1390\n", - " macro avg 0.97 0.96 0.96 1390\n", - "weighted avg 0.97 0.97 0.97 1390\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "0Ew5aqySWNvs" + }, + "source": [ + "This is a very good outcome. The scores are close to those achieved in the situation with a single-language!\n", + "\n", + "To conclude, a multi-lingual situation can be handled by a multi-lingual transformer model. For the best performance, the classifier should be trained on the encoded sequences from all languages." + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_pr_GE_GE", - "format": "svg" - } - }, - "data": [ - { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 382, - 7, - 0 - ], - [ - 10, - 778, - 7 - ], - [ - 1, - 18, - 187 - ] - ] - } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "train GE, test GE" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "cell_type": "markdown", + "metadata": { + "id": "C_CEp4ShWNvs", + "pycharm": { + "name": "#%% md\n" } - } }, - "text/html": [ - "
" + "source": [ + "\n", + "\n", + "## 4. Fine-Tuning – Improving the Model\n", + "\n", + "In the previous case study, we have used the DistilBERT model without any adaptation to the text data at hand,\n", + "simply by using the sequence encoding produced by the model.\n", + "As such, the language representation, which the model has learned from a large corpus of multilingual data, is transferred\n", + "to the text data at hand.\n", + "This approach is called transfer learning.\n", + "The advantage of transfer learning is that a powerful (but relatively complex) model can be trained on a large corpus\n", + "of data, using large-scale computing power, and then be applied to situations where availability of data or computing\n", + "power would not allow for such complex models.\n", + "\n", + "For the task at hand, the results are already very good.\n", + "However, in certain situations it might be required to further improve model performance.\n", + "\n", + "In the following sections you will learn how to fine-tune a transformer model.\n", + "We will explore two approaches to fine-tuning:\n", + "\n", + "* *Domain-specific fine-tuning* involves updating the parameters of the transformer model using text data which is\n", + " relevant to the domain where the model will be applied.\n", + " However, the model is not necessarily tuned for a specific downstream task of interest.\n", + "* *Task-specific fine-tuning* uses domain-specific text data and tunes the parameters of the transformer model\n", + " while training it for a given downstream task of interest.\n", + "\n", + "The advantage of the first approach is that it can be performed in an unsupervised fashion,\n", + "i.e., it does not require labeled data.\n", + "\n", + "On the other hand, task-specific fine-tuning is expected to produce better performance on the particular task\n", + "which the model was tuned for, so it might be the method of choice if there is a single down-stream task\n", + "and sufficient labeled data.\n", + "\n", + "Let's explore these two fine-tuning approaches in turn." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "train GE, test EN\n", - "accuracy score = 64.3%, log loss = 3.640, Brier loss = 0.687\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 0.00 0.00 0.00 389\n", - " 2 0.62 1.00 0.76 795\n", - " 3+ 0.99 0.49 0.65 206\n", - "\n", - " accuracy 0.64 1390\n", - " macro avg 0.54 0.49 0.47 1390\n", - "weighted avg 0.50 0.64 0.53 1390\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "I1pU2x-JWNvs" + }, + "source": [ + "\n", + "\n", + "### 4.1. Domain-specific fine-tuning\n", + "\n", + "Domain-specific fine-tuning can be achieved by applying the model to a \"masked language modeling\" task.\n", + "This involves taking a sentence, randomly masking a certain percentage of the words in the input,\n", + "and then running the entire masked sentence through the model which has to predict the masked words.\n", + "This self-supervised approach is an automatic process to generate inputs and labels from the texts and does not require\n", + "any humans labelling in any way.\n", + "\n", + "This is very easy to implement using the Transformers library.\n", + "You will see three new elements of the Transformer library in action:\n", + "\n", + "* the `AutoModelForMaskedLM` class loads the DistilBERT model with a model head suitable for the masked language\n", + " modeling task.\n", + "* The `DataCollatorForLanguageModeling` class forms training batches from the dataset and handles the masking.\n", + "* The `Trainer` class provides the interface to train the model.\n", + "\n", + "Depending on the hardware available, training might take a rather long time.\n", + "Therefore, if available, we use GPU support.\n", + "On an AWS EC2 p2.xlarge instance, the run time is about 55 minutes.\n", + "We store the trained model for later use.\n", + "\n", + "If you do not have enough time to perform this step right now, you can skip this section and return later. The remainder of this notebook does not depend on it." + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_pr_GE_EN", - "format": "svg" + "cell_type": "code", + "execution_count": 43, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 249 + }, + "id": "R5-TPov4WNvt", + "outputId": "0f0635c3-822c-4da9-d03d-c9473f4d9403", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 0, - 389, - 0 - ], - [ - 0, - 794, - 1 - ], - [ - 0, - 106, - 100 - ] - ] - } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } + "output_type": "stream", + "name": "stderr", + "text": [ + "You're using a DistilBertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n" ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [2780/2780 25:09, Epoch 2/2]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTraining Loss
5001.435100
10001.116400
15001.001500
20000.941800
25000.891200

" ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "train GE, test EN" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "metadata": {} } - } - }, - "text/html": [ - "

" + ], + "source": [ + "# load model and tokenizer and define the DataCollator\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "torch.manual_seed(42) # for reproducibility, set random seed before instantiating the model\n", + "model_mlm = AutoModelForMaskedLM.from_pretrained(model_name).to(device)\n", + "tokenizer = AutoTokenizer.from_pretrained(model_name)\n", + "data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=True, mlm_probability=0.15)\n", + "dataset_mx = load_from_disk(\"./datasets/dataset_mx\")\n", + "\n", + "# define training arguments\n", + "training_args = TrainingArguments(\n", + " output_dir=\"models/\" + model_name + \"_mlm_epochs\",\n", + " overwrite_output_dir=True,\n", + " num_train_epochs=2,\n", + " per_device_train_batch_size=4,\n", + " save_strategy=trainer_utils.IntervalStrategy.NO,\n", + ")\n", + "trainer = Trainer(\n", + " model=model_mlm,\n", + " args=training_args,\n", + " data_collator=data_collator,\n", + " train_dataset=dataset_mx[\"train\"]\n", + ")\n", + "trainer.train()\n", + "trainer.save_model(\"models/\" + model_name + \"_mlm\")" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "clf_ge = logistic_regression_classifier(x_train_ge, y_train_ge, c=10)\n", - "_ = evaluate_classifier(y_test_ge, None, clf_ge.predict_proba(x_test_ge), labels, \"train GE, test GE\", \"cm_nv_pr_GE_GE\")\n", - "_ = evaluate_classifier(y_test_en, None, clf_ge.predict_proba(x_test_en), labels, \"train GE, test EN\", \"cm_nv_pr_GE_EN\")" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 }, - "id": "ysYstLT2WNvu", - "outputId": "97bde4ef-7a27-4005-ce69-78f4899ee0b2", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "train EN/GE, test EN\n", - "accuracy score = 97.1%, log loss = 0.095, Brier loss = 0.046\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 0.97 0.99 0.98 389\n", - " 2 0.97 0.98 0.98 795\n", - " 3+ 0.98 0.90 0.94 206\n", - "\n", - " accuracy 0.97 1390\n", - " macro avg 0.97 0.96 0.96 1390\n", - "weighted avg 0.97 0.97 0.97 1390\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "n8if8dfPWNvt" + }, + "source": [ + "Now, `model_mlm` holds the DistilBERT model, fine-tuned to the mixed-language accident descriptions\n", + "using masked-language-modeling.\n", + "\n", + "Next, we apply this model to all input sequences and extract the last hidden state.\n", + "The procedure is the same as in section [3.1](#extract_encoding).\n", + "To avoid confusion, we create new datasets, and store them on disk for later use,\n", + "so that this step does not need to be repeated all over when this notebook is re-run." + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_pr_MX_EN", - "format": "svg" - } - }, - "data": [ - { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 385, - 4, - 0 - ], - [ - 12, - 780, - 3 - ], - [ - 1, - 20, - 185 + "cell_type": "code", + "execution_count": 44, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 401, + "referenced_widgets": [ + "338d1ffeb8364875b1e3eba99eb75d0a", + "7275f894b10449d2b00a494e7a109f87", + "ce54d113c2944f0c961501a967028b30", + "ff0f15dcd86e49338cee6af7ef89395b", + "d1022bbf6fd149638383529c47051f93", + "fe30bd2fe55140ec9a61a55b72615524", + "b5db735f399d490eabfeb025a0dad1c3", + "708703e4fd9246f1ae61126f2be90578", + "410d2908686b4039b5e00d427644a576", + "1262a69f9f5448c38112759d637102b7", + "b7e157b1383a4c92b9ab4dc8a8d07e91", + "e3da77ab25d548fbbb1ad74b532f8c7d", + "b1ad913a10fd4c14801c68d6b5e31bc8", + "d2746a51c2a643a68b813dc9d100721b", + "2f490e9dab4b44d59f9b8d148911ae79", + "74bb44ca631a4f6cb832269a39518cd3", + "6cf7db0b71144e7b915f1c569386e834", + "dee4dd1ec2ea41a7be94073e291002c3", + "2f99de0601824cee8f0a7525f58c4726", + "db2642b85eb048a1853c061567ea01fa", + "51228ddf46e9405685247b445ec55dfe", + "133b07406b014ebc9ff41a244838a23a", + "88ab9b0630634433a38ec1a1041b6793", + "a69938d2b5ef4b8e99d9a1b1c20f1d55", + "e5e254c3143540998ac5a90294dbe490", + "35578a8ace994593b59e7404e49c1fe1", + "403503061ca6475eab164690ed0a35de", + "3915829c49f948119803ec5ba3ac6bbf", + "1b06a7cb6a7a49918ff546c21d7208f5", + "3e4f5d3074514aa58216884ad9a054e9", + "fc325bb097f04411b1e46bc9a0adc7b9", + "72c126b0b7284c9f9d0d851c7037a2d1", + "9bdeaef34b28447aaadc6bdc6faeed57", + "6b5c8a5a7934422a903a7d0ecc91f321", + "05e2dc79509649588adc10d0e27a5ab1", + "29c9dc340f4a422ea0a4b21513b89ddb", + "7ecb6a88b5754c0abc125b054eba7389", + "2a17ba043fb74a0b9581f32208a74732", + "9ef9ed8d47154ff495177e3ce6f0ccab", + "2f8cab7a7e584b75b4dcd027512e7ae8", + "f7332463f4da4e598d0c76a7cf0e1160", + "3636683727324018a5472386ed6990ca", + "84e62572b55b418fa40d3cb3c1ce0f14", + "77a56d8ee48e46a08e2ecaa5d676be0b", + "ffcb83603765474d9379a90187bc3a27", + "aeaed39127bf45a1acfa3632224babd1", + "21d9e3e2ebb540c5bf7649b10a0258ea", + "8297e4bda30b4e8cb9ac8ed97defc75b", + "a074133c31d2406c8b68f4881acb0f62", + "ff8f39d347ca4672b691a38d34bf0dd1", + "8eca63e0ea5b4e578dffc3f10212d558", + "51ba5660537f4a1cb8e1fc430652b051", + "67327719377c4fc691be3f72f5a36747", + "3b1109fb54d84f179d202759e8b66495", + "a1cec3a032bc4ef08f921d9be506c9de", + "84f23c987e614f0992dbdae071fb6314", + "0a148286887b421bbfb2579c3eab211d", + "bea4705f37d9422c875d9fa13669950a", + "39a2d7b0750e4f84ab56ca52b66b94be", + "98e36923b3f948bcabcbe2c3d950d82b", + "5914f98fb60341deb7966b634faa360b", + "73017793c9394f818104215972655c2b", + "5def40185d6543e091aa714c9b891ac9", + "0112437a720846dca2e16f634c862ce8", + "16e007cf72174f60a0edd1bd3735549b", + "2d2ed668b80547dca68771be04264059", + "25171061d90a40068fdd9cc385050aeb", + "95a3e9f6b0c24aa5976042ce50e669f7", + "3789d006f67e48aeb3c41504caafa634", + "ede8b23198334ae9a16d06ee134d1023", + "a6a8d8cb31604e6caca980432245ef7f", + "6fdafd894d354b9abed9c335d1d6e943", + "069398105c3d47ccb215475d097fccae", + "7a5896e66d084ccda618082d735dcba9", + "d3ace19af72b4c91a96535ee74353cca", + "c831615c79d847c0b84179cb86720b78", + "0f6f967388174a3ca14eaec5b5cece38", + "d3b0ab351fe24f6c8c94db179bddfe82", + "3763230ceae34b57ab800df9f52fb4c3", + "fe19f45121c940a09d4f6ca7203d14f3", + "c9d9ad64c1744e70baa2d9fcba04381d", + "a17542b65b2f489d918d5c2ea0efbf14", + "5573793fd299467eb4258e27b3629a9d", + "68c2bc2ea11a4d6893ec9a400c7072df", + "a33e610f4b064359a78d639632b91228", + "169684652ce9425db5d0ed190749fdf7", + "5cba2d1c85ad4e82933bf92fb8154885", + "5c2755ed53f84c8382ca67d7b25985db", + "e27d3f29de024968b35a25d755a9abf6", + "5a7908d105174393987c8c8a5461a4c0", + "53b343b183e14c398f4f96fc7efcb017", + "47a96c0b881747529b37bbaf4d31c66d", + "73c86ddeb50f49a0b81bf07a598b4442", + "252a7cd731bf40a7959a370d6146a95f", + "7036a7d40faf42498db22dd68212bd15", + "1345735c960a40179f21f9950386f24e", + "7f33c98181574426bf5526db319b50d3", + "bafa736d2fca4004be822dfab9916ae1", + "525bda7c29214bd09981186d4e39cde4", + "92d69515e6c246ffba8dbc9389875efb", + "4402d0c3b2b2409d8aca3bfa87b3bb2c", + "3132cbb00d16405a996c2efdb4fb86ef", + "16bfa0ea08c4484f8be77b3fa76d98b1", + "be7d33d41de74c20a195a2e9a96ffa80", + "f9920508dbb94df98a1d328cd967769c", + "ffc90b0962284848a7d393f8b328b805", + "31f5a53161ad4ccbb5bbd4b18e17ff09", + "cc26324bc67f437fb91e53565dd00afe", + "0e28586042ac4be4a3d8d84d412ea3a3", + "84a7817fb46549608bfa8b8f5d3b5aa8", + "7b7cfee0c19a418ca5a8892796d1764d", + "671416fe8ccf49d2bcbb86a4b1f34e37", + "b846f21cadb2441bb8c0176577e6e4ac", + "2f6c5e2f216649f295b42870dd47ed4a", + "b5f605db39c3468d8ee0cd12fb57fbfe", + "96583fa6a2974012a68a03a68a50a51a", + "68091e0a86b24f07926dc12d0b6d81f8", + "1f8574ed99f840e597c36e3a9e464827", + "14b195ddb341465d93c140ee4fec3eae", + "f0b49fb723c74a709a559ceab47e2298", + "14bd51b1afda4fb6aa21a99cbecd0477", + "c17f3526e8cf4d4f909fb45e980c405e", + "c1a5cc55d3d3426396a06ec7dd2851f1", + "b59c4ee41345481c98115ab079a4c915", + "b5e9b9d525a4487d81266b47451e6e20", + "a26a7799687545758d0057168ea00aaf", + "0be030a620ab4eaf89f3f25bed03c0cd", + "66771ce5d79d439d88cb8095e7f58dc4", + "789591a72e9046139927b9d4d2d85ae1", + "6706374cb7d1452cbf198207f5eeb1ae", + "eb441c0cf54241cca31fc0e47a38f457", + "32905dd3bba94d9a8034c9d7a2892493" ] - ] + }, + "id": "ULV0Ffx4WNvt", + "outputId": "14c3b8e6-edc4-4cd9-bb71-18c534c4e8d3", + "pycharm": { + "name": "#%%\n" } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/5559 [00:00\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "train EN, test GE\n", + "accuracy score = 88.5%, log loss = 0.308, Brier loss = 0.174\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 1 0.96 0.78 0.86 389\n", + " 2 0.85 0.98 0.91 795\n", + " 3+ 0.96 0.73 0.83 206\n", + "\n", + " accuracy 0.88 1390\n", + " macro avg 0.92 0.83 0.87 1390\n", + "weighted avg 0.89 0.88 0.88 1390\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } + "metadata": {} + } + ], + "source": [ + "# fit logistic regression classifiers to each of the three datasets and (cross-) evaluate them\n", + "clf_en = logistic_regression_classifier(x_train_en, y_train_en, c=10)\n", + "_ = evaluate_classifier(y_test_en, None, clf_en.predict_proba(x_test_en), labels, \"train EN, test EN\", \"cm_nv_pr_EN_EN\")\n", + "_ = evaluate_classifier(y_test_ge, None, clf_en.predict_proba(x_test_ge), labels, \"train EN, test GE\", \"cm_nv_pr_EN_GE\")" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "L5NPXt8VWNvu", + "outputId": "502a8f95-0800-4f8b-ed7c-caf6023b8af7", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "train GE, test GE\n", + "accuracy score = 96.8%, log loss = 0.115, Brier loss = 0.055\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 1 0.98 0.98 0.98 389\n", + " 2 0.96 0.98 0.97 795\n", + " 3+ 0.97 0.89 0.93 206\n", + "\n", + " accuracy 0.97 1390\n", + " macro avg 0.97 0.95 0.96 1390\n", + "weighted avg 0.97 0.97 0.97 1390\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "train GE, test EN\n", + "accuracy score = 65.1%, log loss = 3.024, Brier loss = 0.665\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 1 1.00 0.00 0.01 389\n", + " 2 0.62 1.00 0.77 795\n", + " 3+ 0.99 0.53 0.69 206\n", + "\n", + " accuracy 0.65 1390\n", + " macro avg 0.87 0.51 0.49 1390\n", + "weighted avg 0.78 0.65 0.54 1390\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] }, - "title": { - "x": 0.05 + "metadata": {} + } + ], + "source": [ + "clf_ge = logistic_regression_classifier(x_train_ge, y_train_ge, c=10)\n", + "_ = evaluate_classifier(y_test_ge, None, clf_ge.predict_proba(x_test_ge), labels, \"train GE, test GE\", \"cm_nv_pr_GE_GE\")\n", + "_ = evaluate_classifier(y_test_en, None, clf_ge.predict_proba(x_test_en), labels, \"train GE, test EN\", \"cm_nv_pr_GE_EN\")" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "ysYstLT2WNvu", + "outputId": "a86187be-a4b6-4be9-f81e-39902fcc6886", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "train EN/GE, test EN\n", + "accuracy score = 96.9%, log loss = 0.098, Brier loss = 0.049\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 1 0.97 0.99 0.98 389\n", + " 2 0.97 0.98 0.97 795\n", + " 3+ 0.98 0.87 0.92 206\n", + "\n", + " accuracy 0.97 1390\n", + " macro avg 0.97 0.95 0.96 1390\n", + "weighted avg 0.97 0.97 0.97 1390\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "train EN/GE, test GE\n", + "accuracy score = 95.8%, log loss = 0.146, Brier loss = 0.070\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 1 0.97 0.97 0.97 389\n", + " 2 0.96 0.97 0.96 795\n", + " 3+ 0.94 0.89 0.92 206\n", + "\n", + " accuracy 0.96 1390\n", + " macro avg 0.96 0.94 0.95 1390\n", + "weighted avg 0.96 0.96 0.96 1390\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "train EN/GE, test EN" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "metadata": {} } - } + ], + "source": [ + "clf_mx = logistic_regression_classifier(x_train_mx, y_train_mx, c=10)\n", + "_ = evaluate_classifier(y_test_en, None, clf_mx.predict_proba(x_test_en), labels, \"train EN/GE, test EN\", \"cm_nv_pr_MX_EN\")\n", + "_ = evaluate_classifier(y_test_ge, None, clf_mx.predict_proba(x_test_ge), labels, \"train EN/GE, test GE\", \"cm_nv_pr_MX_GE\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9ehbi38DWNvu" }, - "text/html": [ - "
" + "source": [ + "By comparing to the above results, we observe that the domain-specific fine-tuning on the English training set has improved the scores, but not to a satisfactory level for the cross-language transfer cases." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "train EN/GE, test GE\n", - "accuracy score = 96.3%, log loss = 0.133, Brier loss = 0.063\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 0.97 0.97 0.97 389\n", - " 2 0.96 0.97 0.97 795\n", - " 3+ 0.94 0.90 0.92 206\n", - "\n", - " accuracy 0.96 1390\n", - " macro avg 0.96 0.95 0.95 1390\n", - "weighted avg 0.96 0.96 0.96 1390\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "kSuSXjMDWNvv" + }, + "source": [ + "\n", + "\n", + "### 4.2. Task-specific fine-tuning\n", + "\n", + "An alternative to domain-specific fine-tuning is task-specific fine-tuning.\n", + "\n", + "The idea is to train a transformer model directly on the task at hand, in our case a sequence classification task.\n", + "The process is very similar to the masked language modeling used for domain-specific pre-training, except that\n", + "we load a sequence classification model using the class `AutoModelForSequenceClassification`.\n", + "\n", + "The following code tunes a sequence classification model that uses the English accident descriptions to predict\n", + "the number of vehicles involved.\n", + "On an AWS EC2 p2.xlarge instance, the run time is about 20 minutes." + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_pr_MX_GE", - "format": "svg" + "cell_type": "code", + "execution_count": 49, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 172 + }, + "id": "N-aQe_a1WNvz", + "outputId": "f01eeb07-41de-401a-d7f8-b98781076f82", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 378, - 11, - 0 - ], - [ - 9, - 775, - 11 - ], - [ - 1, - 20, - 185 + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-multilingual-cased and are newly initialized: ['pre_classifier.weight', 'classifier.weight', 'classifier.bias', 'pre_classifier.bias']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] - ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [1390/1390 09:49, Epoch 2/2]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTraining Loss
6940.154100
13880.052800

" + ] + }, + "metadata": {} } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] + ], + "source": [ + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "torch.manual_seed(42) # for reproducibility, set random seed before instantiating the model\n", + "model_cls = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(labels)).to(device)\n", + "\n", + "def compute_metrics(pred):\n", + " labels = pred.label_ids\n", + " preds = pred.predictions.argmax(-1)\n", + " f1 = f1_score(labels, preds, average=\"weighted\")\n", + " acc = accuracy_score(labels, preds)\n", + " return {\"accuracy\": acc, \"f1\": f1}\n", + "\n", + "# train the model\n", + "batch_size = 8\n", + "logging_steps = len(dataset_en[\"train\"]) // batch_size\n", + "training_args = TrainingArguments(\n", + " output_dir=\"models/\" + model_name + \"nv_epochs\",\n", + " num_train_epochs=2,\n", + " per_device_train_batch_size=batch_size,\n", + " per_device_eval_batch_size=batch_size,\n", + " metric_for_best_model=\"f1\",\n", + " logging_steps=logging_steps,\n", + " save_strategy=trainer_utils.IntervalStrategy.NO,\n", + ")\n", + "trainer = Trainer(model=model_cls, args=training_args,\n", + " compute_metrics=compute_metrics, train_dataset=dataset_en[\"train\"],\n", + " eval_dataset=dataset_en[\"test\"])\n", + "trainer.train();\n", + "trainer.save_model(\"models/\" + model_name + \"_nv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 768 + }, + "id": "xkUclLPlWNv0", + "outputId": "ff7b4358-1252-43ae-ac27-1f3309b63bc2", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 + "text/html": [] }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "train EN, test EN\n", + "accuracy score = 99.6%, log loss = 0.025, Brier loss = 0.007\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 1 0.99 1.00 0.99 389\n", + " 2 1.00 1.00 1.00 795\n", + " 3+ 1.00 0.99 1.00 206\n", + "\n", + " accuracy 1.00 1390\n", + " macro avg 1.00 1.00 1.00 1390\n", + "weighted avg 1.00 1.00 1.00 1390\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "

\n", + "
\n", + "\n", + "" ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "train EN/GE, test GE" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "metadata": {} } - } - }, - "text/html": [ - "
" + ], + "source": [ + "# evaluate model performance using predictions on the English test set\n", + "predictions_en = trainer.predict(dataset_en[\"test\"])\n", + "_ = evaluate_classifier(predictions_en.label_ids, None, softmax(predictions_en.predictions, axis=1), labels, \"train EN, test EN\", \"cm_nv_tsk_EN_EN\")" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "clf_mx = logistic_regression_classifier(x_train_mx, y_train_mx, c=10)\n", - "_ = evaluate_classifier(y_test_en, None, clf_mx.predict_proba(x_test_en), labels, \"train EN/GE, test EN\", \"cm_nv_pr_MX_EN\")\n", - "_ = evaluate_classifier(y_test_ge, None, clf_mx.predict_proba(x_test_ge), labels, \"train EN/GE, test GE\", \"cm_nv_pr_MX_GE\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "9ehbi38DWNvu" - }, - "source": [ - "By comparing to the above results, we observe that the domain-specific fine-tuning on the English training set has improved the scores, but not to a satisfactory level for the cross-language transfer cases." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "kSuSXjMDWNvv" - }, - "source": [ - "\n", - "\n", - "### 4.2. Task-specific fine-tuning\n", - "\n", - "An alternative to domain-specific fine-tuning is task-specific fine-tuning.\n", - "\n", - "The idea is to train a transformer model directly on the task at hand, in our case a sequence classification task.\n", - "The process is very similar to the masked language modeling used for domain-specific pre-training, except that\n", - "we load a sequence classification model using the class `AutoModelForSequenceClassification`.\n", - "\n", - "The following code tunes a sequence classification model that uses the English accident descriptions to predict\n", - "the number of vehicles involved.\n", - "On an AWS EC2 p2.xlarge instance, the run time is about 20 minutes." - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "N-aQe_a1WNvz", - "outputId": "03d0c5d2-cfd7-410f-d7e7-ab0fb13ffd18", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "loading configuration file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/cf37a9dc282a679f121734d06f003625d14cfdaf55c14358c4c0b8e7e2b89ac9.7a727bd85e40715bec919a39cdd6f0aba27a8cd488f2d4e0f512448dcd02bf0f\n", - "Model config DistilBertConfig {\n", - " \"_name_or_path\": \"distilbert-base-multilingual-cased\",\n", - " \"activation\": \"gelu\",\n", - " \"architectures\": [\n", - " \"DistilBertForMaskedLM\"\n", - " ],\n", - " \"attention_dropout\": 0.1,\n", - " \"dim\": 768,\n", - " \"dropout\": 0.1,\n", - " \"hidden_dim\": 3072,\n", - " \"id2label\": {\n", - " \"0\": \"LABEL_0\",\n", - " \"1\": \"LABEL_1\",\n", - " \"2\": \"LABEL_2\"\n", - " },\n", - " \"initializer_range\": 0.02,\n", - " \"label2id\": {\n", - " \"LABEL_0\": 0,\n", - " \"LABEL_1\": 1,\n", - " \"LABEL_2\": 2\n", - " },\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"distilbert\",\n", - " \"n_heads\": 12,\n", - " \"n_layers\": 6,\n", - " \"output_past\": true,\n", - " \"pad_token_id\": 0,\n", - " \"qa_dropout\": 0.1,\n", - " \"seq_classif_dropout\": 0.2,\n", - " \"sinusoidal_pos_embds\": false,\n", - " \"tie_weights_\": true,\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"vocab_size\": 119547\n", - "}\n", - "\n", - "loading weights file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/pytorch_model.bin from cache at /home/ubuntu/.cache/huggingface/transformers/7b48683e2e7ba71cd1d7d6551ac325eceee01db5c2f3e81cfbfd1ee7bb7877f2.c24097b0cf91dbc66977325325fd03112f0f13d0e3579abbffc8d1e45f8d0619\n", - "Some weights of the model checkpoint at distilbert-base-multilingual-cased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.weight', 'vocab_layer_norm.bias', 'vocab_transform.bias', 'vocab_projector.weight', 'vocab_layer_norm.weight', 'vocab_projector.bias']\n", - "- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", - "- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", - "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-multilingual-cased and are newly initialized: ['pre_classifier.bias', 'classifier.weight', 'pre_classifier.weight', 'classifier.bias']\n", - "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", - "PyTorch: setting up devices\n", - "The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).\n", - "The following columns in the training set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: WEATHER7, WEATHER4, SUMMARY_GE, cls_hidden_state, WEATHER1, WEATHER6, INJSEVA, SCASEID, mean_hidden_state, NUMTOTV, WEATHER8, SUMMARY_EN, WEATHER3, index, words per case summary, WEATHER2, INJSEVB, level_0, WEATHER5. If WEATHER7, WEATHER4, SUMMARY_GE, cls_hidden_state, WEATHER1, WEATHER6, INJSEVA, SCASEID, mean_hidden_state, NUMTOTV, WEATHER8, SUMMARY_EN, WEATHER3, index, words per case summary, WEATHER2, INJSEVB, level_0, WEATHER5 are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n", - "/home/ubuntu/anaconda3/envs/pytorch_latest_p37/lib/python3.7/site-packages/transformers/optimization.py:309: FutureWarning:\n", - "\n", - "This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n", - "\n", - "***** Running training *****\n", - " Num examples = 5559\n", - " Num Epochs = 2\n", - " Instantaneous batch size per device = 8\n", - " Total train batch size (w. parallel, distributed & accumulation) = 8\n", - " Gradient Accumulation steps = 1\n", - " Total optimization steps = 1390\n" - ] }, { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " [1390/1390 03:17, Epoch 2/2]\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
StepTraining Loss
6940.319600
13880.079000

" + "cell_type": "code", + "execution_count": 51, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 768 + }, + "id": "AOQnMgLKWNv0", + "outputId": "669511ab-ace8-4c29-a862-84582363c360", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "train EN, test GE\n", + "accuracy score = 99.6%, log loss = 0.025, Brier loss = 0.007\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 1 0.99 1.00 0.99 389\n", + " 2 1.00 1.00 1.00 795\n", + " 3+ 1.00 0.99 1.00 206\n", + "\n", + " accuracy 1.00 1390\n", + " macro avg 1.00 1.00 1.00 1390\n", + "weighted avg 1.00 1.00 1.00 1390\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "

\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } ], - "text/plain": [ - "" + "source": [ + "# evaluate model performance using predictions on the German test set (cross-lingual test)\n", + "predictions_ge = trainer.predict(dataset_ge[\"test\"])\n", + "_ = evaluate_classifier(predictions_ge.label_ids, None, softmax(predictions_ge.predictions, axis=1), labels, \"train EN, test GE\", \"cm_nv_task_EN_GE\")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Training completed. Do not forget to share your model on huggingface.co/models =)\n", - "\n", - "\n", - "Saving model checkpoint to models/distilbert-base-multilingual-cased_nv\n", - "Configuration saved in models/distilbert-base-multilingual-cased_nv/config.json\n", - "Model weights saved in models/distilbert-base-multilingual-cased_nv/pytorch_model.bin\n" - ] - } - ], - "source": [ - "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", - "torch.manual_seed(42) # for reproducibility, set random seed before instantiating the model\n", - "model_cls = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(labels)).to(device)\n", - "\n", - "def compute_metrics(pred):\n", - " labels = pred.label_ids\n", - " preds = pred.predictions.argmax(-1)\n", - " f1 = f1_score(labels, preds, average=\"weighted\")\n", - " acc = accuracy_score(labels, preds)\n", - " return {\"accuracy\": acc, \"f1\": f1}\n", - "\n", - "# train the model\n", - "batch_size = 8\n", - "logging_steps = len(dataset_en[\"train\"]) // batch_size\n", - "training_args = TrainingArguments(\n", - " output_dir=\"models/\" + model_name + \"nv_epochs\",\n", - " num_train_epochs=2,\n", - " per_device_train_batch_size=batch_size,\n", - " per_device_eval_batch_size=batch_size,\n", - " metric_for_best_model=\"f1\",\n", - " logging_steps=logging_steps,\n", - " save_strategy=trainer_utils.IntervalStrategy.NO,\n", - ")\n", - "trainer = Trainer(model=model_cls, args=training_args,\n", - " compute_metrics=compute_metrics, train_dataset=dataset_en[\"train\"],\n", - " eval_dataset=dataset_en[\"test\"])\n", - "trainer.train();\n", - "trainer.save_model(\"models/\" + model_name + \"_nv\")" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 877 + "cell_type": "markdown", + "metadata": { + "id": "073wX0bfWNv0", + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "The scores on the English test set have improved to fantastic levels.\n", + "\n", + "What is even more impressive is the performance on cross-lingual transfer:\n", + "Despite the fact that the model has been trained on English texts only,\n", + "its performance scores on the German test set are very good.\n", + "\n", + "This is an excellent result!" + ] }, - "id": "xkUclLPlWNv0", - "outputId": "f87528cd-a5c1-422b-c509-4950b15c6128", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "The following columns in the test set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: WEATHER7, WEATHER4, SUMMARY_GE, cls_hidden_state, WEATHER1, WEATHER6, INJSEVA, SCASEID, mean_hidden_state, NUMTOTV, WEATHER8, SUMMARY_EN, WEATHER3, index, words per case summary, WEATHER2, INJSEVB, level_0, WEATHER5. If WEATHER7, WEATHER4, SUMMARY_GE, cls_hidden_state, WEATHER1, WEATHER6, INJSEVA, SCASEID, mean_hidden_state, NUMTOTV, WEATHER8, SUMMARY_EN, WEATHER3, index, words per case summary, WEATHER2, INJSEVB, level_0, WEATHER5 are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n", - "***** Running Prediction *****\n", - " Num examples = 1390\n", - " Batch size = 8\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "F0fTUwd7WNv0", + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "\n", + "\n", + "## 5. Understand Predictions Errors and Interpret Predictions\n", + "\n", + "In this section you will learn how to analyze prediction errors and how to interpret predictions.\n", + "\n", + "We will study a more challenging example.\n" + ] }, { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " [174/174 00:15]\n", - "
\n", - " " - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "brifr977WNv0" + }, + "source": [ + "\n", + "\n", + "### 5.1 Case Study: Use Accident Descriptions to Identify Bodily Injury\n", + "\n", + "As seen in the previous section,\n", + "predicting the number of vehicles from the available accident descriptions is a\n", + "relatively easy task for the transformer model, even in a multi-lingual situation.\n", + "\n", + "Therefore, we will turn to a somewhat more difficult task: identifying cases which lead to bodily injuries. We cuse the column `INJSEVB` as label.\n", + "\n", + "The process is identical to the previous case study:\n", + "* Start from the original dataset, enrich it with hidden states produced by the original transformer model\n", + " (before domain-specific fine-tuning).\n", + " Given the experience from the previous task, we use the mean pooling output.\n", + "* For comparison, we also load the encodings produced by the transformer model after domain-specific fine-tuning.\n", + "* Define the labels.\n", + "* Fit a dummy classifier, which always predicts the most frequent class.\n", + "* Fit a regression classifier, and evaluate its performance.\n", + "\n", + "In case you have skipped Section [4.1 Domain-specific finetuning](#domain_finetuning), the dataset `../datasets/dataset_en_pretrained` will not be available.\n", + "In this case simply comment out the last lines of each block below." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "train EN, test EN\n", - "accuracy score = 99.4%, log loss = 0.032, Brier loss = 0.012\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 0.99 1.00 0.99 389\n", - " 2 1.00 0.99 0.99 795\n", - " 3+ 0.99 0.99 0.99 206\n", - "\n", - " accuracy 0.99 1390\n", - " macro avg 0.99 0.99 0.99 1390\n", - "weighted avg 0.99 0.99 0.99 1390\n", - "\n" - ] + "cell_type": "code", + "execution_count": 52, + "metadata": { + "id": "k8StUs-DWNv1", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "dataset_en = load_from_disk(\"./datasets/dataset_en\")\n", + "dataset_ge = load_from_disk(\"./datasets/dataset_ge\")\n", + "dataset_mx = load_from_disk(\"./datasets/dataset_mx\")\n", + "#dataset_pr = load_from_disk(\"./datasets/dataset_en_pretrained\")\n", + "\n", + "# map injuries\n", + "labels = [\"0\", \"1\"]\n", + "dataset_en = dataset_en.rename_column(\"INJSEVB\", \"labels\")\n", + "dataset_ge = dataset_ge.rename_column(\"INJSEVB\", \"labels\")\n", + "dataset_mx = dataset_mx.rename_column(\"INJSEVB\", \"labels\")\n", + "#dataset_pr = dataset_pr.rename_column(\"INJSEVB\", \"labels\")\n", + "\n", + "x_train_en, y_train_en, x_test_en, y_test_en = get_xy(dataset_en, \"mean_hidden_state\", \"labels\")\n", + "x_train_ge, y_train_ge, x_test_ge, y_test_ge = get_xy(dataset_ge, \"mean_hidden_state\", \"labels\")\n", + "x_train_mx, y_train_mx, x_test_mx, y_test_mx = get_xy(dataset_mx, \"mean_hidden_state\", \"labels\")\n", + "#x_train_pr, y_train_pr, x_test_pr, y_test_pr = get_xy(dataset_pr, \"mean_hidden_state\", \"labels\")" + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_tsk_EN_EN", - "format": "svg" + "cell_type": "code", + "execution_count": 53, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 750 + }, + "id": "19S0Ps_2WNv1", + "outputId": "5f5d7919-094a-4279-bf6c-7a494a0249e1", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 389, - 0, - 0 - ], - [ - 4, - 789, - 2 - ], - [ - 1, - 2, - 203 + "output_type": "stream", + "name": "stdout", + "text": [ + "Dummy classifier\n", + "accuracy score = 58.7%, log loss = 0.679, Brier loss = 0.486\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 0 0.59 1.00 0.74 816\n", + " 1 0.00 0.00 0.00 574\n", + "\n", + " accuracy 0.59 1390\n", + " macro avg 0.29 0.50 0.37 1390\n", + "weighted avg 0.34 0.59 0.43 1390\n", + "\n" ] - ] - } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 + "metadata": {} + } + ], + "source": [ + "# fit dummy classifier\n", + "clf_dummy = dummy_classifier(x_train_en, y_train_en)\n", + "_ = evaluate_classifier(y_test_en, None, clf_dummy.predict_proba(x_test_en), labels, \"Dummy classifier\", \"cm_inj_dummy\")" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 750 + }, + "id": "1-OxWef7WNv1", + "outputId": "993423cc-8507-43cc-f684-ea58d9f76a0f", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Logistic regression, DistilBERT\n", + "accuracy score = 80.1%, log loss = 0.400, Brier loss = 0.259\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 0 0.83 0.83 0.83 816\n", + " 1 0.76 0.75 0.76 574\n", + "\n", + " accuracy 0.80 1390\n", + " macro avg 0.79 0.79 0.79 1390\n", + "weighted avg 0.80 0.80 0.80 1390\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "train EN, test EN" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "metadata": {} } - } + ], + "source": [ + "# fit logistic regression classifier to the encoded English texts (by the original DistilBERT model)\n", + "clf_en = logistic_regression_classifier(x_train_en, y_train_en, c=10)\n", + "_ = evaluate_classifier(y_test_en, None, clf_en.predict_proba(x_test_en), labels, \"Logistic regression, DistilBERT\", \"cm_inj_lr\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yXv_i1aWWNv1" }, - "text/html": [ - "
" + "source": [ + "In case you have skipped Section [4.1 Domain-specific finetuning](#domain_finetuning), please also skip the following cell." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# evaluate model performance using predictions on the English test set\n", - "predictions_en = trainer.predict(dataset_en[\"test\"])\n", - "_ = evaluate_classifier(predictions_en.label_ids, None, softmax(predictions_en.predictions, axis=1), labels, \"train EN, test EN\", \"cm_nv_tsk_EN_EN\")" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 877 }, - "id": "AOQnMgLKWNv0", - "outputId": "938df424-299f-4ee1-ab6e-537c0e1e754d", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "The following columns in the test set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: WEATHER7, WEATHER4, SUMMARY_GE, cls_hidden_state, WEATHER1, WEATHER6, INJSEVA, SCASEID, mean_hidden_state, NUMTOTV, WEATHER8, SUMMARY_EN, WEATHER3, index, words per case summary, WEATHER2, INJSEVB, level_0, WEATHER5. If WEATHER7, WEATHER4, SUMMARY_GE, cls_hidden_state, WEATHER1, WEATHER6, INJSEVA, SCASEID, mean_hidden_state, NUMTOTV, WEATHER8, SUMMARY_EN, WEATHER3, index, words per case summary, WEATHER2, INJSEVB, level_0, WEATHER5 are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n", - "***** Running Prediction *****\n", - " Num examples = 1390\n", - " Batch size = 8\n" - ] + "cell_type": "code", + "execution_count": 55, + "metadata": { + "id": "dqrYOaCAWNv1", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "# fit logistic regression classifier to the encoded English texts (by the fine-tuned DistilBERT model)\n", + "#clf_pr = logistic_regression_classifier(x_train_pr, y_train_pr, c=10)\n", + "#_ = evaluate_classifier(y_test_pr, None, clf_pr.predict_proba(x_test_pr), labels, \"Logistic regression - 2 epochs pre-training\", \"cm_inj_pr\")" + ] }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "train EN, test GE\n", - "accuracy score = 98.9%, log loss = 0.046, Brier loss = 0.019\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 1 0.99 1.00 0.99 389\n", - " 2 0.99 0.99 0.99 795\n", - " 3+ 0.97 0.97 0.97 206\n", - "\n", - " accuracy 0.99 1390\n", - " macro avg 0.98 0.99 0.99 1390\n", - "weighted avg 0.99 0.99 0.99 1390\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "nzhkQaHsWNv2", + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "We observe the following:\n", + "* The accuracy score of the dummy classifier is 59%.\n", + "* Using the logistic regression classifier on the outputs of the DistilBERT model with two epochs of domain-specific fine-tuning improves the scores compared to using the outputs of the plain DistilBERT model.\n", + "* The performance on the class `0` is better than on the class `1` because of a large number of false positives.\n", + "\n", + "Next, we perform task-specific fine-tuning.\n", + "On an AWS EC2 p2.xlarge instance, the run time is about 20 minutes." + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_nv_task_EN_GE", - "format": "svg" + "cell_type": "code", + "execution_count": 56, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 172 + }, + "id": "D2usIbC0WNv2", + "outputId": "fc6142fe-7b50-4f29-a1ad-0ede7f341a97", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 1 ", - " 2 ", - " 3+ " - ], - "xaxis": "x", - "y": [ - " 1 ", - " 2 ", - " 3+ " - ], - "yaxis": "y", - "z": [ - [ - 389, - 0, - 0 - ], - [ - 3, - 786, - 6 - ], - [ - 1, - 5, - 200 + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-multilingual-cased and are newly initialized: ['pre_classifier.weight', 'classifier.weight', 'classifier.bias', 'pre_classifier.bias']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] - ] - } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [1390/1390 09:47, Epoch 2/2]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTraining Loss
6940.548600
13880.353900

" ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "train EN, test GE" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "metadata": {} } - } - }, - "text/html": [ - "

" + ], + "source": [ + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "torch.manual_seed(42) # for reproducibility, set random seed before instantiating the model\n", + "model_cls_inj = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(labels)).to(device)\n", + "batch_size = 8\n", + "logging_steps = len(dataset_en[\"train\"]) // batch_size\n", + "training_args = TrainingArguments(\n", + " output_dir=\"models/\" + model_name + \"inj_epochs\",\n", + " num_train_epochs= 2,\n", + " per_device_train_batch_size=batch_size,\n", + " per_device_eval_batch_size=batch_size,\n", + " metric_for_best_model=\"f1\",\n", + " disable_tqdm=False,\n", + " logging_steps=logging_steps,\n", + " save_strategy=trainer_utils.IntervalStrategy.NO,\n", + ")\n", + "def compute_metrics(pred):\n", + " labels = pred.label_ids\n", + " preds = pred.predictions.argmax(-1)\n", + " f1 = f1_score(labels, preds, average=\"weighted\")\n", + " acc = accuracy_score(labels, preds)\n", + " return {\"accuracy\": acc, \"f1\": f1}\n", + "trainer = Trainer(model=model_cls_inj, args=training_args,\n", + " compute_metrics=compute_metrics, train_dataset=dataset_en[\"train\"], eval_dataset=dataset_en[\"test\"])\n", + "trainer.train();\n", + "trainer.save_model(\"models/\" + model_name + \"_inj\")" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# evaluate model performance using predictions on the German test set (cross-lingual test)\n", - "predictions_ge = trainer.predict(dataset_ge[\"test\"])\n", - "_ = evaluate_classifier(predictions_ge.label_ids, None, softmax(predictions_ge.predictions, axis=1), labels, \"train EN, test GE\", \"cm_nv_task_EN_GE\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "073wX0bfWNv0", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "The scores on the English test set have improved to fantastic levels.\n", - "\n", - "What is even more impressive is the performance on cross-lingual transfer:\n", - "Despite the fact that the model has been trained on English texts only,\n", - "its performance scores on the German test set are very good.\n", - "\n", - "This is an excellent result!" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "F0fTUwd7WNv0", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "\n", - "\n", - "## 5. Understand Predictions Errors and Interpret Predictions\n", - "\n", - "In this section you will learn how to analyze prediction errors and how to interpret predictions.\n", - "\n", - "We will study a more challenging example.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "brifr977WNv0" - }, - "source": [ - "\n", - "\n", - "### 5.1 Case Study: Use Accident Descriptions to Identify Bodily Injury\n", - "\n", - "As seen in the previous section,\n", - "predicting the number of vehicles from the available accident descriptions is a\n", - "relatively easy task for the transformer model, even in a multi-lingual situation.\n", - "\n", - "Therefore, we will turn to a somewhat more difficult task: identifying cases which lead to bodily injuries. We cuse the column `INJSEVB` as label.\n", - "\n", - "The process is identical to the previous case study:\n", - "* Start from the original dataset, enrich it with hidden states produced by the original transformer model\n", - " (before domain-specific fine-tuning).\n", - " Given the experience from the previous task, we use the mean pooling output.\n", - "* For comparison, we also load the encodings produced by the transformer model after domain-specific fine-tuning. \n", - "* Define the labels.\n", - "* Fit a dummy classifier, which always predicts the most frequent class.\n", - "* Fit a regression classifier, and evaluate its performance.\n", - "\n", - "In case you have skipped Section [4.1 Domain-specific finetuning](#domain_finetuning), the dataset `../datasets/dataset_en_pretrained` will not be available.\n", - "In this case simply comment out the last lines of each block below." - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "id": "k8StUs-DWNv1", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "dataset_en = load_from_disk(\"./datasets/dataset_en\")\n", - "dataset_ge = load_from_disk(\"./datasets/dataset_ge\")\n", - "dataset_mx = load_from_disk(\"./datasets/dataset_mx\")\n", - "dataset_pr = load_from_disk(\"./datasets/dataset_en_pretrained\")\n", - "\n", - "# map injuries\n", - "labels = [\"0\", \"1\"]\n", - "dataset_en = dataset_en.rename_column(\"INJSEVB\", \"labels\")\n", - "dataset_ge = dataset_ge.rename_column(\"INJSEVB\", \"labels\")\n", - "dataset_mx = dataset_mx.rename_column(\"INJSEVB\", \"labels\")\n", - "dataset_pr = dataset_pr.rename_column(\"INJSEVB\", \"labels\")\n", - "\n", - "x_train_en, y_train_en, x_test_en, y_test_en = get_xy(dataset_en, \"mean_hidden_state\", \"labels\")\n", - "x_train_ge, y_train_ge, x_test_ge, y_test_ge = get_xy(dataset_ge, \"mean_hidden_state\", \"labels\")\n", - "x_train_mx, y_train_mx, x_test_mx, y_test_mx = get_xy(dataset_mx, \"mean_hidden_state\", \"labels\")\n", - "x_train_pr, y_train_pr, x_test_pr, y_test_pr = get_xy(dataset_pr, \"mean_hidden_state\", \"labels\")" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 750 }, - "id": "19S0Ps_2WNv1", - "outputId": "e0d46046-ece0-4a63-ff38-5cc21603d4cc", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Dummy classifier\n", - "accuracy score = 58.7%, log loss = 0.679, Brier loss = 0.486\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 0 0.59 1.00 0.74 816\n", - " 1 0.00 0.00 0.00 574\n", - "\n", - " accuracy 0.59 1390\n", - " macro avg 0.29 0.50 0.37 1390\n", - "weighted avg 0.34 0.59 0.43 1390\n", - "\n" - ] + "cell_type": "code", + "execution_count": 57, + "metadata": { + "id": "7ejzOSBWWNv2" + }, + "outputs": [], + "source": [ + "# Execute the following line to load the trained model from disk.\n", + "# trainer = Trainer(AutoModelForSequenceClassification.from_pretrained(model_name+\"_inj\", num_labels=len(labels)).to(torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")))" + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_inj_dummy", - "format": "svg" + "cell_type": "code", + "execution_count": 58, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 750 + }, + "id": "mvIWMTR2WNv2", + "outputId": "2fb46630-ecf3-4ae1-ca8e-323628f2171c", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 0 ", - " 1 " - ], - "xaxis": "x", - "y": [ - " 0 ", - " 1 " - ], - "yaxis": "y", - "z": [ - [ - 816, - 0 - ], - [ - 574, - 0 - ] - ] - } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] + "output_type": "display_data", + "data": { + "text/plain": [ + "" ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } + "text/html": [] }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "DistilBERT classifier - 2 epochs task-specific\n", + "accuracy score = 89.1%, log loss = 0.297, Brier loss = 0.174\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 0 0.91 0.90 0.91 816\n", + " 1 0.86 0.87 0.87 574\n", + "\n", + " accuracy 0.89 1390\n", + " macro avg 0.89 0.89 0.89 1390\n", + "weighted avg 0.89 0.89 0.89 1390\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Dummy classifier" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "metadata": {} } - } - }, - "text/html": [ - "
" + ], + "source": [ + "# evaluate model performance using predictions on the English test set\n", + "predictions_en = trainer.predict(dataset_en[\"test\"])\n", + "_ = evaluate_classifier(predictions_en.label_ids, None, softmax(predictions_en.predictions, axis=1), labels,\n", + " \"DistilBERT classifier - 2 epochs task-specific\", \"cm_inj_tsk\")" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# fit dummy classifier\n", - "clf_dummy = dummy_classifier(x_train_en, y_train_en)\n", - "_ = evaluate_classifier(y_test_en, None, clf_dummy.predict_proba(x_test_en), labels, \"Dummy classifier\", \"cm_inj_dummy\")" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 750 }, - "id": "1-OxWef7WNv1", - "outputId": "727ad5e8-d16a-4b14-c522-34ca1074d18c", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Logistic regression, DistilBERT\n", - "accuracy score = 80.1%, log loss = 0.400, Brier loss = 0.259\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 0 0.83 0.83 0.83 816\n", - " 1 0.76 0.75 0.76 574\n", - "\n", - " accuracy 0.80 1390\n", - " macro avg 0.79 0.79 0.79 1390\n", - "weighted avg 0.80 0.80 0.80 1390\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "OcogYs7wWNv2" + }, + "source": [ + "We observe the following:\n", + "* Task-specific fine-tuning has further improved all scores.\n", + "* There is still a relatively large number of false positives." + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_inj_lr", - "format": "svg" + "cell_type": "markdown", + "metadata": { + "id": "udjhQrSpWNv2", + "pycharm": { + "name": "#%% md\n" } - }, - "data": [ - { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 0 ", - " 1 " - ], - "xaxis": "x", - "y": [ - " 0 ", - " 1 " - ], - "yaxis": "y", - "z": [ - [ - 680, - 136 - ], - [ - 141, - 433 + }, + "source": [ + "\n", + "\n", + "### 5.2. Investigate False Positives and False Negatives\n", + "\n", + "To investigate the prediction errors, we export the predictions into an Excel file with the following columns:\n", + "\n", + "| column | meaning |\n", + "|---|---|\n", + "| `SCASEID` | unique identification number of the case |\n", + "| `SUMMARY_EN` | description of the accident, in English |\n", + "| `SUMMARY_TRUNCATED` | description of the accident, in English, truncated to a length of 512 tokens |\n", + "| `INJSEVA` | most serious injury sustained in the case, as per Police Accident Report |\n", + "| `labels` | indicator of odily injury `INJSEVB` (true label) |\n", + "| `pred` | predicted label |\n", + "| `0` | probability of negative label |\n", + "| `1` | probability of positive label |" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "id": "ZAfQV892WNv3" + }, + "outputs": [], + "source": [ + "# export prediction results for error analysis\n", + "dataset_en.set_format(type=\"pandas\")\n", + "df_res = pd.concat([dataset_en[\"test\"].to_pandas(),\n", + " pd.DataFrame(data=softmax(predictions_en.predictions, axis=1), columns=[\"0\", \"1\"]),\n", + " pd.DataFrame(data=np.argmax(predictions_en.predictions, -1).reshape((-1,1)), columns=['pred'])\n", + " ], axis=1)\n", + "df_res = df_res[[\"SCASEID\", \"SUMMARY_EN\", \"INJSEVA\", \"labels\", \"pred\", \"0\", \"1\"]]\n", + "dataset_en.set_format()\n", + "for i in range(df_res.shape[0]):\n", + " df_res.loc[i, \"SUMMARY_TRUNCATED\"] = tokenizer.convert_tokens_to_string(tokenizer.tokenize(df_res.loc[i, \"SUMMARY_EN\"], truncation=True))\n", + "df_res.to_excel(\"./results/error_analysis_inj.xlsx\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OR2KmOV2WNv3" + }, + "source": [ + "The first step of the error analysis is to inspect the samples producing false negative and false positive predictions.\n", + "Reading every single text would be very tedious, therefore it is worthwhile focusing on those examples where the probability assigned to the false prediction was high,\n", + "i.e., cases where the model was confident but wrong.\n", + "\n", + "Looking at the false negatives, we observe that there are many cases where the model assigns a high probability to negative.\n", + "We suspect that truncation is responsible for many of the false negatives – the relevant part of the text was discarded.\n", + "\n", + "To address this issue, we split the text into slightly overlapping chunks,\n", + "run the prediction on each chunk and apply the logical OR-function to the results.\n", + "We implement this functionality in a simple function that returns an additional column `pred`,\n", + "containing a list of predicted labels, with one element for each chunk." + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "id": "oEKN3riTWNv3" + }, + "outputs": [], + "source": [ + "def predict_with_overflow(x, model, feature):\n", + " t = tokenizer(x[feature], truncation=True, padding=True, return_overflowing_tokens=True)\n", + " input_ids = torch.tensor(t[\"input_ids\"]).to(model.device)\n", + " attention_mask = torch.tensor(t[\"attention_mask\"]).to(model.device)\n", + " with torch.no_grad():\n", + " preds = np.argmax(model(input_ids, attention_mask).logits.cpu(), -1)\n", + " return {\"preds\": preds}" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "id": "ubKYwONYWNv3" + }, + "outputs": [], + "source": [ + "# Execute the following lines to load the trained model and the okenizer from disk.\n", + "# model_cls_inj = AutoModelForSequenceClassification.from_pretrained(\"models/\" + model_name + \"_inj\", num_labels=len(labels)).to(torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\"))\n", + "# tokenizer = AutoTokenizer.from_pretrained(model_name)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 81, + "referenced_widgets": [ + "417140ff131946deb837591bcd4798c0", + "d2840413cb3647918dd209ed02f8adbd", + "16b8498863764a08a77f8ac777a87436", + "e1a7fdf268d94e34ad6a16435504d532", + "2ac6537fe9114614a24a3f66d05dad95", + "3919bfdaf9da46368520911822adb2fc", + "a60d72a71f0540178966c622ec56f736", + "f00bed838d0f4c3ab299ce5262b6a798", + "cdde89a5a3fc4f43868f2f6015c2c2e9", + "1bdb39a03e4648929713a5cc06398640", + "51815cc800eb43809ffda39f1189659b", + "7673cb93bbdb4a6b892b16fd4d1ce652", + "564ac17789894c88a217ffcd9ba0ca76", + "1365493485fa468ea3349de592e3907f", + "94da900685a34397b689f7304710126b", + "7078410ec64a478f9719b2f6668e814a", + "325997139c4140b39c3fd1b7d2052bd9", + "0b65902e95034eeab6c6ef9405d9548c", + "d85bc144efd54d62aba3878f87a6f990", + "3e621df89e934cbf8362c79cb02e9eb5", + "ad168d9ef0f6401d86983bb577b76dd5", + "82ec607265204206a33103ecf0e98d21" ] - ] + }, + "id": "hMoqL5aHWNv3", + "outputId": "d42f5c6f-a386-423c-aab2-c58967005836" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/1390 [00:00\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Logistic regression, DistilBERT" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "metadata": {} } - } - }, - "text/html": [ - "
" + ], + "source": [ + "_ = evaluate_classifier(predictions_en.label_ids, dataset_en_overflow[\"pred\"], None, labels,\n", + " \"DistilBERT classifier - split inputs\", \"cm_inj_split\")" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# fit logistic regression classifier to the encoded English texts (by the original DistilBERT model)\n", - "clf_en = logistic_regression_classifier(x_train_en, y_train_en, c=10)\n", - "_ = evaluate_classifier(y_test_en, None, clf_en.predict_proba(x_test_en), labels, \"Logistic regression, DistilBERT\", \"cm_inj_lr\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "yXv_i1aWWNv1" - }, - "source": [ - "In case you have skipped Section [4.1 Domain-specific finetuning](#domain_finetuning), please also skip the following cell." - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 750 - }, - "id": "dqrYOaCAWNv1", - "outputId": "0fc5f048-6a88-4b78-d0ec-51167b6f2773", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Logistic regression - 2 epochs pre-training\n", - "accuracy score = 82.7%, log loss = 0.375, Brier loss = 0.238\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 0 0.85 0.86 0.85 816\n", - " 1 0.79 0.79 0.79 574\n", - "\n", - " accuracy 0.83 1390\n", - " macro avg 0.82 0.82 0.82 1390\n", - "weighted avg 0.83 0.83 0.83 1390\n", - "\n" - ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_inj_pr", - "format": "svg" - } - }, - "data": [ - { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 0 ", - " 1 " - ], - "xaxis": "x", - "y": [ - " 0 ", - " 1 " - ], - "yaxis": "y", - "z": [ - [ - 698, - 118 - ], - [ - 122, - 452 - ] - ] - } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Logistic regression - 2 epochs pre-training" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } - } - } + "cell_type": "code", + "execution_count": 64, + "metadata": { + "id": "mOG699NKWNv4" }, - "text/html": [ - "
" + "outputs": [], + "source": [ + "dataset_en_overflow.set_format(type=\"pandas\")\n", + "df_res = dataset_en_overflow.to_pandas()\n", + "df_res = df_res[[\"SCASEID\", \"SUMMARY_EN\", \"INJSEVA\", \"labels\", \"pred\"]]\n", + "dataset_en.set_format()\n", + "for i in range(df_res.shape[0]):\n", + " df_res.loc[i, \"SUMMARY_TRUNCATED\"] = tokenizer.convert_tokens_to_string(tokenizer.tokenize(df_res.loc[i, \"SUMMARY_EN\"], truncation=True))\n", + "df_res.to_excel(\"./results/error_analysis_inj_overflow.xlsx\")" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# fit logistic regression classifier to the encoded English texts (by the fine-tuned DistilBERT model)\n", - "clf_pr = logistic_regression_classifier(x_train_pr, y_train_pr, c=10)\n", - "_ = evaluate_classifier(y_test_pr, None, clf_pr.predict_proba(x_test_pr), labels, \"Logistic regression - 2 epochs pre-training\", \"cm_inj_pr\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "nzhkQaHsWNv2", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "We observe the following:\n", - "* The accuracy score of the dummy classifier is 59%.\n", - "* Using the logistic regression classifier on the outputs of the DistilBERT model with two epochs of domain-specific fine-tuning improves the scores compared to using the outputs of the plain DistilBERT model.\n", - "* The performance on the class `0` is better than on the class `1` because of a large number of false positives.\n", - "\n", - "Next, we perform task-specific fine-tuning.\n", - "On an AWS EC2 p2.xlarge instance, the run time is about 20 minutes." - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "D2usIbC0WNv2", - "outputId": "935fcaa6-35e4-4fe0-a920-428303c764c6", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "loading configuration file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/cf37a9dc282a679f121734d06f003625d14cfdaf55c14358c4c0b8e7e2b89ac9.7a727bd85e40715bec919a39cdd6f0aba27a8cd488f2d4e0f512448dcd02bf0f\n", - "Model config DistilBertConfig {\n", - " \"_name_or_path\": \"distilbert-base-multilingual-cased\",\n", - " \"activation\": \"gelu\",\n", - " \"architectures\": [\n", - " \"DistilBertForMaskedLM\"\n", - " ],\n", - " \"attention_dropout\": 0.1,\n", - " \"dim\": 768,\n", - " \"dropout\": 0.1,\n", - " \"hidden_dim\": 3072,\n", - " \"initializer_range\": 0.02,\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"distilbert\",\n", - " \"n_heads\": 12,\n", - " \"n_layers\": 6,\n", - " \"output_past\": true,\n", - " \"pad_token_id\": 0,\n", - " \"qa_dropout\": 0.1,\n", - " \"seq_classif_dropout\": 0.2,\n", - " \"sinusoidal_pos_embds\": false,\n", - " \"tie_weights_\": true,\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"vocab_size\": 119547\n", - "}\n", - "\n", - "loading weights file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/pytorch_model.bin from cache at /home/ubuntu/.cache/huggingface/transformers/7b48683e2e7ba71cd1d7d6551ac325eceee01db5c2f3e81cfbfd1ee7bb7877f2.c24097b0cf91dbc66977325325fd03112f0f13d0e3579abbffc8d1e45f8d0619\n", - "Some weights of the model checkpoint at distilbert-base-multilingual-cased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.weight', 'vocab_layer_norm.bias', 'vocab_transform.bias', 'vocab_projector.weight', 'vocab_layer_norm.weight', 'vocab_projector.bias']\n", - "- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", - "- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", - "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-multilingual-cased and are newly initialized: ['pre_classifier.bias', 'classifier.weight', 'pre_classifier.weight', 'classifier.bias']\n", - "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", - "PyTorch: setting up devices\n", - "The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).\n", - "The following columns in the training set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: mean_hidden_state, words per case summary, WEATHER7, WEATHER2, WEATHER4, NUMTOTV, SUMMARY_GE, WEATHER8, INJSEVA, SCASEID, SUMMARY_EN, index, WEATHER3, level_0, cls_hidden_state, WEATHER5, WEATHER1, WEATHER6. If mean_hidden_state, words per case summary, WEATHER7, WEATHER2, WEATHER4, NUMTOTV, SUMMARY_GE, WEATHER8, INJSEVA, SCASEID, SUMMARY_EN, index, WEATHER3, level_0, cls_hidden_state, WEATHER5, WEATHER1, WEATHER6 are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n", - "/home/ubuntu/anaconda3/envs/pytorch_latest_p37/lib/python3.7/site-packages/transformers/optimization.py:309: FutureWarning:\n", - "\n", - "This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n", - "\n", - "***** Running training *****\n", - " Num examples = 5559\n", - " Num Epochs = 2\n", - " Instantaneous batch size per device = 8\n", - " Total train batch size (w. parallel, distributed & accumulation) = 8\n", - " Gradient Accumulation steps = 1\n", - " Total optimization steps = 1390\n" - ] }, { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " [1390/1390 03:17, Epoch 2/2]\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
StepTraining Loss
6940.537200
13880.316700

" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "MNP9SIeHWNv4" + }, + "source": [ + "The number of false negatives has reduced significantly, as expected, and the accuracy score has improved.\n", + "Since we have not implemented a logic to combine the predicted probabilities of the different chunks, the log loss and Brier loss cannot be evaluated in this case." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Training completed. Do not forget to share your model on huggingface.co/models =)\n", - "\n", - "\n", - "Saving model checkpoint to models/distilbert-base-multilingual-cased_inj\n", - "Configuration saved in models/distilbert-base-multilingual-cased_inj/config.json\n", - "Model weights saved in models/distilbert-base-multilingual-cased_inj/pytorch_model.bin\n" - ] - } - ], - "source": [ - "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", - "torch.manual_seed(42) # for reproducibility, set random seed before instantiating the model \n", - "model_cls_inj = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(labels)).to(device)\n", - "batch_size = 8\n", - "logging_steps = len(dataset_en[\"train\"]) // batch_size\n", - "training_args = TrainingArguments(\n", - " output_dir=\"models/\" + model_name + \"inj_epochs\",\n", - " num_train_epochs= 2,\n", - " per_device_train_batch_size=batch_size,\n", - " per_device_eval_batch_size=batch_size,\n", - " metric_for_best_model=\"f1\",\n", - " disable_tqdm=False,\n", - " logging_steps=logging_steps,\n", - " save_strategy=trainer_utils.IntervalStrategy.NO,\n", - ")\n", - "def compute_metrics(pred):\n", - " labels = pred.label_ids\n", - " preds = pred.predictions.argmax(-1)\n", - " f1 = f1_score(labels, preds, average=\"weighted\")\n", - " acc = accuracy_score(labels, preds)\n", - " return {\"accuracy\": acc, \"f1\": f1}\n", - "trainer = Trainer(model=model_cls_inj, args=training_args,\n", - " compute_metrics=compute_metrics, train_dataset=dataset_en[\"train\"], eval_dataset=dataset_en[\"test\"])\n", - "trainer.train();\n", - "trainer.save_model(\"models/\" + model_name + \"_inj\")" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": { - "id": "7ejzOSBWWNv2" - }, - "outputs": [], - "source": [ - "# Execute the following line to load the trained model from disk.\n", - "# trainer = Trainer(AutoModelForSequenceClassification.from_pretrained(model_name+\"_inj\", num_labels=len(labels)).to(torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")))" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 860 + "cell_type": "markdown", + "metadata": { + "id": "ZC7QButQWNv4" + }, + "source": [ + "\n", + "\n", + "### 5.3. Use Captum and `transformers-interpret` to Interpret Predictions\n", + "\n", + "\n", + "Transformer models are quite complex, and therefore, interpreting model output can be difficult.\n", + "\n", + "Our main interest is in knowing which parts of the input text cause the classifier to arrive at a particular prediction.\n", + "One way to answer this question is the so-called integrated gradients method.\n", + "It is provided conveniently by the library [transformers_interpret](https://github.com/cdpierse/transformers-interpret)\n", + "which provides a convenient interface to the library [Captum](https://captum.ai/),\n", + "an open source, extensible library for model interpretability built on PyTorch.\n", + "\n", + "With just a few lines of code, we can run this on individual examples, and receive a graphical output as shown below.\n", + "Of course, the output is also available in numerical form.\n", + "We run this on CPU because on the AWS p2.xlarge instance, the GPU ran out of memory." + ] }, - "id": "mvIWMTR2WNv2", - "outputId": "6f43c861-36eb-4166-a5a4-f492f7f8f54f", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "The following columns in the test set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: mean_hidden_state, words per case summary, WEATHER7, WEATHER2, WEATHER4, NUMTOTV, SUMMARY_GE, WEATHER8, INJSEVA, SCASEID, SUMMARY_EN, index, WEATHER3, level_0, cls_hidden_state, WEATHER5, WEATHER1, WEATHER6. If mean_hidden_state, words per case summary, WEATHER7, WEATHER2, WEATHER4, NUMTOTV, SUMMARY_GE, WEATHER8, INJSEVA, SCASEID, SUMMARY_EN, index, WEATHER3, level_0, cls_hidden_state, WEATHER5, WEATHER1, WEATHER6 are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n", - "***** Running Prediction *****\n", - " Num examples = 1390\n", - " Batch size = 8\n" - ] + "cell_type": "code", + "execution_count": 65, + "metadata": { + "id": "qk8aeppCWNv4" + }, + "outputs": [], + "source": [ + "device = torch.device(\"cpu\")\n", + "tokenizer = AutoTokenizer.from_pretrained(model_name)\n", + "model = model_cls_inj.to(device)\n", + "cls_explainer = SequenceClassificationExplainer(model, tokenizer)" + ] }, { - "data": { - "text/html": [ - "\n", - "

\n", - " \n", - " \n", - " [174/174 00:07]\n", - "
\n", - " " + "cell_type": "code", + "execution_count": 66, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 312 + }, + "id": "5-OUMWc4WNv5", + "outputId": "2df1256e-17c4-4127-f104-8431a1322151" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "
Legend: Negative Neutral Positive
True LabelPredicted LabelAttribution LabelAttribution ScoreWord Importance
1LABEL_1 (0.97)LABEL_12.32 [CLS] This three - vehicle crash occurred in the morning of a weekend on a multi - lane highway near an entrance ra ##mp . The highway runs east and west and divided by a high - tension cable guard ##rail . The bit ##umi ##nou ##s road ##way is dry , level and curve ##d to the left at the location of this crash . The posted speed limit 89 km ##ph ( 65 mph ) and there were no ad ##verse weather conditions . V ##1 , a 2006 Je ##ep Liberty with two occupa ##nts , was west ##bound in lane three inte ##nding to go straight . V ##2 , a 1992 Mitsubishi Dia ##mante with one occupa ##nt , was west ##bound in lane four inte ##nding to go straight . V ##3 , a 1996 Nissan pick ##up with one occupa ##nt , was west ##bound in lane one ( ac ##cel ##eration ra ##mp ) inte ##nding to merge left . An unknown vehicle traveling behind V ##3 switched lane ##s and cut in front of V ##1 . V ##1 attempted to avoid this unknown vehicle by changing lane ##s and striking V ##2 ( event # 1 ) . Subsequently , V ##1 and V ##2 sp ##un across all travel lane ##s and departed the right side of the road . V ##1 was struck in the right side by V ##3 as it sp ##un across the ac ##cel ##eration lane and came to final rest on the right roads ##ide . After V ##2 entered the right roads ##ide it sp ##un into an em ##bank ##ment and rolle ##d ( est . 6 - quarter turns ) and came to final rest on its roof . V ##3 drove off the right side of the road after striking V ##1 . The driver of V ##1 is a 45 - year - old female that refused to be interviewed . She was not injured in the crash and her Je ##ep was driven from the scene . The Critical Pre ##cra ##sh Event for V ##1 was code ##d this vehicle traveling over the lane line on the left side of the travel lane . The Critical Reason for the Critical Event was code ##d in ##corre ##ct eva ##sive action . Other factors code ##d to this driver include chose ina ##pp ##rop ##riate eva ##sive action and poor direction ##al control ( failure to control vehicle with skill ord ##inar ##ily expected ) . The driver of V ##2 is a 40 - year - old female that was not interviewed because of a language barrier ( Korean . ) She was transported to the hospital and her vehicle was to ##wed due to damage . The Critical Pre ##cra ##sh Event was code ##d other vehicle en ##cro ##aching from adjacent lane - over right lane line . The Critical Reason for the Critical Event was not code ##d to this vehicle . The driver [SEP]
" + ] + }, + "metadata": {} + } ], - "text/plain": [ - "" + "source": [ + "# true positive\n", + "s = tokenizer.decode(dataset_en[\"test\"][144][\"input_ids\"][1:511])\n", + "word_attributions = cls_explainer(s, n_steps=20)\n", + "cls_explainer.visualize(\"./results/viz_144.html\");" ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DistilBERT classifier - 2 epochs task-specific\n", - "accuracy score = 90.0%, log loss = 0.266, Brier loss = 0.154\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 0 0.91 0.92 0.92 816\n", - " 1 0.88 0.87 0.88 574\n", - "\n", - " accuracy 0.90 1390\n", - " macro avg 0.90 0.90 0.90 1390\n", - "weighted avg 0.90 0.90 0.90 1390\n", - "\n" - ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_inj_tsk", - "format": "svg" - } - }, - "data": [ + "cell_type": "code", + "execution_count": 67, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 337 + }, + "id": "04jn-pgmWNv5", + "outputId": "cb99a0b6-07a3-4a2a-9ba1-66dfd1155d0f" + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 0 ", - " 1 " - ], - "xaxis": "x", - "y": [ - " 0 ", - " 1 " - ], - "yaxis": "y", - "z": [ - [ - 749, - 67 - ], - [ - 72, - 502 - ] - ] - } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] + "output_type": "display_data", + "data": { + "text/plain": [ + "" ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } + "text/html": [ + "
Legend: Negative Neutral Positive
True LabelPredicted LabelAttribution LabelAttribution ScoreWord Importance
1LABEL_1 (0.94)LABEL_14.12 [CLS] This crash occurred in the south ##bound lane of a two - lane und ##ivi ##ded road ##way . This was a level asp ##halt road that curve ##d slightly to the left , with a posted speed limit of 64 km ##ph ( 40 mph ) . It was early in the evening on a week ##day , conditions were clear , and the road ##way was dry . There were no traffic flow restrictions . V ##1 was a 2002 Chrysler Se ##bring 2 - door convert ##ible . The vehicle was traveling south ##bound and its driver was beginning to nego ##tia ##te a left curve . V ##1 departed the road ##way to the right and struck a telephone pole located on the roads ##ide . V ##1 rota ##ted clock ##wise after the impact and then trip ##ped over its wheels . V ##1 rolle ##d two quarter - turns and came to final rest on its roof . V ##1 was driven by a 69 - year old female who suffered moderate injuries . The driver has since been put into a nur ##sing home and does not reca ##ll any information from the accident . The accident report and medical records indicated that the driver of V ##1 had a blood alcohol content of 0 . 177 . The Critical Pre - crash Event for V ##1 was this vehicle traveling off the edge of the road on the right side . The Critical Reason for the Critical Pre - crash Event was poor direction ##al control , a driver - related factor . Associated factors code ##d to the driver of V ##1 include alcohol use , the medical condition of diabetes and the use of pre ##scription med ##ication to control the diabetes . Medical reports also indicated that the driver of V ##1 had a history of alcohol ##ism . [SEP] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [SEP]
" + ] }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" + "metadata": {} + } + ], + "source": [ + "# true positive\n", + "s = tokenizer.decode(dataset_en[\"test\"][18][\"input_ids\"][1:511])\n", + "word_attributions = cls_explainer(s, n_steps=20)\n", + "cls_explainer.visualize(\"./results/viz_18.html\");" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 312 + }, + "id": "3mXRYEluWNv5", + "outputId": "fdf5dfb7-6f3f-48e0-c1bd-eab23be71d5b" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" ], - [ - 1, - "#276419" + "text/html": [ + "
Legend: Negative Neutral Positive
True LabelPredicted LabelAttribution LabelAttribution ScoreWord Importance
0LABEL_0 (0.75)LABEL_06.24 [CLS] This two vehicle crash occurred late in the evening on a two - lane up ##hill bit ##umi ##nou ##s road ##way , with no traffic controls and a speed limit of 56 km ##ph ( 30 mph ) . Vehicle one ( V ##1 ) was a 2007 Ford e ##cono ##line van driven by a thirty four ( 34 ) year - old male who takes no med ##ication or has any vision restrictions . V ##1 was traveling south in lane one going straight . Vehicle two ( V ##2 ) was a 1994 Honda Civic sedan driven by an unknown aged driver with one passenger . V ##2 was traveling south in lane one . According to a witness V ##2 was traveling at a high rate of speed and attempting to pass V ##1 on the right when the front of V ##2 struck the rear of V ##1 . The driver of V ##2 fled the scene on foot , leaving an injured passenger . Both vehicle ' s came to final rest facing south . V ##2 was to ##wed from the scene . The passenger of V ##2 did not know the driver and refused to speak about the crash due to his illegal status in this country . The critical pre - crash event for V ##1 was code ##d : other motor vehicle in lane , traveling in same direction with higher speed . The critical reason for the critical event was not code ##d to this vehicle . The driver of V ##1 was traveling from one job site to another when V ##1 was rear - ended by V ##2 . He was going straight traveling at the posted speed limit in this residential area and observed V ##2 approach ##ing from the rear in his side mirror . The critical pre - crash event for V ##2 was code ##d : other motor vehicle in lane , traveling in same direction with lower st ##eady speed . The critical reason for the critical event was code ##d to the driver of V ##2 as a driver related factor : poor direction ##al control ( e . g . , failing to control vehicle with skill ord ##inar ##ily expected ) . An associated factor for V ##2 was excessive speed and mis ##jud ##gment of gap . V ##2 ' s left front tire was the wrong size and all tire ##s had low tre ##ad depth . [SEP] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [SEP]
" ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" + }, + "metadata": {} + } + ], + "source": [ + "# false negative: \"leaving an injured passenger\" overlooked\n", + "s = tokenizer.decode(dataset_en[\"test\"][331][\"input_ids\"][1:511])\n", + "word_attributions = cls_explainer(s, n_steps=20)\n", + "cls_explainer.visualize(\"./results/viz_331.html\");" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 312 + }, + "id": "Gvq1xnu5WNv5", + "outputId": "cb420c49-18b3-4ef8-b981-7ee44b0bb36e" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" ], - [ - 1, - "#f0f921" + "text/html": [ + "
Legend: Negative Neutral Positive
True LabelPredicted LabelAttribution LabelAttribution ScoreWord Importance
1LABEL_1 (0.97)LABEL_11.93 [CLS] The crash occurred on a north / south four - lane highway with shoulder ##s . It curve ##d to the east ( right ) as it traveled north ##ward with a radius of curva ##ture of 274 meters and a positive 4 % grade . Initially there was a grass median div ##iding the north and south lane ##s but as the highway traveled north the median ended with only a double yellow line separat ##ing the directions of travel . A two - lane side street inter ##sect ##ed on the west side of the highway and traveled southeast . Con ##ditions were dark and dry on a week ##day evening . Vehicle # 1 was a 1987 Mercury Marquis traveling north ##bound on the highway . The driver , apparently confused , attempted to turn left on the side street 29 meters prior to the intersection . The vehicle went down a steep 62 % em ##bank ##ment , striking the ground at the bottom of the em ##bank ##ment with its front . It came to rest facing south with its rear wheels just on the edge of the pave ##d south shoulder and was to ##wed due to damage . Vehicle # 1 was driven by a 54 - year old female that was un ##belt ##ed and not transported to a medical facility . Two adult passengers and an 8 - month child in a safety seat were also not injured . The driver stated she went out the wrong exit from a gas station on the east side of the highway a few hundred meters south of the crash . She intended to turn left on the side street to circle back around and enter a shopping center that was located across the highway from the gas station . App ##aren ##tly she thought that the street sign identify ##ing the side streets name was on the north side of the intersection as opposed to south and initiated the left turn 29 meters before the inter ##sect ##ing pave ##ment began . She said that once she started to turn and realized the error she attempted to brak ##e but the front wheels had left the pave ##ment and the em ##bank ##ment was so steep she could not recover . In ##vesti ##gating tro ##oper ##s agree with researcher that poor vision could have contributed to the scenario and required her to follow up with a vision rete ##sting at a state driver ' s license center . The Critical Pre ##cra ##sh Event for Vehicle # 1 was this vehicle traveling off the edge of the road on the left side . The Critical Reason for the Critical Event was code ##d other recognition error , attempted left turn too early . Associated factors included con ##versi ##ng with passenger and poor direction ##al control ( failure to control vehicle with skill ord ##inar ##ily expected ) . A vehicle view ob ##stru ##ction - related to other was included due [SEP]
" ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" + }, + "metadata": {} + } + ], + "source": [ + "# false positive:\n", + "s = tokenizer.decode(dataset_en[\"test\"][78][\"input_ids\"][1:511])\n", + "word_attributions = cls_explainer(s, n_steps=20)\n", + "cls_explainer.visualize(\"./results/viz_78.html\");" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 312 + }, + "id": "GIUENaqY-NRX", + "outputId": "68b6eaff-0f70-4a84-856e-77684af9e900" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" ], - [ - 1, - "#f0f921" + "text/html": [ + "
Legend: Negative Neutral Positive
True LabelPredicted LabelAttribution LabelAttribution ScoreWord Importance
1LABEL_1 (0.95)LABEL_14.93 [CLS] This crash occurred on a straight level bit ##umi ##nou ##s two lane road ##way that was divided by a painted median . The posted speed limit of 72 km ##ph ( 45 mph ) which reduce ##s to 56 km ##ph ( 35 mph ) 100 meters after the crash site . There is a sign indicating the road ##way narrow ##s . The weather was cloud ##y and the road ##way was partially wet . Traffic flow was normal for that time of day . This crash occurred on a week ##day afternoon . Vehicle 1 , a 2002 Nissan Alt ##ima , was traveling behind Vehicle 2 , a 1991 Chevrolet Lu ##mina , when it drove into the safety zone into the on ##coming traffic lane in order to illegal ##ly pass Vehicle 2 . V ##1 returned to its original lane and impact ##ed with V ##2 ' s front left , with its right rear quarter panel . This sp ##un V ##1 in a clock ##wise position 180 degrees , with V ##1 coming to final rest after impact ##ing an em ##bank ##ment on the right side of the road ##way , with its rear left . Vehicle 1 was to ##wed due to damage . V ##1 came to final rest off the road ##way facing in a northeast ##erly direction . V ##2 came to final rest on the road ##way facing in a south ##erly direction . V ##1 was to ##wed due to damage . V ##2 was to ##wed due to its driver going to the hospital with her baby . Vehicle # 1 , the Nissan Alt ##ima , was driven by a belt ##ed 38 - year - old male who refused to be interviewed . He stated he did not want to be both ##ered \" with this sh - t \" . The Critical Pre ##cra ##sh Event code ##d to Vehicle 1 was : Other - this vehicle traveling entering the road ##way from the left side of the road ##way . The Critical Reason for the Critical Pre ##cra ##sh Event was code ##d as : driver related factor , aggressive driving behavior . Vehicle # 2 , the Chevrolet , was driven by a belt ##ed 21 year - old female who was not injured . There was a belt ##ed 18 year - old male in the front right seat who was not injured . There was a 6 - month - old female child in a car seat in the second row . The child was taken to the hospital for a check out , accompanied by both other people in the vehicle . This driver stated to her relative that she had seen the driver of V ##1 making \" wild ge ##stu ##res \" and tail ##gating her . She stated she saw V ##1 coming around her on the left but could only brak ##e before impact . The Critical Pre ##cra ##sh Event code [SEP]
" ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "DistilBERT classifier - 2 epochs task-specific" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "metadata": {} } - } + ], + "source": [ + "# false positive:\n", + "s = tokenizer.decode(dataset_en[\"test\"][915][\"input_ids\"][1:511])\n", + "word_attributions = cls_explainer(s, n_steps=20)\n", + "cls_explainer.visualize(\"./results/viz_915.html\");" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iBJ99TPuWNv5" }, - "text/html": [ - "
" + "source": [ + "\n", + "\n", + "## 6. Using Extractive Question Answering to Process Longer Texts\n", + "\n", + "In this section we use extractive question answering to extract parts of the accident description which indicate the presence of bodily injury. The aim is to reduce the length of the input texts by extracting only the relevant parts.\n", + "\n", + "The easiest implementation of extractive question answering is provided by the `pipeline` abstraction.\n", + "\n", + "We use [`deutsche-telekom/bert-multi-english-german-squad2`](https://huggingface.co/deutsche-telekom/bert-multi-english-german-squad2),\n", + "a multilingual English German question answering model built on `bert-base-multilingual-cased`. By specifying `device=0` we use GPU support." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# evaluate model performance using predictions on the English test set\n", - "predictions_en = trainer.predict(dataset_en[\"test\"])\n", - "_ = evaluate_classifier(predictions_en.label_ids, None, softmax(predictions_en.predictions, axis=1), labels,\n", - " \"DistilBERT classifier - 2 epochs task-specific\", \"cm_inj_tsk\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "OcogYs7wWNv2" - }, - "source": [ - "We observe the following:\n", - "* Task-specific fine-tuning has further improved all scores.\n", - "* There is still a relatively large number of false positives." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "udjhQrSpWNv2", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "\n", - "\n", - "### 5.2. Investigate False Positives and False Negatives\n", - "\n", - "To investigate the prediction errors, we export the predictions into an Excel file with the following columns:\n", - "\n", - "| column | meaning |\n", - "|---|---|\n", - "| `SCASEID` | unique identification number of the case |\n", - "| `SUMMARY_EN` | description of the accident, in English |\n", - "| `SUMMARY_TRUNCATED` | description of the accident, in English, truncated to a length of 512 tokens |\n", - "| `INJSEVA` | most serious injury sustained in the case, as per Police Accident Report |\n", - "| `labels` | indicator of odily injury `INJSEVB` (true label) |\n", - "| `pred` | predicted label |\n", - "| `0` | probability of negative label |\n", - "| `1` | probability of positive label |" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": { - "id": "ZAfQV892WNv3" - }, - "outputs": [], - "source": [ - "# export prediction results for error analysis\n", - "dataset_en.set_format(type=\"pandas\")\n", - "df_res = pd.concat([dataset_en[\"test\"].to_pandas(),\n", - " pd.DataFrame(data=softmax(predictions_en.predictions, axis=1), columns=[\"0\", \"1\"]),\n", - " pd.DataFrame(data=np.argmax(predictions_en.predictions, -1).reshape((-1,1)), columns=['pred'])\n", - " ], axis=1)\n", - "df_res = df_res[[\"SCASEID\", \"SUMMARY_EN\", \"INJSEVA\", \"labels\", \"pred\", \"0\", \"1\"]]\n", - "dataset_en.set_format()\n", - "for i in range(df_res.shape[0]):\n", - " df_res.loc[i, \"SUMMARY_TRUNCATED\"] = tokenizer.convert_tokens_to_string(tokenizer.tokenize(df_res.loc[i, \"SUMMARY_EN\"], truncation=True))\n", - "df_res.to_excel(\"./results/error_analysis_inj.xlsx\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "OR2KmOV2WNv3" - }, - "source": [ - "The first step of the error analysis is to inspect the samples producing false negative and false positive predictions.\n", - "Reading every single text would be very tedious, therefore it is worthwhile focusing on those examples where the probability assigned to the false prediction was high,\n", - "i.e., cases where the model was confident but wrong.\n", - "\n", - "Looking at the false negatives, we observe that there are many cases where the model assigns a high probability to negative.\n", - "We suspect that truncation is responsible for many of the false negatives – the relevant part of the text was discarded.\n", - "\n", - "To address this issue, we split the text into slightly overlapping chunks,\n", - "run the prediction on each chunk and apply the logical OR-function to the results.\n", - "We implement this functionality in a simple function that returns an additional column `pred`,\n", - "containing a list of predicted labels, with one element for each chunk." - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": { - "id": "oEKN3riTWNv3" - }, - "outputs": [], - "source": [ - "def predict_with_overflow(x, model, feature):\n", - " t = tokenizer(x[feature], truncation=True, padding=True, return_overflowing_tokens=True)\n", - " input_ids = torch.tensor(t[\"input_ids\"]).to(model.device)\n", - " attention_mask = torch.tensor(t[\"attention_mask\"]).to(model.device)\n", - " with torch.no_grad():\n", - " preds = np.argmax(model(input_ids, attention_mask).logits.cpu(), -1)\n", - " return {\"preds\": preds}" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": { - "id": "ubKYwONYWNv3" - }, - "outputs": [], - "source": [ - "# Execute the following lines to load the trained model and the okenizer from disk.\n", - "# model_cls_inj = AutoModelForSequenceClassification.from_pretrained(\"models/\" + model_name + \"_inj\", num_labels=len(labels)).to(torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\"))\n", - "# tokenizer = AutoTokenizer.from_pretrained(model_name)" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 81, - "referenced_widgets": [ - "69c5d78016be424a809d62adc60b9a78", - "5b40e993725b42eb9ddab54f26b65925", - "ef303e43af7d46a598183f8578f27344", - "1e7b332eeeed4054812a90d27d751334", - "4bdfaa4d9f3c430d9c1e3705d174539f", - "114cd6c913db4d2e8b8ed4b811b04244", - "bcfac580838a434b924c75a9996c905e", - "39168f7ac5814af4b820f896df8e8e82", - "4d8d11ab0dfc4aa3b625a3faed894ae7", - "7bea7398b2c64a3580133e9ddba00f55", - "49d052b8696745dda7b9fa1615284178", - "29d1bbafa40648deab0879d236e727e6", - "aef6ee4e19a04fbcb104f202cdc564a6", - "e627c3f0a40d43f8a3baa44e4b876a03", - "a3c11dfae4df40b89eeac4e58a21f76a", - "dae30fe0ebc84bf1a0eb248c9a334c88", - "4e0f77d8ac9c407c8d74969f4adb6931", - "66da5ccd967a441c92df787873fcbb4c", - "b28fed2d2d464a50ac2d155cdfec3c14", - "01c0c343c7e74e99a453aec724074cac", - "3e0978a77d2841938cccbc6abcace64b", - "b2a2e3fcc88c43fe9ef801504b7682bc" - ] }, - "id": "hMoqL5aHWNv3", - "outputId": "18c11419-ecd1-4019-89e0-2e93f7676735" - }, - "outputs": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "34e54ec471aa43568fe3098866d09185", - "version_major": 2, - "version_minor": 0 + "cell_type": "code", + "execution_count": 71, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 177, + "referenced_widgets": [ + "486f11186d874b7e83dd2e088bae002e", + "f5b930386e2a4cb2acd3b2d528c70dd6", + "069f96de1e34477582ce3ad8bcf0a7f2", + "d5e9143bdf8e44429771da6b07934b48", + "83cd8944573b48c5ae1fa8582b259a60", + "f3a3d0f3895f486e9bdfbfa6581c2007", + "2696019fe4674ac28fd87898cc6780dd", + "dd5b7db237bb42209c35403616f2b525", + "fce9d772bcf74a809cff8c6c352abcb3", + "99aa8b82bd2444999ef86bba75949976", + "c0d2cd311db247c1b21a19593c455762", + "c9572f12724249a492816be24f394d76", + "e17eae14f470471bb94730ccbee2c7b3", + "9cbfaf9e319645118cdd384a4007915b", + "2fd6bf638a824c49a4ce018cdb069177", + "ccb333e16f1e459ebb385956e478c373", + "87f5f6c06ecd422fa4675aa7de3e31f3", + "4c176765710b41cdbb625cefa1599800", + "b0d274fc0ea447e1a5f9a9de476332c2", + "7bc39d5ea97945338f47881a1421ff52", + "74f7007eee3241a3bd5002b8e5a6148d", + "cff1616b8ebc459fa434db0a69a195f2", + "f35a9eec4f7a4dd18de10815281b5a2a", + "402640a0df79496f836b2dee7b12e374", + "9c61d2cd86e4430f8207fcb328378463", + "3f185063faa0444abc845b88cb7cf70c", + "be99854c11c14402b518756040346159", + "999c2dc53fa34547ba4e8a4d753d885b", + "0111d78b54e14041b19c18ec2efd0c02", + "300832a0c66e4a4cadc1fc7d2825d647", + "868f963c1e1844499a0240ae345940e8", + "2ac949e50cc74b14b35dc8ff948e36a8", + "b415d3920503453097975ce8575a83cc", + "e47af479ba2947728edead722e37507a", + "6f79ec17441f4b23a52aa96d37fefd13", + "8f206492a6cb4c59978d3edbf0a22601", + "3b6f8d1596d64fa6b88e2b3f3192d820", + "99708f3e63aa49f99fb350f21d69e71e", + "1931acef87bb46b99d6ff96b9d26ea4b", + "8fea0d18b21c4f41bff4e9cab9fafd9b", + "3d55048e65134e33895e0c9f11cd1ba7", + "c6db58831b2845949fca86a2bbc12ae5", + "ca7f36ddc0594a7584a0b266bf71ebca", + "379aadd411804cb8b435f5ec03cf8941", + "d753541428e4471d94d44c3cbb83d5b8", + "8c08b8d2bcbf4a449e90efbd0f436873", + "f4d1d35507dc49dbb0ca8d1616013b3e", + "7e2892dee05147b6b7597d7087d5d08b", + "42019918b32f43fead5e531292cab5dc", + "05106957703944b9991803c6eb9d006d", + "e438e7017e924a428cc47bbee78cacf3", + "3c38cb2d3c5747f79b12915ce195e910", + "2a93b900107f4c24ad3fb04cdd2f5293", + "3bd2b91ef73347068af0ed288fd17e53", + "a1caf52d25ef450287b3ca5a57660bee" + ] + }, + "id": "axQK5AJlWNv6", + "outputId": "b2f4904d-a422-4334-b53a-f6b96cf75daa" }, - "text/plain": [ - " 0%| | 0/1390 [00:00 0:\n", + " x[\"INJ\"] = '. '.join([x[\"INJ\"]] + [item[\"answer\"] for item in res])\n", + " return x" + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_inj_split", - "format": "svg" - } - }, - "data": [ + "cell_type": "markdown", + "metadata": { + "id": "nUfUYHs7WNv6" + }, + "source": [ + "We apply the question answering function to the entire test set.\n", + "\n", + "On an AWS EC2 p2.xlarge instance, the run time is about 6 minutes. If you want to try the concept on only the first 250 samples, you can use `ds_test = dataset[\"test\"].select(range(250).map(...`" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 118, + "referenced_widgets": [ + "4d6cd358cf3142ca8f6d97c3ea467165", + "d84281814e1248dca0cbe97c182552f2", + "e67e2a11fb10484e834bf976a454fac3", + "500a601091eb4c359beed1c5dd143e56", + "3aee35faf2fc43d8beff5fe68b27c8af", + "037c286ac5a2478f87adfbed0858d194", + "0b2e1db7008346f3b79cc51db50acaa8", + "1e8511680e944af8adfafee67945bb52", + "c0564b4e129f4f80aede254fec5e57ab", + "b0b322d936dc476bbd284456502f9365", + "1593150538b64361a97b7bb522a42a60" + ] + }, + "id": "RnHgr4KjWNv6", + "outputId": "4b43ac57-481a-4956-f7d8-964610a0556d" + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 0 ", - " 1 " - ], - "xaxis": "x", - "y": [ - " 0 ", - " 1 " - ], - "yaxis": "y", - "z": [ - [ - 745, - 71 - ], - [ - 22, - 552 + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/1390 [00:00predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } - } - } - }, - "text/html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "_ = evaluate_classifier(predictions_en.label_ids, dataset_en_overflow[\"pred\"], None, labels,\n", - " \"DistilBERT classifier - split inputs\", \"cm_inj_split\")" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": { - "id": "mOG699NKWNv4" - }, - "outputs": [], - "source": [ - "dataset_en_overflow.set_format(type=\"pandas\")\n", - "df_res = dataset_en_overflow.to_pandas()\n", - "df_res = df_res[[\"SCASEID\", \"SUMMARY_EN\", \"INJSEVA\", \"labels\", \"pred\"]]\n", - "dataset_en.set_format()\n", - "for i in range(df_res.shape[0]):\n", - " df_res.loc[i, \"SUMMARY_TRUNCATED\"] = tokenizer.convert_tokens_to_string(tokenizer.tokenize(df_res.loc[i, \"SUMMARY_EN\"], truncation=True))\n", - "df_res.to_excel(\"./results/error_analysis_inj_overflow.xlsx\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "MNP9SIeHWNv4" - }, - "source": [ - "The number of false negatives has reduced significantly, as expected, and the accuracy score has improved.\n", - "Since we have not implemented a logic to combine the predicted probabilities of the different chunks, the log loss and Brier loss cannot be evaluated in this case." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ZC7QButQWNv4" - }, - "source": [ - "\n", - "\n", - "### 5.3. Use Captum and `transformers-interpret` to Interpret Predictions\n", - "\n", - "\n", - "Transformer models are quite complex, and therefore, interpreting model output can be difficult.\n", - "\n", - "Our main interest is in knowing which parts of the input text cause the classifier to arrive at a particular prediction.\n", - "One way to answer this question is the so-called integrated gradients method.\n", - "It is provided conveniently by the library [transformers_interpret](https://github.com/cdpierse/transformers-interpret)\n", - "which provides a convenient interface to the library [Captum](https://captum.ai/),\n", - "an open source, extensible library for model interpretability built on PyTorch.\n", - "\n", - "With just a few lines of code, we can run this on individual examples, and receive a graphical output as shown below.\n", - "Of course, the output is also available in numerical form.\n", - "We run this on CPU because on the AWS p2.xlarge instance, the GPU ran out of memory." - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "qk8aeppCWNv4", - "outputId": "f76d8780-79fc-4604-a7a0-1f2756b7f237" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "loading configuration file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/cf37a9dc282a679f121734d06f003625d14cfdaf55c14358c4c0b8e7e2b89ac9.7a727bd85e40715bec919a39cdd6f0aba27a8cd488f2d4e0f512448dcd02bf0f\n", - "Model config DistilBertConfig {\n", - " \"_name_or_path\": \"distilbert-base-multilingual-cased\",\n", - " \"activation\": \"gelu\",\n", - " \"architectures\": [\n", - " \"DistilBertForMaskedLM\"\n", - " ],\n", - " \"attention_dropout\": 0.1,\n", - " \"dim\": 768,\n", - " \"dropout\": 0.1,\n", - " \"hidden_dim\": 3072,\n", - " \"initializer_range\": 0.02,\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"distilbert\",\n", - " \"n_heads\": 12,\n", - " \"n_layers\": 6,\n", - " \"output_past\": true,\n", - " \"pad_token_id\": 0,\n", - " \"qa_dropout\": 0.1,\n", - " \"seq_classif_dropout\": 0.2,\n", - " \"sinusoidal_pos_embds\": false,\n", - " \"tie_weights_\": true,\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"vocab_size\": 119547\n", - "}\n", - "\n", - "loading file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt from cache at /home/ubuntu/.cache/huggingface/transformers/28e5b750bf4f39cc620367720e105de1501cf36ec4ca7029eba82c1d2cc47caf.6c5b6600e968f4b5e08c86d8891ea99e51537fc2bf251435fb46922e8f7a7b29\n", - "loading file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json from cache at /home/ubuntu/.cache/huggingface/transformers/5cbdf121f196be5f1016cb102b197b0c34009e1e658f513515f2eebef9f38093.b33e51591f94f17c238ee9b1fac75b96ff2678cbaed6e108feadb3449d18dc24\n", - "loading file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/added_tokens.json from cache at None\n", - "loading file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/special_tokens_map.json from cache at None\n", - "loading file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer_config.json from cache at /home/ubuntu/.cache/huggingface/transformers/47087d99feeb3bc6184d7576ff089c52f7fbe3219fe48c6c4fa681e617753256.ec5c189f89475aac7d8cbd243960a0655cfadc3d0474da8ff2ed0bf1699c2a5f\n", - "loading configuration file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/cf37a9dc282a679f121734d06f003625d14cfdaf55c14358c4c0b8e7e2b89ac9.7a727bd85e40715bec919a39cdd6f0aba27a8cd488f2d4e0f512448dcd02bf0f\n", - "Model config DistilBertConfig {\n", - " \"_name_or_path\": \"distilbert-base-multilingual-cased\",\n", - " \"activation\": \"gelu\",\n", - " \"architectures\": [\n", - " \"DistilBertForMaskedLM\"\n", - " ],\n", - " \"attention_dropout\": 0.1,\n", - " \"dim\": 768,\n", - " \"dropout\": 0.1,\n", - " \"hidden_dim\": 3072,\n", - " \"initializer_range\": 0.02,\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"distilbert\",\n", - " \"n_heads\": 12,\n", - " \"n_layers\": 6,\n", - " \"output_past\": true,\n", - " \"pad_token_id\": 0,\n", - " \"qa_dropout\": 0.1,\n", - " \"seq_classif_dropout\": 0.2,\n", - " \"sinusoidal_pos_embds\": false,\n", - " \"tie_weights_\": true,\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"vocab_size\": 119547\n", - "}\n", - "\n" - ] - } - ], - "source": [ - "device = torch.device(\"cpu\")\n", - "tokenizer = AutoTokenizer.from_pretrained(model_name)\n", - "model = model_cls_inj.to(device)\n", - "cls_explainer = SequenceClassificationExplainer(model, tokenizer)" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 288 - }, - "id": "5-OUMWc4WNv5", - "outputId": "bba0c235-9b86-4840-a69d-af8bbfacedee" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
Legend: Negative Neutral Positive
True LabelPredicted LabelAttribution LabelAttribution ScoreWord Importance
1LABEL_1 (0.96)LABEL_12.07 [CLS] This three - vehicle crash occurred in the morning of a weekend on a multi - lane highway near an entrance ra ##mp . The highway runs east and west and divided by a high - tension cable guard ##rail . The bit ##umi ##nou ##s road ##way is dry , level and curve ##d to the left at the location of this crash . The posted speed limit 89 km ##ph ( 65 mph ) and there were no ad ##verse weather conditions . V ##1 , a 2006 Je ##ep Liberty with two occupa ##nts , was west ##bound in lane three inte ##nding to go straight . V ##2 , a 1992 Mitsubishi Dia ##mante with one occupa ##nt , was west ##bound in lane four inte ##nding to go straight . V ##3 , a 1996 Nissan pick ##up with one occupa ##nt , was west ##bound in lane one ( ac ##cel ##eration ra ##mp ) inte ##nding to merge left . An unknown vehicle traveling behind V ##3 switched lane ##s and cut in front of V ##1 . V ##1 attempted to avoid this unknown vehicle by changing lane ##s and striking V ##2 ( event # 1 ) . Subsequently , V ##1 and V ##2 sp ##un across all travel lane ##s and departed the right side of the road . V ##1 was struck in the right side by V ##3 as it sp ##un across the ac ##cel ##eration lane and came to final rest on the right roads ##ide . After V ##2 entered the right roads ##ide it sp ##un into an em ##bank ##ment and rolle ##d ( est . 6 - quarter turns ) and came to final rest on its roof . V ##3 drove off the right side of the road after striking V ##1 . The driver of V ##1 is a 45 - year - old female that refused to be interviewed . She was not injured in the crash and her Je ##ep was driven from the scene . The Critical Pre ##cra ##sh Event for V ##1 was code ##d this vehicle traveling over the lane line on the left side of the travel lane . The Critical Reason for the Critical Event was code ##d in ##corre ##ct eva ##sive action . Other factors code ##d to this driver include chose ina ##pp ##rop ##riate eva ##sive action and poor direction ##al control ( failure to control vehicle with skill ord ##inar ##ily expected ) . The driver of V ##2 is a 40 - year - old female that was not interviewed because of a language barrier ( Korean . ) She was transported to the hospital and her vehicle was to ##wed due to damage . The Critical Pre ##cra ##sh Event was code ##d other vehicle en ##cro ##aching from adjacent lane - over right lane line . The Critical Reason for the Critical Event was not code ##d to this vehicle . The driver [SEP]
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# true positive\n", - "s = tokenizer.decode(dataset_en[\"test\"][144][\"input_ids\"][1:511])\n", - "word_attributions = cls_explainer(s, n_steps=20)\n", - "cls_explainer.visualize(\"./results/viz_144.html\");" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 313 - }, - "id": "04jn-pgmWNv5", - "outputId": "8576416c-2145-4e3a-b265-d40eadf0bf83" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
Legend: Negative Neutral Positive
True LabelPredicted LabelAttribution LabelAttribution ScoreWord Importance
1LABEL_1 (0.95)LABEL_12.16 [CLS] This crash occurred in the south ##bound lane of a two - lane und ##ivi ##ded road ##way . This was a level asp ##halt road that curve ##d slightly to the left , with a posted speed limit of 64 km ##ph ( 40 mph ) . It was early in the evening on a week ##day , conditions were clear , and the road ##way was dry . There were no traffic flow restrictions . V ##1 was a 2002 Chrysler Se ##bring 2 - door convert ##ible . The vehicle was traveling south ##bound and its driver was beginning to nego ##tia ##te a left curve . V ##1 departed the road ##way to the right and struck a telephone pole located on the roads ##ide . V ##1 rota ##ted clock ##wise after the impact and then trip ##ped over its wheels . V ##1 rolle ##d two quarter - turns and came to final rest on its roof . V ##1 was driven by a 69 - year old female who suffered moderate injuries . The driver has since been put into a nur ##sing home and does not reca ##ll any information from the accident . The accident report and medical records indicated that the driver of V ##1 had a blood alcohol content of 0 . 177 . The Critical Pre - crash Event for V ##1 was this vehicle traveling off the edge of the road on the right side . The Critical Reason for the Critical Pre - crash Event was poor direction ##al control , a driver - related factor . Associated factors code ##d to the driver of V ##1 include alcohol use , the medical condition of diabetes and the use of pre ##scription med ##ication to control the diabetes . Medical reports also indicated that the driver of V ##1 had a history of alcohol ##ism . [SEP] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [SEP]
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# true positive\n", - "s = tokenizer.decode(dataset_en[\"test\"][18][\"input_ids\"][1:511])\n", - "word_attributions = cls_explainer(s, n_steps=20)\n", - "cls_explainer.visualize(\"./results/viz_18.html\");" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 288 - }, - "id": "3mXRYEluWNv5", - "outputId": "c23651ca-7161-4180-efbb-62e1c05c4e88" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
Legend: Negative Neutral Positive
True LabelPredicted LabelAttribution LabelAttribution ScoreWord Importance
0LABEL_0 (0.99)LABEL_05.34 [CLS] This two vehicle crash occurred late in the evening on a two - lane up ##hill bit ##umi ##nou ##s road ##way , with no traffic controls and a speed limit of 56 km ##ph ( 30 mph ) . Vehicle one ( V ##1 ) was a 2007 Ford e ##cono ##line van driven by a thirty four ( 34 ) year - old male who takes no med ##ication or has any vision restrictions . V ##1 was traveling south in lane one going straight . Vehicle two ( V ##2 ) was a 1994 Honda Civic sedan driven by an unknown aged driver with one passenger . V ##2 was traveling south in lane one . According to a witness V ##2 was traveling at a high rate of speed and attempting to pass V ##1 on the right when the front of V ##2 struck the rear of V ##1 . The driver of V ##2 fled the scene on foot , leaving an injured passenger . Both vehicle ' s came to final rest facing south . V ##2 was to ##wed from the scene . The passenger of V ##2 did not know the driver and refused to speak about the crash due to his illegal status in this country . The critical pre - crash event for V ##1 was code ##d : other motor vehicle in lane , traveling in same direction with higher speed . The critical reason for the critical event was not code ##d to this vehicle . The driver of V ##1 was traveling from one job site to another when V ##1 was rear - ended by V ##2 . He was going straight traveling at the posted speed limit in this residential area and observed V ##2 approach ##ing from the rear in his side mirror . The critical pre - crash event for V ##2 was code ##d : other motor vehicle in lane , traveling in same direction with lower st ##eady speed . The critical reason for the critical event was code ##d to the driver of V ##2 as a driver related factor : poor direction ##al control ( e . g . , failing to control vehicle with skill ord ##inar ##ily expected ) . An associated factor for V ##2 was excessive speed and mis ##jud ##gment of gap . V ##2 ' s left front tire was the wrong size and all tire ##s had low tre ##ad depth . [SEP] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [SEP]
" ], - "text/plain": [ - "" + "source": [ + "ds_test = dataset[\"test\"].map(get_answers, batched=False, fn_kwargs={\"qa_pipeline\": pl, \"questions\": questions})" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# false negative: \"leaving an injured passenger\" overlooked\n", - "s = tokenizer.decode(dataset_en[\"test\"][331][\"input_ids\"][1:511])\n", - "word_attributions = cls_explainer(s, n_steps=20)\n", - "cls_explainer.visualize(\"./results/viz_331.html\");" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 288 - }, - "id": "Gvq1xnu5WNv5", - "outputId": "f112c0ea-5e38-4a1b-ce2a-e36910a4b53f" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
Legend: Negative Neutral Positive
True LabelPredicted LabelAttribution LabelAttribution ScoreWord Importance
1LABEL_1 (0.95)LABEL_11.85 [CLS] The crash occurred on a north / south four - lane highway with shoulder ##s . It curve ##d to the east ( right ) as it traveled north ##ward with a radius of curva ##ture of 274 meters and a positive 4 % grade . Initially there was a grass median div ##iding the north and south lane ##s but as the highway traveled north the median ended with only a double yellow line separat ##ing the directions of travel . A two - lane side street inter ##sect ##ed on the west side of the highway and traveled southeast . Con ##ditions were dark and dry on a week ##day evening . Vehicle # 1 was a 1987 Mercury Marquis traveling north ##bound on the highway . The driver , apparently confused , attempted to turn left on the side street 29 meters prior to the intersection . The vehicle went down a steep 62 % em ##bank ##ment , striking the ground at the bottom of the em ##bank ##ment with its front . It came to rest facing south with its rear wheels just on the edge of the pave ##d south shoulder and was to ##wed due to damage . Vehicle # 1 was driven by a 54 - year old female that was un ##belt ##ed and not transported to a medical facility . Two adult passengers and an 8 - month child in a safety seat were also not injured . The driver stated she went out the wrong exit from a gas station on the east side of the highway a few hundred meters south of the crash . She intended to turn left on the side street to circle back around and enter a shopping center that was located across the highway from the gas station . App ##aren ##tly she thought that the street sign identify ##ing the side streets name was on the north side of the intersection as opposed to south and initiated the left turn 29 meters before the inter ##sect ##ing pave ##ment began . She said that once she started to turn and realized the error she attempted to brak ##e but the front wheels had left the pave ##ment and the em ##bank ##ment was so steep she could not recover . In ##vesti ##gating tro ##oper ##s agree with researcher that poor vision could have contributed to the scenario and required her to follow up with a vision rete ##sting at a state driver ' s license center . The Critical Pre ##cra ##sh Event for Vehicle # 1 was this vehicle traveling off the edge of the road on the left side . The Critical Reason for the Critical Event was code ##d other recognition error , attempted left turn too early . Associated factors included con ##versi ##ng with passenger and poor direction ##al control ( failure to control vehicle with skill ord ##inar ##ily expected ) . A vehicle view ob ##stru ##ction - related to other was included due [SEP]
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# false positive:\n", - "s = tokenizer.decode(dataset_en[\"test\"][78][\"input_ids\"][1:511])\n", - "word_attributions = cls_explainer(s, n_steps=20)\n", - "cls_explainer.visualize(\"./results/viz_78.html\");" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 264 }, - "id": "GIUENaqY-NRX", - "outputId": "1217b5dd-6bb7-40e6-8e7a-b38c2c3a07b5" - }, - "outputs": [ { - "data": { - "text/html": [ - "
Legend: Negative Neutral Positive
True LabelPredicted LabelAttribution LabelAttribution ScoreWord Importance
1LABEL_1 (0.65)LABEL_1-2.65 [CLS] This crash occurred on a straight level bit ##umi ##nou ##s two lane road ##way that was divided by a painted median . The posted speed limit of 72 km ##ph ( 45 mph ) which reduce ##s to 56 km ##ph ( 35 mph ) 100 meters after the crash site . There is a sign indicating the road ##way narrow ##s . The weather was cloud ##y and the road ##way was partially wet . Traffic flow was normal for that time of day . This crash occurred on a week ##day afternoon . Vehicle 1 , a 2002 Nissan Alt ##ima , was traveling behind Vehicle 2 , a 1991 Chevrolet Lu ##mina , when it drove into the safety zone into the on ##coming traffic lane in order to illegal ##ly pass Vehicle 2 . V ##1 returned to its original lane and impact ##ed with V ##2 ' s front left , with its right rear quarter panel . This sp ##un V ##1 in a clock ##wise position 180 degrees , with V ##1 coming to final rest after impact ##ing an em ##bank ##ment on the right side of the road ##way , with its rear left . Vehicle 1 was to ##wed due to damage . V ##1 came to final rest off the road ##way facing in a northeast ##erly direction . V ##2 came to final rest on the road ##way facing in a south ##erly direction . V ##1 was to ##wed due to damage . V ##2 was to ##wed due to its driver going to the hospital with her baby . Vehicle # 1 , the Nissan Alt ##ima , was driven by a belt ##ed 38 - year - old male who refused to be interviewed . He stated he did not want to be both ##ered \" with this sh - t \" . The Critical Pre ##cra ##sh Event code ##d to Vehicle 1 was : Other - this vehicle traveling entering the road ##way from the left side of the road ##way . The Critical Reason for the Critical Pre ##cra ##sh Event was code ##d as : driver related factor , aggressive driving behavior . Vehicle # 2 , the Chevrolet , was driven by a belt ##ed 21 year - old female who was not injured . There was a belt ##ed 18 year - old male in the front right seat who was not injured . There was a 6 - month - old female child in a car seat in the second row . The child was taken to the hospital for a check out , accompanied by both other people in the vehicle . This driver stated to her relative that she had seen the driver of V ##1 making \" wild ge ##stu ##res \" and tail ##gating her . She stated she saw V ##1 coming around her on the left but could only brak ##e before impact . The Critical Pre ##cra ##sh Event code [SEP]
" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "yY5X79_lWNv6" + }, + "source": [ + "Next, we tokenize the extracted texts and define the labels, and store the dataset for later use:" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# false positive:\n", - "s = tokenizer.decode(dataset_en[\"test\"][915][\"input_ids\"][1:511])\n", - "word_attributions = cls_explainer(s, n_steps=20)\n", - "cls_explainer.visualize(\"./results/viz_915.html\");" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "iBJ99TPuWNv5" - }, - "source": [ - "\n", - "\n", - "## 6. Using Extractive Question Answering to Process Longer Texts \n", - "\n", - "In this section we use extractive question answering to extract parts of the accident description which indicate the presence of bodily injury. The aim is to reduce the length of the input texts by extracting only the relevant parts.\n", - "\n", - "The easiest implementation of extractive question answering is provided by the `pipeline` abstraction.\n", - "\n", - "We use [`deutsche-telekom/bert-multi-english-german-squad2`](https://huggingface.co/deutsche-telekom/bert-multi-english-german-squad2),\n", - "a multilingual English German question answering model built on `bert-base-multilingual-cased`. By specifying `device=0` we use GPU support." - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000, - "referenced_widgets": [ - "8dcc9a55f9fc42ea8974b88873a296e6", - "5c1950f44eff441cafd91c9ad714f2c6", - "6697edad9b7542d48a268e439b0d8630", - "9d6263240e6644629bc1a0963e284646", - "213ef0e0126f447695c9306d1516cc32", - "a129525fcef341e7a5375712533c3125", - "fb54065cd71e498193fc18d543305c6a", - "1d6de006570a47148eb237779f954bec", - "e87244fea222418dbb5e217cbbf63eb5", - "9988c1689e5d44e2bdea2dcf9c56bf43", - "3f9e9b94aac24830a4f05856d6f4bc82", - "7af9fd0210104949bb2f68d412ba6bfc", - "f514050af9944f7e899c8264eb4832a6", - "ee456cb04466422e98a475b05f96cb8b", - "939f322f97254a9faf1e41939acf2288", - "99bd2cb4ea1f4927b4a99f90d7969b11", - "c05529b9626d403c814e5970da3a516b", - "cf651577fb50402588cb266cf12c564b", - "bd4d8217e0fd45b0bfedc63eb1b56f2d", - "f52a39f6a097468bb341a26292167487", - "efce905a70f941f5aba349834588da17", - "b0ea248a01e1421ea2bd3b0b35cc68a8", - "2c4c7d9f794741048623a48885c3e18a", - "ff51f3fb74ed4baf9bbe448d998fec9e", - "2215e32ff5ed46caa0ed42dc1dfb8db9", - "ce940e0317304277bcae61555e9d496b", - "6d8e942998f749a7b01f92e0c204ae55", - "14bdc22e4ba748ad95a951fc9205b1de", - "b8e19cf81f204990bbc0f3990c0c802b", - "fa50a023ae0447ab8f9658f436cccb1b", - "422ad05708994a168039e1c25c7c09ee", - "38d4f767793748e9bd5059a337ea4813", - "566b34e5b6ba4816bd35d8c65c940dba", - "dc592b0e71bf4aab9c18eb5ca7f8b266", - "6140cd53a73f4ae0a17508ac6ecd06e7", - "22861483c31a488989581bee679c9049", - "097d191e3c5047508818d5f6505d8696", - "03dc3788d09c4cf8be10db525b0c78bc", - "6f997cf2a9414f6e96ac5810ca3b1fb6", - "176531f5851c43188a3ec3c8d9bb2937", - "5e7a9ed13e64478cb0a37f70209b3356", - "e9c4359fccca45f793b2334ae405b64c", - "7be4267997cb4cc98c9b1f29d9ed440d", - "c22f10d95d564c45bf440b037ea1b271", - "1453d8cefbfe45d29c996f99726dcf61", - "35ee23c71d2f4385bff3075d276b2f19", - "0e8b8b5b5cd04ecbae9e6b63959dbb2c", - "56a08c5383f14e348d0f0dc28369e512", - "d8c732ab359a4c35a8e2be42e9115b3b", - "9242478b18ae4e7b8fccbb5aa9dbfb7e", - "f13ad21315444169813fea97b61a2db9", - "be8a1ebc6f43449f8a4ff0a204ad00e1", - "b368438363fc4c64aa617bf374f646e9", - "6510f713011b40b88d8b2487aaaa7580", - "0032e49d483445b7a0008846b4ef72fd" - ] }, - "id": "axQK5AJlWNv6", - "outputId": "a19e39bf-c1d3-43f4-9675-b1a711f3fb4f" - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "https://huggingface.co/deutsche-telekom/bert-multi-english-german-squad2/resolve/main/config.json not found in cache or force_download set to True, downloading to /home/ubuntu/.cache/huggingface/transformers/tmpr8343lrt\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0411f1efb8754e06a7c2e016c99b039e", - "version_major": 2, - "version_minor": 0 + "cell_type": "code", + "execution_count": 74, + "metadata": { + "id": "V1wQI2RnWNv6", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 81, + "referenced_widgets": [ + "387894ba27fe4f7faf45f167413e9b5f", + "37fa4a773b554f47b112b51e4ebb938a", + "0670fcc46d654ee0ae20ff7f34f9ab9c", + "9b8c7ba357a64687a41f08c785e908a9", + "cca21899324c4fceb638c2ba5dd6579d", + "dbe87476d4ad4e729fb958d9c8d3fe1f", + "d284f7127d794451951680445b6cda8c", + "030843630f09481ba274bff6e7424c57", + "fc2ea502e43b4c479b9ec436ab73982b", + "a5cd9edbb68d41b48c891090ad7a1c19", + "e426b72d26fa4196a244b6882c025efc", + "f23f875a300a4a3ea7c266830c636f15", + "98a2a10004ea466890dfeb6bbbbbaa8e", + "ea431fa4e48f470e941f955ca54e7fe1", + "a07f93b94c4e4433b2e202ad6a040d9a", + "a6febba2e4214b95a6805794b6f36b12", + "bad729b30fa741ad98907efcd676cd8c", + "3bfb85c28b124170835e8eef3ab1efbc", + "bc6848a19db8420398466d8a3a29965d", + "b6cd9fcec9104022b7328f0c87588846", + "fd90470ad4ed44b09ca704bcd4de2c92", + "1ccec633c01b4c599d199bd1ee10bdf7" + ] + }, + "outputId": "367e2cd7-9d7f-4e16-b835-9188e9ececb1" }, - "text/plain": [ - "Downloading: 0%| | 0.00/817 [00:00" + ], + "text/html": [] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Extractive QA\n", + "accuracy score = 82.9%, log loss = 0.456, Brier loss = 0.265\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 0 0.81 0.94 0.87 816\n", + " 1 0.88 0.68 0.77 574\n", + "\n", + " accuracy 0.83 1390\n", + " macro avg 0.84 0.81 0.82 1390\n", + "weighted avg 0.84 0.83 0.82 1390\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "predictions = trainer.predict(ds_test)\n", + "_ = evaluate_classifier(predictions.label_ids, None, softmax(predictions.predictions, axis=1), [\"0\", \"1\"], \"Extractive QA\", \"cm_inj_qa\")" ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "storing https://huggingface.co/deutsche-telekom/bert-multi-english-german-squad2/resolve/main/special_tokens_map.json in cache at /home/ubuntu/.cache/huggingface/transformers/5438742f7fe793114a6cb6d1ac46a28b6d8b8b0aa8fd55a8ea8f8ddb70b463c7.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d\n", - "creating metadata file for /home/ubuntu/.cache/huggingface/transformers/5438742f7fe793114a6cb6d1ac46a28b6d8b8b0aa8fd55a8ea8f8ddb70b463c7.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d\n", - "loading file https://huggingface.co/deutsche-telekom/bert-multi-english-german-squad2/resolve/main/vocab.txt from cache at /home/ubuntu/.cache/huggingface/transformers/93301d199c143a7d7e9b71c94261dc6920fcb9f8c6a1067a9d17f1d77935b8e5.6c5b6600e968f4b5e08c86d8891ea99e51537fc2bf251435fb46922e8f7a7b29\n", - "loading file https://huggingface.co/deutsche-telekom/bert-multi-english-german-squad2/resolve/main/tokenizer.json from cache at None\n", - "loading file https://huggingface.co/deutsche-telekom/bert-multi-english-german-squad2/resolve/main/added_tokens.json from cache at None\n", - "loading file https://huggingface.co/deutsche-telekom/bert-multi-english-german-squad2/resolve/main/special_tokens_map.json from cache at /home/ubuntu/.cache/huggingface/transformers/5438742f7fe793114a6cb6d1ac46a28b6d8b8b0aa8fd55a8ea8f8ddb70b463c7.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d\n", - "loading file https://huggingface.co/deutsche-telekom/bert-multi-english-german-squad2/resolve/main/tokenizer_config.json from cache at /home/ubuntu/.cache/huggingface/transformers/bb76acf9011b1f4e14813c2680af980c4a359b2512e38cd5315f68629e78589a.c60f034cf5bf819518a0170960ddb62b4576fa3d01e9021876b801600cbb6f42\n", - "loading configuration file https://huggingface.co/deutsche-telekom/bert-multi-english-german-squad2/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/98815a531e6b412916e105532c140400a6e221e5d249dbc2652fc3bbbc02bb03.063bf511b0ec1ed4ac464b049fce380c9d6f729f38e5413cc3fa45026ec0a0de\n", - "Model config BertConfig {\n", - " \"_name_or_path\": \"deutsche-telekom/bert-multi-english-german-squad2\",\n", - " \"architectures\": [\n", - " \"BertForQuestionAnswering\"\n", - " ],\n", - " \"attention_probs_dropout_prob\": 0.1,\n", - " \"classifier_dropout\": null,\n", - " \"directionality\": \"bidi\",\n", - " \"gradient_checkpointing\": false,\n", - " \"hidden_act\": \"gelu\",\n", - " \"hidden_dropout_prob\": 0.1,\n", - " \"hidden_size\": 768,\n", - " \"initializer_range\": 0.02,\n", - " \"intermediate_size\": 3072,\n", - " \"layer_norm_eps\": 1e-12,\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"bert\",\n", - " \"num_attention_heads\": 12,\n", - " \"num_hidden_layers\": 12,\n", - " \"pad_token_id\": 0,\n", - " \"pooler_fc_size\": 768,\n", - " \"pooler_num_attention_heads\": 12,\n", - " \"pooler_num_fc_layers\": 3,\n", - " \"pooler_size_per_head\": 128,\n", - " \"pooler_type\": \"first_token_transform\",\n", - " \"position_embedding_type\": \"absolute\",\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"type_vocab_size\": 2,\n", - " \"use_cache\": true,\n", - " \"vocab_size\": 119547\n", - "}\n", - "\n", - "loading configuration file https://huggingface.co/deutsche-telekom/bert-multi-english-german-squad2/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/98815a531e6b412916e105532c140400a6e221e5d249dbc2652fc3bbbc02bb03.063bf511b0ec1ed4ac464b049fce380c9d6f729f38e5413cc3fa45026ec0a0de\n", - "Model config BertConfig {\n", - " \"_name_or_path\": \"deutsche-telekom/bert-multi-english-german-squad2\",\n", - " \"architectures\": [\n", - " \"BertForQuestionAnswering\"\n", - " ],\n", - " \"attention_probs_dropout_prob\": 0.1,\n", - " \"classifier_dropout\": null,\n", - " \"directionality\": \"bidi\",\n", - " \"gradient_checkpointing\": false,\n", - " \"hidden_act\": \"gelu\",\n", - " \"hidden_dropout_prob\": 0.1,\n", - " \"hidden_size\": 768,\n", - " \"initializer_range\": 0.02,\n", - " \"intermediate_size\": 3072,\n", - " \"layer_norm_eps\": 1e-12,\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"bert\",\n", - " \"num_attention_heads\": 12,\n", - " \"num_hidden_layers\": 12,\n", - " \"pad_token_id\": 0,\n", - " \"pooler_fc_size\": 768,\n", - " \"pooler_num_attention_heads\": 12,\n", - " \"pooler_num_fc_layers\": 3,\n", - " \"pooler_size_per_head\": 128,\n", - " \"pooler_type\": \"first_token_transform\",\n", - " \"position_embedding_type\": \"absolute\",\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"type_vocab_size\": 2,\n", - " \"use_cache\": true,\n", - " \"vocab_size\": 119547\n", - "}\n", - "\n" - ] - } - ], - "source": [ - "model_name_qa =\"deutsche-telekom/bert-multi-english-german-squad2\"\n", - "pl = pipeline(\"question-answering\", model=model_name_qa, tokenizer=model_name_qa, device=0)\n", - "questions = [\"Was someone injured?\", \"Was someone transported?\"]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "tRdXtynCWNv6" - }, - "source": [ - "We visit each accident report in turn (the context), and ask the model the two questions “Was someone injured?”\n", - "and “Was someone transported?”.\n", - "Since the accident reports might provide information on multiple persons,\n", - "we allow a maximum of four candidate answers for each of the questions,\n", - "which we concatenate into a single (much shorter) new text.\n", - "\n", - "To achieve this, we write a short function which applies a question answering pipeline to an input text `x`.\n", - "The argument `questions` is a list of questions." - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "id": "Oe8OTkSFWNv6" - }, - "outputs": [], - "source": [ - "def get_answers(x, qa_pipeline, questions):\n", - " x[\"INJ\"] = \"\"\n", - " for question in questions:\n", - " res = qa_pipeline(context=x[\"SUMMARY_EN\"], question=question, top_k=4, handle_impossible_answer=True)\n", - " if isinstance(res, dict):\n", - " res = [res]\n", - " if len(res[0]) > 0:\n", - " x[\"INJ\"] = '. '.join([x[\"INJ\"]] + [item[\"answer\"] for item in res])\n", - " return x" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "nUfUYHs7WNv6" - }, - "source": [ - "We apply the question answering function to the entire test set.\n", - "\n", - "On an AWS EC2 p2.xlarge instance, the run time is about 6 minutes. If you want to try the concept on only the first 250 samples, you can use `ds_test = dataset[\"test\"].select(range(250).map(...`" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 257, - "referenced_widgets": [ - "b2281afdf62f406997af17f69bf5269e", - "d769a85b6ec2484eb38b5114e14617bd", - "d93d50ddb0274d5cb596cd7b2438ead6", - "d67ad6ce37b14b33ace6d52b21fdbe0b", - "93721862d2064d71be348c6ef8540d93", - "93bf6de69a364cb18bb2dbce7ba1969a", - "cda39e8bae2e4f04a9751f6401ddf4c0", - "cd98ea58c50a4d729a7b3caddcf8d9a2", - "659c9820a4b844b2bed858bff924477e", - "10cebe59faf04c33b932ebc02f84341a", - "b9d9c7d3e383478f91402e8f6ebae8d1" - ] }, - "id": "RnHgr4KjWNv6", - "outputId": "9df4eba2-ef5d-497f-9ac0-373e4c6a599c" - }, - "outputs": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c16928f2c4344705a9dcdd9c279d4127", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "metadata": { + "id": "oaNC-X-QWNv7" }, - "text/plain": [ - " 0%| | 0/1390 [00:00\n", + "\n", + "## 7. Conclusion\n", + "\n", + "Congratulations!\n", + "\n", + "In this notebook, you have learned how to apply transformer-based models to classification tasks that often arise in actuarial applications.\n", + "\n", + "You have seen how to address challenges that often arise in practical applications:\n", + "\n", + "a.\tThe text corpus may be highly domain-specific, i.e., it may use specialized terminology.\n", + " – In [Section 4.1](#domain_finetuning) we have applied domain-specific fine-tuning to improve model performance\n", + " in a specific domain.\n", + "\n", + "b.\tMultiple languages might be present in parallel.\n", + " – In [Section 3.5](#multi_lingual_training) we have used a multi-lingual transformer model to encode multi-lingual texts\n", + " and to use this output for a classification task. Performance was good even when one language is underrepresented. \n", + "\n", + "c.\tText sequences might be short and ambiguous.\n", + " Or they might be so long that it is hard to identify the parts relevant to the task.\n", + " – In this tutorial we have demonstrated two approaches to deal with long texts:\n", + " \n", + " * In [Section 5.2](#investigate) we have split long input texts into slightly overlapping chunks and applied\n", + " the classifier to each chunk separately.\n", + " \n", + " * In [Section 6](#qna) we have used extractive question answering to extract parts of the original texts which are relevant\n", + " to the task.\n", + "\n", + "d.\tThe amount of training data may be relatively small.\n", + " In particular, gathering large amounts of labelled data (i.e., text sequences augmented with a target label)\n", + " might be expensive.\n", + " – Throughout this workbook, we have used transformer models which have been trained on a large corpus of text data.\n", + " We have applied these models to the specific task with no or little specific training,\n", + " thus transferring the language understanding skills to the task at hand.\n", + "\n", + "e.\tIt is important to understand why a model arrives at a particular prediction.\n", + " – In [Section 5.3](#interpret) we have shown how to visualize which parts of the input text\n", + " cause the classifier to arrive at a particular prediction.\n", + "\n", + "The notebook Part II deals with another dataset that has only short text descriptions.\n", + "It demonstrates possible approaches in case no or few labels are available." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ds_test = ds_test.map(tokenize, batched=True, fn_kwargs={\"column\": \"INJ\"})\n", - "ds_test = ds_test.rename_column(\"INJSEVB\", \"labels\")\n", - "ds_test.save_to_disk(\"./datasets/ds_test\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "lrKxMMqYWNv7" - }, - "source": [ - "We load the transformer model that was trained on the classification task..." - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "nmqqYs_OWNv7", - "outputId": "5b68a0ca-288a-4274-e6aa-4a9910808438" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "loading configuration file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/cf37a9dc282a679f121734d06f003625d14cfdaf55c14358c4c0b8e7e2b89ac9.7a727bd85e40715bec919a39cdd6f0aba27a8cd488f2d4e0f512448dcd02bf0f\n", - "Model config DistilBertConfig {\n", - " \"_name_or_path\": \"distilbert-base-multilingual-cased\",\n", - " \"activation\": \"gelu\",\n", - " \"architectures\": [\n", - " \"DistilBertForMaskedLM\"\n", - " ],\n", - " \"attention_dropout\": 0.1,\n", - " \"dim\": 768,\n", - " \"dropout\": 0.1,\n", - " \"hidden_dim\": 3072,\n", - " \"initializer_range\": 0.02,\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"distilbert\",\n", - " \"n_heads\": 12,\n", - " \"n_layers\": 6,\n", - " \"output_past\": true,\n", - " \"pad_token_id\": 0,\n", - " \"qa_dropout\": 0.1,\n", - " \"seq_classif_dropout\": 0.2,\n", - " \"sinusoidal_pos_embds\": false,\n", - " \"tie_weights_\": true,\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"vocab_size\": 119547\n", - "}\n", - "\n", - "loading file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt from cache at /home/ubuntu/.cache/huggingface/transformers/28e5b750bf4f39cc620367720e105de1501cf36ec4ca7029eba82c1d2cc47caf.6c5b6600e968f4b5e08c86d8891ea99e51537fc2bf251435fb46922e8f7a7b29\n", - "loading file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json from cache at /home/ubuntu/.cache/huggingface/transformers/5cbdf121f196be5f1016cb102b197b0c34009e1e658f513515f2eebef9f38093.b33e51591f94f17c238ee9b1fac75b96ff2678cbaed6e108feadb3449d18dc24\n", - "loading file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/added_tokens.json from cache at None\n", - "loading file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/special_tokens_map.json from cache at None\n", - "loading file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer_config.json from cache at /home/ubuntu/.cache/huggingface/transformers/47087d99feeb3bc6184d7576ff089c52f7fbe3219fe48c6c4fa681e617753256.ec5c189f89475aac7d8cbd243960a0655cfadc3d0474da8ff2ed0bf1699c2a5f\n", - "loading configuration file https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/cf37a9dc282a679f121734d06f003625d14cfdaf55c14358c4c0b8e7e2b89ac9.7a727bd85e40715bec919a39cdd6f0aba27a8cd488f2d4e0f512448dcd02bf0f\n", - "Model config DistilBertConfig {\n", - " \"_name_or_path\": \"distilbert-base-multilingual-cased\",\n", - " \"activation\": \"gelu\",\n", - " \"architectures\": [\n", - " \"DistilBertForMaskedLM\"\n", - " ],\n", - " \"attention_dropout\": 0.1,\n", - " \"dim\": 768,\n", - " \"dropout\": 0.1,\n", - " \"hidden_dim\": 3072,\n", - " \"initializer_range\": 0.02,\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"distilbert\",\n", - " \"n_heads\": 12,\n", - " \"n_layers\": 6,\n", - " \"output_past\": true,\n", - " \"pad_token_id\": 0,\n", - " \"qa_dropout\": 0.1,\n", - " \"seq_classif_dropout\": 0.2,\n", - " \"sinusoidal_pos_embds\": false,\n", - " \"tie_weights_\": true,\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"vocab_size\": 119547\n", - "}\n", - "\n", - "loading configuration file models/distilbert-base-multilingual-cased_inj/config.json\n", - "Model config DistilBertConfig {\n", - " \"_name_or_path\": \"models/distilbert-base-multilingual-cased_inj\",\n", - " \"activation\": \"gelu\",\n", - " \"architectures\": [\n", - " \"DistilBertForSequenceClassification\"\n", - " ],\n", - " \"attention_dropout\": 0.1,\n", - " \"dim\": 768,\n", - " \"dropout\": 0.1,\n", - " \"hidden_dim\": 3072,\n", - " \"initializer_range\": 0.02,\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"distilbert\",\n", - " \"n_heads\": 12,\n", - " \"n_layers\": 6,\n", - " \"output_past\": true,\n", - " \"pad_token_id\": 0,\n", - " \"problem_type\": \"single_label_classification\",\n", - " \"qa_dropout\": 0.1,\n", - " \"seq_classif_dropout\": 0.2,\n", - " \"sinusoidal_pos_embds\": false,\n", - " \"tie_weights_\": true,\n", - " \"torch_dtype\": \"float32\",\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"vocab_size\": 119547\n", - "}\n", - "\n", - "loading weights file models/distilbert-base-multilingual-cased_inj/pytorch_model.bin\n", - "All model checkpoint weights were used when initializing DistilBertForSequenceClassification.\n", - "\n", - "All the weights of DistilBertForSequenceClassification were initialized from the model checkpoint at models/distilbert-base-multilingual-cased_inj.\n", - "If your task is similar to the task the model of the checkpoint was trained on, you can already use DistilBertForSequenceClassification for predictions without further training.\n", - "No `TrainingArguments` passed, using `output_dir=tmp_trainer`.\n", - "PyTorch: setting up devices\n", - "The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).\n" - ] } - ], - "source": [ - "#ds_test = load_from_disk(\"./datasets/ds_test\")\n", - "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", - "tokenizer = AutoTokenizer.from_pretrained(model_name)\n", - "model = AutoModelForSequenceClassification.from_pretrained(\"models/\" + model_name + \"_inj\").to(device)\n", - "trainer = Trainer(model)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "TgJjAASnWNv7" - }, - "source": [ - "...apply it to the tokenized text extracts and evaluate the predictions." - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": { + ], + "metadata": { + "accelerator": "GPU", "colab": { - "base_uri": "https://localhost:8080/", - "height": 860 - }, - "id": "c34H0zoOWNv7", - "outputId": "1dca8821-ecf6-4852-e38f-734f94231dfc" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "The following columns in the test set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: SUMMARY_MX, words per case summary, WEATHER7, WEATHER2, WEATHER4, NUMTOTV, SUMMARY_GE, WEATHER8, INJSEVA, SCASEID, SUMMARY_EN, index, WEATHER3, level_0, INJ, WEATHER5, WEATHER1, WEATHER6. If SUMMARY_MX, words per case summary, WEATHER7, WEATHER2, WEATHER4, NUMTOTV, SUMMARY_GE, WEATHER8, INJSEVA, SCASEID, SUMMARY_EN, index, WEATHER3, level_0, INJ, WEATHER5, WEATHER1, WEATHER6 are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n", - "***** Running Prediction *****\n", - " Num examples = 1390\n", - " Batch size = 8\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " [174/174 00:02]\n", - "
\n", - " " + "provenance": [], + "machine_shape": "hm", + "gpuType": "T4", + "collapsed_sections": [ + "FGxBx9MVWNvS", + "XKHtvwGHWNvp", + "fYKoqK3eWNvr", + "5FFjmHzBWNvs", + "C_CEp4ShWNvs", + "I1pU2x-JWNvs", + "kSuSXjMDWNvv" ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "toc_visible": true }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Extractive QA\n", - "accuracy score = 85.5%, log loss = 0.408, Brier loss = 0.243\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " 0 0.85 0.91 0.88 816\n", - " 1 0.85 0.78 0.82 574\n", - "\n", - " accuracy 0.85 1390\n", - " macro avg 0.85 0.84 0.85 1390\n", - "weighted avg 0.85 0.85 0.85 1390\n", - "\n" - ] + "kernelspec": { + "display_name": "Python 3", + "name": "python3" }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_inj_qa", - "format": "svg" - } - }, - "data": [ - { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " 0 ", - " 1 " - ], - "xaxis": "x", - "y": [ - " 0 ", - " 1 " - ], - "yaxis": "y", - "z": [ - [ - 740, - 76 - ], - [ - 126, - 448 - ] - ] - } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 20 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Extractive QA" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } - } - } + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 }, - "text/html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "predictions = trainer.predict(ds_test)\n", - "_ = evaluate_classifier(predictions.label_ids, None, softmax(predictions.predictions, axis=1), [\"0\", \"1\"], \"Extractive QA\", \"cm_inj_qa\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "oaNC-X-QWNv7" - }, - "source": [ - "The performance is comparable with the logistic regression classifier on mean-pooled encodings of the original texts.\n", - "On the other hand, from there is a larger number of false negatives than obtained by task-specific training\n", - "and evaluation on the full-length sequence.\n", - "This indicates that in some cases the extractive question answering has missed out or suppressed certain relevant parts.\n", - "For instance, if the original text reads “The driver was injured.”,\n", - "the extract “The driver” is a correct answer to the question “Was someone injured?”;\n", - "however, it is too short to detect the presence of an injury from the extract." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "J9SQ_YHjWNv7" - }, - "source": [ - "\n", - "\n", - "## 7. Conclusion \n", - "\n", - "Congratulations!\n", - "\n", - "In this notebook, you have learned how to apply transformer-based models to classification tasks that often arise in actuarial applications.\n", - "\n", - "You have seen how to address challenges that often arise in practical applications:\n", - "\n", - "a.\tThe text corpus may be highly domain-specific, i.e., it may use specialized terminology.\n", - " – In [Section 4.1](#domain_finetuning) we have applied domain-specific fine-tuning to improve model performance\n", - " in a specific domain.\n", - "\n", - "b.\tMultiple languages might be present in parallel.\n", - " – In [Section 3.5](#multi_lingual_training) we have used a multi-lingual transformer model to encode multi-lingual texts \n", - " and to use this output for a classification task. Performance was good even when one language is underrepresented. \n", - "\n", - "c.\tText sequences might be short and ambiguous.\n", - " Or they might be so long that it is hard to identify the parts relevant to the task.\n", - " – In this tutorial we have demonstrated two approaches to deal with long texts:\n", - " \n", - " * In [Section 5.2](#investigate) we have split long input texts into slightly overlapping chunks and applied\n", - " the classifier to each chunk separately.\n", - " \n", - " * In [Section 6](#qna) we have used extractive question answering to extract parts of the original texts which are relevant\n", - " to the task. \n", - "\n", - "d.\tThe amount of training data may be relatively small.\n", - " In particular, gathering large amounts of labelled data (i.e., text sequences augmented with a target label)\n", - " might be expensive.\n", - " – Throughout this workbook, we have used transformer models which have been trained on a large corpus of text data.\n", - " We have applied these models to the specific task with no or little specific training,\n", - " thus transferring the language understanding skills to the task at hand.\n", - "\n", - "e.\tIt is important to understand why a model arrives at a particular prediction.\n", - " – In [Section 5.3](#interpret) we have shown how to visualize which parts of the input text\n", - " cause the classifier to arrive at a particular prediction.\n", - "\n", - "The notebook Part II deals with another dataset that has only short text descriptions.\n", - "It demonstrates possible approaches in case no or few labels are available. " - ] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "collapsed_sections": [], - "name": "Actuarial_Applications_of_NLP_Part_1.ipynb", - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.10" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": { - "002e841ab923418381596abd9cec2fa8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "00690283c799419ba7101ba48a6554d2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "01285c00184b47b6b6f7da75d8e1e5d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_7682a106a74843278900781857f02b33", - "IPY_MODEL_f11cc0c6ba9d4d5887a79d3a14394ce4", - "IPY_MODEL_781eab8aa13f4209ab892425843f1b83" - ], - "layout": "IPY_MODEL_884037052e824db9a1e8317443e8ed14" - } - }, - "0148eba515e84e2388409d86e5f588a8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "0296991cb1a442678b663321b7c710f5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "031f0fbf56af4d50aa05559b5c759864": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "03c603ab46a54e7c9753220cbb96f2af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_a74d6351cc4e4ec2a2c3ee5e0fc0ec44", - "style": "IPY_MODEL_8c135f1ec9744668be87ef63a409f2db", - "value": " 87/87 [00:11<00:00, 7.85ba/s]" - } - }, - "03d63347fb92463289add09226a20019": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "03d7c08cd37b4bd58a767e2b096c96ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_bca2a606e0e64f6e9e76cb0334c209bf", - "style": "IPY_MODEL_6262fcf796fb4a6e80bfb68fbb528d36", - "value": " 517M/517M [00:11<00:00, 48.2MB/s]" - } - }, - "0411f1efb8754e06a7c2e016c99b039e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_c4b444f255b04bda83242e0e4d53187f", - "IPY_MODEL_a4423093e08a48938a05a2a259c8793f", - "IPY_MODEL_a44651735e114874ad306c36ab459dc1" - ], - "layout": "IPY_MODEL_c8145e90ce694ba4b5989657f44d3b9d" - } - }, - "05103e136d4e4eac98e5fa19d7832d8f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "05342badcb98463a9e8bd5b92aa501dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "055aba9250d74ed987addeffdd525c96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_7a6ef8992dea4c21950bcf777ad08e18", - "style": "IPY_MODEL_0e6663dff85444f7b90664f3476fa9fc", - "value": "100%" - } - }, - "0651c71dc99e4faab331bdec4413ba7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_f6998bc96c5a49ea8decd03a95fb51f5", - "max": 348, - "style": "IPY_MODEL_5d16ab0d2b8e47289501b08d279a313d", - "value": 348 - } - }, - "06561ab395c642038aa26010867a695f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_1557e0ee175d4501893a6b52b3d67554", - "IPY_MODEL_e716a92d4ce84d75a4e9886320a17c13", - "IPY_MODEL_b1379d827e5a4740b8e55741e9c9be0f" - ], - "layout": "IPY_MODEL_3922b334597b4109b8efe16af17e0034" - } - }, - "06579421526d4f7181cff136661628f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "06db28f7a8814a5aa2395cefef0cb4e2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "07f526a4584943198cb19186ea3e274d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "080211f2e8034a6d8f966b988ec457cd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "08259ba02dd444f090aeb052cb3f1573": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_00690283c799419ba7101ba48a6554d2", - "max": 6, - "style": "IPY_MODEL_df7ed4a356bb491c8e4100437d95d67d", - "value": 6 - } - }, - "086a3d43e4904d8fb264b702390e7496": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "092fa72c59c145f6a799066facb7edcc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "0988f3d87a2840c5a90d4aefc3cb9dc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "0ab666685d8a4aaf8dd63bb69750c749": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "0b50269deb734c20905ea10701badb5e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "0bca65497b764e1386e7a69f7de3bf11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "0c2894596565486f82bb48008bd3b3b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_781dbfe0ace544798639a10ec4580222", - "max": 5559, - "style": "IPY_MODEL_a595dcca2b634bc48fad6beae2643543", - "value": 5559 - } - }, - "0c37e2e8c9464605917242f0319decdc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "0c74fb15f55e44a185fb83650243efe3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_e1d6cedb943e46e0ba8a21b910a3598b", - "IPY_MODEL_a1db92b35be943499b08156a35e059fb", - "IPY_MODEL_54faca62ff874440af3d0bc1ab2a9929" - ], - "layout": "IPY_MODEL_660902a00b7f40f5b6ef088fb116b819" - } - }, - "0e3b197e43674ba0aabd8b92a4cdaea5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "0e6663dff85444f7b90664f3476fa9fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "0ec57e8af874486a95bcbdb823dfd851": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_36cda942c08a43438d5951cfd59f2180", - "style": "IPY_MODEL_ab99b45526114e3aaffa9549b416a365", - "value": " 348/348 [00:46<00:00, 7.48ba/s]" - } - }, - "0fc13388a3db46259b6e2c9d034067ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_b9c08d510ce44ea384dd3ffe4fc70211", - "IPY_MODEL_d96aeb217a644134a89819efb2beeb3a", - "IPY_MODEL_6a1f0181396d429bb1766a9003d10a3d" - ], - "layout": "IPY_MODEL_c01f8d5218fc495795f1dbf915228298" - } - }, - "1020efb8045748a982ef4e501aa75bb8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_4cce812e7ba640bb8eb350b0a6a3618d", - "style": "IPY_MODEL_bfa3df8bee9d43939055204801eef8b5", - "value": "100%" - } - }, - "1103ab4250b24a38bccfa02cab3e8636": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_57447b8fcfa54e57ac16d8475d634845", - "max": 5559, - "style": "IPY_MODEL_67b3f25a471a47b3838afe87b2175cc2", - "value": 5559 - } - }, - "1114e3a516e24b2aa303dae26f9b1bd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_3b3d438a87144a3da48185fe3f3f406b", - "style": "IPY_MODEL_649d30ac1ca04a799d1bdfef4f8a37ba", - "value": "100%" - } - }, - "114e186aad8845b289ee2e2f7fdc410d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "117944fbfade4ddda79c3f63e28e8286": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "11c654295ff84876ae63ec3b2ccd5724": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "1274e9af953c425ca19292a87bf94b6a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "1315f3e0ac084d3a8c7ccf4ef7e4c2aa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "1331643494cd4420be8f9eca0255f727": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "1557e0ee175d4501893a6b52b3d67554": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_989790596fdf43209198ec94434bb7aa", - "style": "IPY_MODEL_f5d136e906c34f628b0d48e0cf4e8a85", - "value": "100%" - } - }, - "160183a43c694d44b63cef13c7d222b6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "1621a17be2b3429999541088706b266e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "170ff439d3574773b8b7118881c44657": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "187ddca2e74c4d68820cb62f433e2322": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "191693164d78457389a6e913edab5de3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_e1f7a7f11b584fa29544781b6c192a88", - "IPY_MODEL_65727f1586174b85a2b2188dabb2bc12", - "IPY_MODEL_385624c619b642548401e24a083df884" - ], - "layout": "IPY_MODEL_f41c8cf2b23045c3b417f8310395222d" - } - }, - "1956c3d386b0412081a9b1ffd7d21389": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_5cc5e172cca745a89f32556c9ab172a5", - "IPY_MODEL_0c2894596565486f82bb48008bd3b3b9", - "IPY_MODEL_43df9638fd2741018c1c1df507f64630" - ], - "layout": "IPY_MODEL_28a41e4acf444f85a5cb9c7d8df04e60" - } - }, - "19dd5e60e4b54dde89c9a39b9a11ec0b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_7c8ad1c424b440d59d93f1130f63817c", - "style": "IPY_MODEL_6188df176ee941f4963c032c85b41ad6", - "value": " 29.0/29.0 [00:00<00:00, 1.14kB/s]" - } - }, - "1a628f027e824afaa5cc5f43ccf8a06a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "1b26acb6935a40fdbbffc78b8805528d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "1b535a85e8c04761a4279fd3f1c9d642": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "1c2f3079d581443eb41f5ff50579fa52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "1c945cd4339e4272af70e5d32e7e89ae": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "1d5ed06265a9451b89ed10845e8f224d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "1e0c30113b0d4f259f8e1b7ccf349757": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "1e0cd6a51a0245b9ae22028ffe144026": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "1e0ee0e96b2b4f0fa8b545c82053b36e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "1f2a0ced79fc4b9aaad3f1ef2ca227f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "218683b0ee39497a893d78cde9afa0ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_82da0c4b520741c8b9e00bee90fe288b", - "max": 1390, - "style": "IPY_MODEL_cccfbcfce7e946ffaa69abbb1fe97a36", - "value": 1390 - } - }, - "21a3d53c2ebd42fbb45ffc584b05a245": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "22bdf245c6d6466fa88fa4c666bd517e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "2349c39c31bf4393b08a332fd0448424": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "236cbe2484344f56af7cc21f49ec4430": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "2494a4b3ea254edf85ea3adfc0f7ccf7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "24d42686153e49aebba0b4d700e18f33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_a1400c2b1cc447d498fff344fcd400a1", - "style": "IPY_MODEL_3d2fb28e50a149719b3ba12d78c0f467", - "value": "100%" - } - }, - "2514c5f98bed4607a9cd9437a1b27cff": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "254af2c6422b415a9867e6e1fefb8675": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "25bfef46052b440f8952f032f1d8afa0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_abb624f2f904436cad378d2a563f25cd", - "style": "IPY_MODEL_ed953a21812e485faf38d6897e5c0b5b", - "value": " 2/2 [00:00<00:00, 2.59ba/s]" - } - }, - "25e0cd284100462ea605842316026183": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "2670adc07c6b4f42a5810ba8ecd20fe2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "2696a2f56a494c349ec9639d73bfd3e9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "27ba00051803455ba86df9670ec177c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_b073c73a739f4c3e95a3d0d37d786dad", - "IPY_MODEL_904e3f60a8a24417b3a54efb249b685d", - "IPY_MODEL_385cecd5fde54f9eb48655b0f8d52f5c" - ], - "layout": "IPY_MODEL_2a2c13ad16f64ac48257b10e4e736fea" - } - }, - "27ef6eeaaccd4aa5896dd377dd6f76bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_b95f6d1a997c44419102d1514fb98d2d", - "IPY_MODEL_fe5e5202b92348198a15e7c7f0aa64b0", - "IPY_MODEL_bf4f6dbf5c724478ba1cc10f3b704b2b" - ], - "layout": "IPY_MODEL_4ba9060532a74e8eb5240cdbd0b2d107" - } - }, - "28a41e4acf444f85a5cb9c7d8df04e60": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "2962c27974804c368efd3df7336f4ca7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "2a0a590fc5294eb5b51048cfc6d3f3cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "2a293316552740d99764390b02fb179d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "2a2c13ad16f64ac48257b10e4e736fea": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "2a4cf8f973814d3bbb2ca2348693363e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "2adc23438ecd41d9a6eae74e8e9d4889": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_1d5ed06265a9451b89ed10845e8f224d", - "max": 87, - "style": "IPY_MODEL_f19f6f9cecdd43d49b65609114e69f13", - "value": 87 - } - }, - "2b328479261d40ff9e61c032fef10aa2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "2b6c42fe2ea944949a92fb104e2ca134": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "2b90ae2355a5407885fdedc4169cb506": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_50314b5881154bb19b23e20cb4883f19", - "style": "IPY_MODEL_06579421526d4f7181cff136661628f6", - "value": " 5559/5559 [00:09<00:00, 671.44ex/s]" - } - }, - "2bccf81f193e4153a1ac3f87751893ca": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "2c73defaa3574f5082f437cba46e82d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_d7ebca2da90f43668718ba8843baea6b", - "max": 5559, - "style": "IPY_MODEL_5d6b25459732460a8bf3105b47b3f991", - "value": 5559 - } - }, - "2c9cb39cfa39461e81a7bb992d2b9f81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "2ca2175a822b4a89acedd3fdb4bddfd7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "2d78788b8cd84962aa3c3f8fc433f574": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_7079b527b09741418fe0c7d6a6eced1f", - "style": "IPY_MODEL_f5b648cd76ca4057957391fb6768ba18", - "value": " 1390/1390 [00:02<00:00, 625.98ex/s]" - } - }, - "2dff3414bf404bc4aea517c2a2405149": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_3f1ba9ea11564ad88f1eac73e773e19a", - "style": "IPY_MODEL_34349ef8564b444fb13897e4c5dae323", - "value": "Downloading: 100%" - } - }, - "2f0730308735437c9c256d232af64781": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_b41ffb86f218401a9a57dfb735ee9d20", - "style": "IPY_MODEL_a96a2ae1b99740c0a28671b2341764b7", - "value": " 87/87 [00:12<00:00, 7.25ba/s]" - } - }, - "2f72dd2c82dc471c9fa47ab533963cee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "2f8c513520444fb0be5cc26174d94ab8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_94b48660a81748fa88e90907a1887701", - "style": "IPY_MODEL_ea2542ce46504eb2846b091d5541884c", - "value": "100%" - } - }, - "2fcd2001f783472182709885679c7560": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "30241c63b1274a5a802a9cce0ea502a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_58bf108b287a46939beecf498badff64", - "style": "IPY_MODEL_3cc92cefcca9468e8ff092907f479a69", - "value": " 6/6 [00:02<00:00, 2.31ba/s]" - } - }, - "3105381953e4426dbb7f66c987a066c2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "31177b93c29d442f9aa3ae09df40a972": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "31c0c8c1f91b45e988d24593d3c414d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_f9b15c404b7e4408a357c890dedf03ff", - "style": "IPY_MODEL_91d3e742430343c0b5e6bc56b738864c", - "value": " 5559/5559 [00:08<00:00, 700.98ex/s]" - } - }, - "31f53ae765664719bd921e7d187b5c2f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_4e32b0d64a854ce387c87bd0d76a4dc7", - "IPY_MODEL_fe8432c77f9b49a7b8e6c0d7937556e4", - "IPY_MODEL_0ec57e8af874486a95bcbdb823dfd851" - ], - "layout": "IPY_MODEL_0148eba515e84e2388409d86e5f588a8" - } - }, - "320184abbcdf4efd98d3037b32fc9c6d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "320c12d2684e4b2b8b61f1d799a478ba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_6eb292e4f6c147ca9e140dcab4125623", - "style": "IPY_MODEL_81e890349f26437b91e4463556537d64", - "value": " 348/348 [00:49<00:00, 6.96ba/s]" - } - }, - "3225c4be3fcb4b258c8c7dae6b02f534": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_e5a2e8bdc0cf48e89893a54caf7aafab", - "style": "IPY_MODEL_2670adc07c6b4f42a5810ba8ecd20fe2", - "value": "100%" - } - }, - "326ae8ff921d4a44bd19ac429b8db569": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "32bcb06cc25c4acda72925aee6d0db47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_87452986a52341bab8246e485ddb1228", - "max": 112, - "style": "IPY_MODEL_702d18fa940f4abeb9c2bfe1cbcc43b6", - "value": 112 - } - }, - "32de53bbe1ad45d08744699d01fc75bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "32f32acbfbfa401f884dda058dfc599c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "34349ef8564b444fb13897e4c5dae323": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "34e54ec471aa43568fe3098866d09185": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_a647739e83e247b4bb7468740a6fe7f6", - "IPY_MODEL_90939b3c68dd486eb49d3c4ebfdd6828", - "IPY_MODEL_cb0e3a7fbb7442389601d142ba74501b" - ], - "layout": "IPY_MODEL_ac6afd59726d400d8e022ba8c0fe53ed" - } - }, - "367f9396563741b3b2243f027eb039e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_c72401249d054acab1e7163131c27d48", - "IPY_MODEL_f005f6330a86446885cff4b7be7623d7", - "IPY_MODEL_ad1fda29efd54c6788aa1a8b548f6404" - ], - "layout": "IPY_MODEL_95a8b64edf8c4e15b94aee5d05860c16" - } - }, - "36cda942c08a43438d5951cfd59f2180": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "36fabf6cf0894cdb93fa97dc8e72a592": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "37688bb912434489a9b0954571142b8d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "37b1ba9b0990460b80459cd828a3056d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_d40c8782a91a4d33a7eca12e58831d30", - "IPY_MODEL_4683a02422114998a9f035699bb36198", - "IPY_MODEL_dce3303f19c74ce2b0aad9f3acdf1e1a" - ], - "layout": "IPY_MODEL_66aab5aabdd84da2a0d83a032ca0d5bc" - } - }, - "37ddb1f28257417b97dba06fdbea8bd8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_445da3cec248493fa59e9be4269c6096", - "style": "IPY_MODEL_c123b8e01e394da4a3072a965cc9ad96", - "value": "100%" - } - }, - "385624c619b642548401e24a083df884": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_795f291a45fd4fb398364a822284a2a5", - "style": "IPY_MODEL_32de53bbe1ad45d08744699d01fc75bb", - "value": " 972k/972k [00:00<00:00, 938kB/s]" - } - }, - "385cecd5fde54f9eb48655b0f8d52f5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_114e186aad8845b289ee2e2f7fdc410d", - "style": "IPY_MODEL_a7f364381dff4baaa8188d53d16b41d9", - "value": " 466/466 [00:00<00:00, 18.2kB/s]" - } - }, - "385f90fc5c3a4c23a48e0c8db9d34a7c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "386d998c830b4cbeae3ebff47fd369f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "3922b334597b4109b8efe16af17e0034": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "395627884a1b45f0af752777a2055ae1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "3956d66a970a4ee9a30f398f0b57fed6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "3a1c6f07607d4c5e811b79cdb2d631a5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "3a2ba01e272b42ba816f5b8b861dec9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_60fa1fba02c9411cb72242b8db61f5c4", - "IPY_MODEL_d248f2dcb5614d9f8fc9f00f7dc345ec", - "IPY_MODEL_f6acdb35b23243639f1dede27fd3eebf" - ], - "layout": "IPY_MODEL_bb5caa0726d24ce2884bedb453e4a6f3" - } - }, - "3a3b2f40e028449e9ed5e7496648bf98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_6c4c131b24a149ad89b1abb9d14cbd9e", - "max": 5559, - "style": "IPY_MODEL_2a293316552740d99764390b02fb179d", - "value": 5559 - } - }, - "3b3d438a87144a3da48185fe3f3f406b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "3b41509658ed4212abe2fa395e8c3921": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "3ca91580b2784348a20b28236f908a94": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_2fcd2001f783472182709885679c7560", - "max": 87, - "style": "IPY_MODEL_9ce313d66b7b474aa8bb638ba0eefac5", - "value": 87 - } - }, - "3cc92cefcca9468e8ff092907f479a69": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "3cfdb9d2f89b44458016e6e562c5a235": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "3d2fb28e50a149719b3ba12d78c0f467": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "3e636c720678435c980ade35823caced": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "3f1ba9ea11564ad88f1eac73e773e19a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "3ffa93f71dd345d68cb00b51c089a880": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "4031d15e172a4fd7b610552e6bde4f9b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_086a3d43e4904d8fb264b702390e7496", - "style": "IPY_MODEL_4122a90326e14b3a9087a92e57cbb6d9", - "value": " 1390/1390 [00:00<00:00, 3258.73ex/s]" - } - }, - "4058fb6758ff4420a0da1ffbbe63aa01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_ffa0acc7157048b18a90544cf814c32a", - "IPY_MODEL_7e03612cd3744ebe81557acf684339a0", - "IPY_MODEL_9743ff350d474179bff911b72633101d" - ], - "layout": "IPY_MODEL_1a628f027e824afaa5cc5f43ccf8a06a" - } - }, - "406a32ae9c234eea8a3150fd8f287163": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_f2e211f1e1f84a4c82cbee09cc95d477", - "style": "IPY_MODEL_2c9cb39cfa39461e81a7bb992d2b9f81", - "value": "100%" - } - }, - "4088953449d74aa9bc31396a9015d1ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_24d42686153e49aebba0b4d700e18f33", - "IPY_MODEL_3a3b2f40e028449e9ed5e7496648bf98", - "IPY_MODEL_2b90ae2355a5407885fdedc4169cb506" - ], - "layout": "IPY_MODEL_1c945cd4339e4272af70e5d32e7e89ae" - } - }, - "4122a90326e14b3a9087a92e57cbb6d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "413181e5ce3d45a5b8ef3a7e8f0cd287": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "4132d3fa15124b919ef49cb4bb716ecf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_e58034433d89426a859c55eb316a92b8", - "max": 348, - "style": "IPY_MODEL_ae236ab9cc40402697a9fca685ac811a", - "value": 348 - } - }, - "4134799bb39445969cecc66809d95b55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_8f08f2847c4d4edc8f2d5fadfd0e59f3", - "style": "IPY_MODEL_dda190ec480842858552f96133540e5f", - "value": "Downloading: 100%" - } - }, - "43a50f527ce248fc84b0977c18e7688f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "43df9638fd2741018c1c1df507f64630": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_897e672979bc4914a432e0d476a324ba", - "style": "IPY_MODEL_990ed0260dea470f81e2fcafa3e28fb1", - "value": " 5559/5559 [00:01<00:00, 3536.89ex/s]" - } - }, - "445da3cec248493fa59e9be4269c6096": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "4479bf779ba3468e8f37067c50baed81": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "4551ca0bf1a947e79d71666d1247c2d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "46448ea2433848c0b023b8b683b65f9b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_834ccccdfb55469ea3594196a07a1abb", - "style": "IPY_MODEL_b16feb58266c4ff0b303c0df791e84d3", - "value": "100%" - } - }, - "4683a02422114998a9f035699bb36198": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_a5e03e9c5dde41f1834711182a5b059b", - "max": 348, - "style": "IPY_MODEL_a9cc5a9d425e4b5f9ac587935cf52b2b", - "value": 348 - } - }, - "4824cdd7e01e46e7a16c85f413e792d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "4852df9d08cd4a3391e2c05ab4301a98": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "488e18a4d85b4d3f94ac192dc2780dba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "491f5d951554473cae0beec7e74c249d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "494b723eabbf4fc4aace08493ed50a64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "4a8b34003f294cd08c4a451162266d75": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "4ac97176706247d69512c913cba8faa4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_58fce118dd9443808210a1b504b45cc9", - "style": "IPY_MODEL_df2c57a8ed6546a88b1ad005a7412ee8", - "value": " 1390/1390 [00:02<00:00, 643.53ex/s]" - } - }, - "4b45465d14254e4db5152cf56173a440": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "4ba9060532a74e8eb5240cdbd0b2d107": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "4be01494d2b44251a16b5b2e4f7363c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "4c69ba1c8b85408ca6dd03b4b028e5b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "4c73d3985f594074bd4a806bac38c395": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "4cce812e7ba640bb8eb350b0a6a3618d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "4e0eca1f275c492f84dc93cbc9d94446": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_a1fc0e8c46bf4d64b56b34162866b4e7", - "max": 541808922, - "style": "IPY_MODEL_386d998c830b4cbeae3ebff47fd369f3", - "value": 541808922 - } - }, - "4e32b0d64a854ce387c87bd0d76a4dc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_8d39cb9850bb4ee39bbbbe170a66636f", - "style": "IPY_MODEL_8c133a86c967414eb6ceec8723c52dc8", - "value": "100%" - } - }, - "4f3290e9d0e7451b95cc4b45184fbed5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_b1ebc6b8c1374ebabdf82063913c0f24", - "style": "IPY_MODEL_488e18a4d85b4d3f94ac192dc2780dba", - "value": " 1390/1390 [00:02<00:00, 623.00ex/s]" - } - }, - "4f50f799e5224b82ab9ddc7421117070": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "50314b5881154bb19b23e20cb4883f19": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "509ccacceca641cd8b85d1780e430360": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "514e81e5fe744f4ab78cdab5d3a7794d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "54faca62ff874440af3d0bc1ab2a9929": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_2ca2175a822b4a89acedd3fdb4bddfd7", - "style": "IPY_MODEL_a213a9e760834d079dac321b59f09344", - "value": " 1390/1390 [00:02<00:00, 612.74ex/s]" - } - }, - "560dd4cd0e9942008997c0ebdf79603f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "57447b8fcfa54e57ac16d8475d634845": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "57ee02ac216e4ebdacfda74a2200b7f0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "57f2c2d7d49f4d2dbabd2d8b1930d082": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_46448ea2433848c0b023b8b683b65f9b", - "IPY_MODEL_6bb2a2a01a424be3ab79d7cd0508074e", - "IPY_MODEL_320c12d2684e4b2b8b61f1d799a478ba" - ], - "layout": "IPY_MODEL_3e636c720678435c980ade35823caced" - } - }, - "58bf108b287a46939beecf498badff64": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "58fce118dd9443808210a1b504b45cc9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "59b7ca7b01144e5eb76bc44845967be4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "5af5a48ac97c4376b105eabb22067904": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_eb53d84e66b34ff7aa0ca5d9b8c202ea", - "IPY_MODEL_3ca91580b2784348a20b28236f908a94", - "IPY_MODEL_03c603ab46a54e7c9753220cbb96f2af" - ], - "layout": "IPY_MODEL_ea7721682a9d44a884f00484e9b7f1a8" - } - }, - "5b516c3ec27d4a5a819fb8947b9798ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "5c2e14bd4116402584dc695b402ea176": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_9c73b8f38174421faf27c04fec9da712", - "style": "IPY_MODEL_fcc74af4ddc44ecc880ee79b3dedceab", - "value": " 348/348 [00:50<00:00, 6.90ba/s]" - } - }, - "5c6460d0c4bd425798ba1d033647e4b3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "5cc5e172cca745a89f32556c9ab172a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_c6b9f9ccac774d7abcee7760d0d73f2c", - "style": "IPY_MODEL_4be01494d2b44251a16b5b2e4f7363c7", - "value": "100%" - } - }, - "5d16ab0d2b8e47289501b08d279a313d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "5d6b25459732460a8bf3105b47b3f991": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "5f48c6bb8084499389fbac7c47510eeb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "5f4e44590ca64c65b98ce4c4ed6b5190": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_055aba9250d74ed987addeffdd525c96", - "IPY_MODEL_d945f7faea2e420592156ff3f6b48297", - "IPY_MODEL_f3199300d4f44c369d7b66435ec4ddb5" - ], - "layout": "IPY_MODEL_905424bce27a46cc896bfe48be700b87" - } - }, - "6027fe6ca76f44cba40fab280a4299c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_c0cc08c74360458c87f5cc7feeaf1049", - "style": "IPY_MODEL_4f50f799e5224b82ab9ddc7421117070", - "value": "100%" - } - }, - "60fa1fba02c9411cb72242b8db61f5c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_d7a218a6d68b422e9076267465749cda", - "style": "IPY_MODEL_22bdf245c6d6466fa88fa4c666bd517e", - "value": "100%" - } - }, - "6188df176ee941f4963c032c85b41ad6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "6262fcf796fb4a6e80bfb68fbb528d36": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "634767f5c7fd4ea7906e47d97593cdb5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "649d30ac1ca04a799d1bdfef4f8a37ba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "65727f1586174b85a2b2188dabb2bc12": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_f83b733575484bdca0dec3651308a667", - "max": 995526, - "style": "IPY_MODEL_f6850cec019d48a7b18f255197e655ed", - "value": 995526 - } - }, - "6602708ec17a4ca7af338b474355b8d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_ff3a702486a44640a7b2512d13323f32", - "IPY_MODEL_75569c1f088d4950ad84be835ac67c09", - "IPY_MODEL_4031d15e172a4fd7b610552e6bde4f9b" - ], - "layout": "IPY_MODEL_cf6f18eee4c54755bb7a82870b0c85ff" - } - }, - "660902a00b7f40f5b6ef088fb116b819": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "66aab5aabdd84da2a0d83a032ca0d5bc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "66b215a1c19a42af9421000dd7c823c5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "676531e6b5e942a0bafe59c509a9b995": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "6778b476b46c45c7b1f5b2bf99c430ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_37688bb912434489a9b0954571142b8d", - "max": 5559, - "style": "IPY_MODEL_2f72dd2c82dc471c9fa47ab533963cee", - "value": 5559 - } - }, - "67b3f25a471a47b3838afe87b2175cc2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "67cb390f024d492dacc0d7d4cd0675d2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "6808fceb14ba4531961e02462be7c04e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "683770347e5b40ef828bb6377fecf5c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_06db28f7a8814a5aa2395cefef0cb4e2", - "style": "IPY_MODEL_395627884a1b45f0af752777a2055ae1", - "value": "100%" - } - }, - "694d97bcf8c44933a68857a4f1b625fb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "69e94aedff9c4bd1af752b54c1d7244b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "6a1f0181396d429bb1766a9003d10a3d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_2494a4b3ea254edf85ea3adfc0f7ccf7", - "style": "IPY_MODEL_6adb24639c7147cea450a4585d87d47d", - "value": " 972k/972k [00:00<00:00, 891kB/s]" - } - }, - "6adb24639c7147cea450a4585d87d47d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "6b237b221412407f9ccc188ce1b4d90b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "6b6ef6c31335467dbde30b97d356ca35": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "6b7dcb5f7c994552a30029e31e1fd615": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "6b94a963e4ab4ec6a217ad3586b1a25d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "6bb2a2a01a424be3ab79d7cd0508074e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_a99d12b2e5ff45079277bbe2589576d5", - "max": 348, - "style": "IPY_MODEL_676531e6b5e942a0bafe59c509a9b995", - "value": 348 - } - }, - "6bdc8d1532464271b0a2451dfc1476a0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "6c4c131b24a149ad89b1abb9d14cbd9e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "6cf843de663547a2b090656f3cd3573d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "6d2e86c1efa34946b84e48b5b3aaec7a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "6e4514e8397841fc82ab54554e3a8932": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_6ef4ca7f54804f239b83bfd239d0f11f", - "IPY_MODEL_dbb0b99a500e40a29f86239a7070a88d", - "IPY_MODEL_2f0730308735437c9c256d232af64781" - ], - "layout": "IPY_MODEL_6bdc8d1532464271b0a2451dfc1476a0" - } - }, - "6ea6cb7ca0a24b57a480a254975f7f89": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "6eb292e4f6c147ca9e140dcab4125623": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "6ef4ca7f54804f239b83bfd239d0f11f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_e7986977599c471d8f2fa8abe0c5d618", - "style": "IPY_MODEL_ff2be633283f40df9175cde43adda0af", - "value": "100%" - } - }, - "6efd32169fea4c129884c95b243455d9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "6ffa53391c5f431192a7c1cfce09a585": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "702d18fa940f4abeb9c2bfe1cbcc43b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "7079b527b09741418fe0c7d6a6eced1f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "70fb65fde9044c5faef948f74dc00163": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "721f9838df4f43c7b5942fc7faf8e002": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "74554082b33c4069b883587c1c0d6deb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "7459e7924fca46518d0f5617b1d365d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "75569c1f088d4950ad84be835ac67c09": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_3105381953e4426dbb7f66c987a066c2", - "max": 1390, - "style": "IPY_MODEL_509ccacceca641cd8b85d1780e430360", - "value": 1390 - } - }, - "755ee5bc3e344bb097e3267a69f3047f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "75e0f9850ddf4d179076c671445991f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_2a4cf8f973814d3bbb2ca2348693363e", - "style": "IPY_MODEL_7b399bd196f44faebf0b307026c59ca6", - "value": " 264/264 [00:00<00:00, 10.3kB/s]" - } - }, - "7682a106a74843278900781857f02b33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_c8267fa9421445fe9ace1a61c19f3234", - "style": "IPY_MODEL_a56cf9ed288841d9b7539811f9d01e71", - "value": "Downloading: 100%" - } - }, - "76e01244c15c40eca4985fd2d9d3726b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "770843649fe748a5b00e276029bd26b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "7784b2cdafed4007ad7721a76d009f1c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_2349c39c31bf4393b08a332fd0448424", - "max": 87, - "style": "IPY_MODEL_6808fceb14ba4531961e02462be7c04e", - "value": 87 - } - }, - "781dbfe0ace544798639a10ec4580222": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "781eab8aa13f4209ab892425843f1b83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_82752acadc8940a49a7cfb4c86184b11", - "style": "IPY_MODEL_b61f6b81698c4884b5577cfc54b388c1", - "value": " 1.87M/1.87M [00:00<00:00, 2.89MB/s]" - } - }, - "783a4927d42c489b97c29c1698047a19": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_bb48c4f2115241ae9cb06aaced18d7be", - "style": "IPY_MODEL_7459e7924fca46518d0f5617b1d365d7", - "value": "100%" - } - }, - "78af46f672764221a9a83c9d8b3fbd5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_2dff3414bf404bc4aea517c2a2405149", - "IPY_MODEL_4e0eca1f275c492f84dc93cbc9d94446", - "IPY_MODEL_03d7c08cd37b4bd58a767e2b096c96ea" - ], - "layout": "IPY_MODEL_5c6460d0c4bd425798ba1d033647e4b3" - } - }, - "78d0eb13230f4c46a43f06d5eb709b29": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_d985b75d84ec42f8b5a683db4231f181", - "style": "IPY_MODEL_4c69ba1c8b85408ca6dd03b4b028e5b8", - "value": "100%" - } - }, - "795f291a45fd4fb398364a822284a2a5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "7a2686e16e9443f5a5508c46e0ed5486": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "7a6ef8992dea4c21950bcf777ad08e18": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "7b399bd196f44faebf0b307026c59ca6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "7b87edac6cac4e49918b43fbb2433f38": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "7c8ad1c424b440d59d93f1130f63817c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "7e03612cd3744ebe81557acf684339a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_0296991cb1a442678b663321b7c710f5", - "max": 1390, - "style": "IPY_MODEL_c0cd051c9e104dfeabbd5eb477dc010d", - "value": 1390 - } - }, - "7e43280a741347f4b602b192ff6b6bab": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "801495d1fd614dd79a115731132a58a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_d7c799857d834728a4cc3bc6f7da3e4d", - "style": "IPY_MODEL_e571910d85444667b7e4f535fb996f15", - "value": "100%" - } - }, - "80269e61365142148c17dbe6f06a1e18": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "81446df0c8dc44f593b95f5484a0424f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "81e890349f26437b91e4463556537d64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "82752acadc8940a49a7cfb4c86184b11": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "82da0c4b520741c8b9e00bee90fe288b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "834ccccdfb55469ea3594196a07a1abb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "83fb52dd8abc430e9c80434449de43c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_d170fd6f220a42b2a4261f388aae75b5", - "IPY_MODEL_4132d3fa15124b919ef49cb4bb716ecf", - "IPY_MODEL_5c2e14bd4116402584dc695b402ea176" - ], - "layout": "IPY_MODEL_4b45465d14254e4db5152cf56173a440" - } - }, - "845de289a7dc4b7ba15c1c0b8255e2cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_e5443d92db2845f296f8ca7872f4563a", - "style": "IPY_MODEL_e1cd4649482e4b42a2bc3032878c56dc", - "value": "100%" - } - }, - "859b54cd3dfb4a408d92d931fdec5922": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "85dde2754a6c4b5e886ad1b459bef37a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_a0dc2f34bb2a4de3afc64579ac371351", - "style": "IPY_MODEL_b1b8d8f436b848a4b7217257fc31221e", - "value": " 6/6 [00:03<00:00, 1.97ba/s]" - } - }, - "8615158ca0574299a22747a6ec300941": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "8721f66e611f43d094fffba1dbb01bc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_0e3b197e43674ba0aabd8b92a4cdaea5", - "style": "IPY_MODEL_4824cdd7e01e46e7a16c85f413e792d8", - "value": " 87/87 [00:11<00:00, 7.74ba/s]" - } - }, - "87452986a52341bab8246e485ddb1228": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "880ac415dc784685ad0d57837f12ddd0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "881f6187c2194bba84d66bcf00c3f276": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_6b6ef6c31335467dbde30b97d356ca35", - "max": 1390, - "style": "IPY_MODEL_770843649fe748a5b00e276029bd26b3", - "value": 1390 - } - }, - "884037052e824db9a1e8317443e8ed14": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "88e7e791e98c4df9b7008ef3b00b9c8e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_bc50e48b05c341079956b022ac5adb4a", - "IPY_MODEL_d1166658e6f44ee7992c032da46276ba", - "IPY_MODEL_f80ac083117842e6a4c633b928c20a2c" - ], - "layout": "IPY_MODEL_57ee02ac216e4ebdacfda74a2200b7f0" - } - }, - "8934ce9135fa444ea9db62a51dd98191": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "894bf6fa3e324d7bac3245a613d4baa9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_2696a2f56a494c349ec9639d73bfd3e9", - "style": "IPY_MODEL_2b6c42fe2ea944949a92fb104e2ca134", - "value": " 112/112 [00:00<00:00, 4.30kB/s]" - } - }, - "897e672979bc4914a432e0d476a324ba": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "8997b74c0abc4cfcb63f6e4e37d102ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_da0c407b7f4d4f5c8ac8ecef5e8ca394", - "style": "IPY_MODEL_6b7dcb5f7c994552a30029e31e1fd615", - "value": "100%" - } - }, - "8b41d06cf9f341f7be52ea922f21feb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_c1f4ba58d981450794c6d7e03a550b5a", - "max": 87, - "style": "IPY_MODEL_494b723eabbf4fc4aace08493ed50a64", - "value": 87 - } - }, - "8b60563624504460a7d04bbcc601e0f5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "8b87eeb59ced4b2f851c00e8b35e2fce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "8c133a86c967414eb6ceec8723c52dc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "8c135f1ec9744668be87ef63a409f2db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "8d39cb9850bb4ee39bbbbe170a66636f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "8dcc40b67f03494eae1433545b547748": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "8e32036825b2404fbe7b40f4e20ef2af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "8f08f2847c4d4edc8f2d5fadfd0e59f3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "8f5139aab2b0478695f1a548c0224848": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_b00d12480cdc47eeb759f752f6f7cfdb", - "style": "IPY_MODEL_7a2686e16e9443f5a5508c46e0ed5486", - "value": " 87/87 [00:11<00:00, 7.75ba/s]" - } - }, - "904e3f60a8a24417b3a54efb249b685d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_7b87edac6cac4e49918b43fbb2433f38", - "max": 466, - "style": "IPY_MODEL_5b516c3ec27d4a5a819fb8947b9798ab", - "value": 466 - } - }, - "905424bce27a46cc896bfe48be700b87": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "90939b3c68dd486eb49d3c4ebfdd6828": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_e598abff664f423fab16aebffb3d32d7", - "max": 1390, - "style": "IPY_MODEL_e63eb7ed68af44dea53d560f19f26a0e", - "value": 1390 - } - }, - "91d3e742430343c0b5e6bc56b738864c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "91f9913d451c4690991760e2928c6c26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_1114e3a516e24b2aa303dae26f9b1bd3", - "IPY_MODEL_6778b476b46c45c7b1f5b2bf99c430ca", - "IPY_MODEL_31c0c8c1f91b45e988d24593d3c414d7" - ], - "layout": "IPY_MODEL_694d97bcf8c44933a68857a4f1b625fb" - } - }, - "92d3b0cb2c1948a89b7f7282e28f1cd7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "93316e8f392b4d7ca4ea22488db43819": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "942352a3eac4476890e87f998dfe403b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "94506577b7d04d669aafb2b8351def46": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "94677f34a2364c658a091f50308efa3e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_254af2c6422b415a9867e6e1fefb8675", - "style": "IPY_MODEL_32f32acbfbfa401f884dda058dfc599c", - "value": "100%" - } - }, - "94b48660a81748fa88e90907a1887701": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "95a8b64edf8c4e15b94aee5d05860c16": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "9743ff350d474179bff911b72633101d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_99d7c6f88eda4218b5705258afee54ec", - "style": "IPY_MODEL_560dd4cd0e9942008997c0ebdf79603f", - "value": " 1390/1390 [00:02<00:00, 639.24ex/s]" - } - }, - "97f279ba0d73458aa89e07e11d344f1c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_e3b10795ee8c4780a7c1a0ae4d2e83e0", - "IPY_MODEL_2c73defaa3574f5082f437cba46e82d8", - "IPY_MODEL_f881fa161b9743af95ce783f313697fa" - ], - "layout": "IPY_MODEL_8dcc40b67f03494eae1433545b547748" - } - }, - "9833eae02ddb468b86580e895319886e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "98417af07aee4673a5e7d0c0f97badc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_21a3d53c2ebd42fbb45ffc584b05a245", - "style": "IPY_MODEL_f95e12341c484f169c2d0b9c52f7570a", - "value": " 87/87 [00:12<00:00, 7.16ba/s]" - } - }, - "989790596fdf43209198ec94434bb7aa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "990ed0260dea470f81e2fcafa3e28fb1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "99d7c6f88eda4218b5705258afee54ec": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "9a07492ae8bf41a6af69f9dd2eff9614": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_be45cd0759d146318fa9b8a41a10b355", - "max": 6, - "style": "IPY_MODEL_81446df0c8dc44f593b95f5484a0424f", - "value": 6 - } - }, - "9a1639c51e024ce1897355d1259808b0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "9a4f0689cba94412a6b3ca3052271637": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "9ad6245f15074c818c94e84a396218c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_845de289a7dc4b7ba15c1c0b8255e2cf", - "IPY_MODEL_881f6187c2194bba84d66bcf00c3f276", - "IPY_MODEL_2d78788b8cd84962aa3c3f8fc433f574" - ], - "layout": "IPY_MODEL_aaaacff6606b49b3ab391be86bf947ba" - } - }, - "9b823adb0caa4b8597031b78a5f1be1c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "9c73b8f38174421faf27c04fec9da712": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "9ce313d66b7b474aa8bb638ba0eefac5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "9ce596837a6242efa34ea8ce082801a8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "9dafe1bb2de8416db87d6271f87ddd59": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "9e6dc3fe2e6e470091152b651eea8f0e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_67cb390f024d492dacc0d7d4cd0675d2", - "max": 1390, - "style": "IPY_MODEL_4c73d3985f594074bd4a806bac38c395", - "value": 1390 - } - }, - "9eb02559e4ef4035b6ab3495c1dcc0f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_1274e9af953c425ca19292a87bf94b6a", - "max": 6, - "style": "IPY_MODEL_092fa72c59c145f6a799066facb7edcc", - "value": 6 - } - }, - "9efc9ccfa8f545e9a2ce30a0c794970e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "9ff061a6229c4b81acd23c62aef05697": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_92d3b0cb2c1948a89b7f7282e28f1cd7", - "max": 1390, - "style": "IPY_MODEL_d80e9d8f9e594e16902b27e20acd6cff", - "value": 1390 - } - }, - "a0dc2f34bb2a4de3afc64579ac371351": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "a1400c2b1cc447d498fff344fcd400a1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "a1db92b35be943499b08156a35e059fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_9833eae02ddb468b86580e895319886e", - "max": 1390, - "style": "IPY_MODEL_8b87eeb59ced4b2f851c00e8b35e2fce", - "value": 1390 - } - }, - "a1fc0e8c46bf4d64b56b34162866b4e7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "a213a9e760834d079dac321b59f09344": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "a2d31bc0bade498daee30b90900905b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_783a4927d42c489b97c29c1698047a19", - "IPY_MODEL_1103ab4250b24a38bccfa02cab3e8636", - "IPY_MODEL_e30b3e1b446646c2b21248177cf2b08c" - ], - "layout": "IPY_MODEL_d95dec26323c4411bcddfd679df34bcf" - } - }, - "a34add77047a4d38b88a76b96916b5f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_2f8c513520444fb0be5cc26174d94ab8", - "IPY_MODEL_e1ba20f9cf0e4efb9495f5a260e1e558", - "IPY_MODEL_25bfef46052b440f8952f032f1d8afa0" - ], - "layout": "IPY_MODEL_755ee5bc3e344bb097e3267a69f3047f" - } - }, - "a4423093e08a48938a05a2a259c8793f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_94506577b7d04d669aafb2b8351def46", - "max": 817, - "style": "IPY_MODEL_117944fbfade4ddda79c3f63e28e8286", - "value": 817 - } - }, - "a44651735e114874ad306c36ab459dc1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_fd2c392d57e64b2e902e83aa10efa107", - "style": "IPY_MODEL_05342badcb98463a9e8bd5b92aa501dd", - "value": " 817/817 [00:00<00:00, 29.9kB/s]" - } - }, - "a56cf9ed288841d9b7539811f9d01e71": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "a595dcca2b634bc48fad6beae2643543": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "a5e03e9c5dde41f1834711182a5b059b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "a647739e83e247b4bb7468740a6fe7f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_c0991b8988424b7c874c6f6b5c2e81e2", - "style": "IPY_MODEL_80269e61365142148c17dbe6f06a1e18", - "value": "100%" - } - }, - "a734dbd039284f6398af720079454810": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "a74d6351cc4e4ec2a2c3ee5e0fc0ec44": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "a7f364381dff4baaa8188d53d16b41d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "a96a2ae1b99740c0a28671b2341764b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "a99d12b2e5ff45079277bbe2589576d5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "a9cc5a9d425e4b5f9ac587935cf52b2b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "aaaacff6606b49b3ab391be86bf947ba": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "ab3d67551e20490fa7002af5b4427d98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_37ddb1f28257417b97dba06fdbea8bd8", - "IPY_MODEL_f1c357893adc48b3869aa6319c8371d2", - "IPY_MODEL_e1b9147bb4b24c95be42b8c715b08866" - ], - "layout": "IPY_MODEL_43a50f527ce248fc84b0977c18e7688f" - } - }, - "ab99b45526114e3aaffa9549b416a365": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "abb624f2f904436cad378d2a563f25cd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "abbf32e0fd9d432197f66aca5c27a046": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "ac6afd59726d400d8e022ba8c0fe53ed": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "ad1fda29efd54c6788aa1a8b548f6404": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_11c654295ff84876ae63ec3b2ccd5724", - "style": "IPY_MODEL_c3bbbc3d1dab406698ae8a9ed3880d9e", - "value": " 2/2 [00:00<00:00, 2.98ba/s]" - } - }, - "adf32fc9789d4b51b75926d0613aac52": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "ae236ab9cc40402697a9fca685ac811a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "ae49223d4df348caa21fc0e19287b8ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "aecec71300044f1cb25e8d6599ecd048": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "af55040311694e7a8d62f5ccde9bfb28": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_36fabf6cf0894cdb93fa97dc8e72a592", - "style": "IPY_MODEL_4a8b34003f294cd08c4a451162266d75", - "value": " 6/6 [00:03<00:00, 2.21ba/s]" - } - }, - "b00d12480cdc47eeb759f752f6f7cfdb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "b073c73a739f4c3e95a3d0d37d786dad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_6cf843de663547a2b090656f3cd3573d", - "style": "IPY_MODEL_d8ab18381d5c4db1b0a51325740ba46b", - "value": "Downloading: 100%" - } - }, - "b0e2bfe01944461da8ce9af5d85d4a32": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "b1379d827e5a4740b8e55741e9c9be0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_b0e2bfe01944461da8ce9af5d85d4a32", - "style": "IPY_MODEL_0ab666685d8a4aaf8dd63bb69750c749", - "value": " 348/348 [00:46<00:00, 7.49ba/s]" - } - }, - "b16feb58266c4ff0b303c0df791e84d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "b1af430f569842cb902bd6af6a6d9057": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "b1b8d8f436b848a4b7217257fc31221e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "b1ebc6b8c1374ebabdf82063913c0f24": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "b34d8e186f0f4f85b195cf342eeb63c4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "b404abd4d3364cbda3df55a0b1280de1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "b41ffb86f218401a9a57dfb735ee9d20": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "b4d9573ca7b047278d89f7cfbeb8edbc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "b521b769d0d24ee49438759f3f492ee1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_66b215a1c19a42af9421000dd7c823c5", - "max": 2, - "style": "IPY_MODEL_b4d9573ca7b047278d89f7cfbeb8edbc", - "value": 2 - } - }, - "b61f6b81698c4884b5577cfc54b388c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "b7b61d47705f40ddb5026f777ff9bc0e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "b80281ba1cca485c980b4f71214f1297": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "b95f6d1a997c44419102d1514fb98d2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_1e0ee0e96b2b4f0fa8b545c82053b36e", - "style": "IPY_MODEL_f6047d5f6b1d4ec897d6daba869385cf", - "value": "100%" - } - }, - "b9a188980fb8477189e092f248074c4a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "b9c08d510ce44ea384dd3ffe4fc70211": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_880ac415dc784685ad0d57837f12ddd0", - "style": "IPY_MODEL_187ddca2e74c4d68820cb62f433e2322", - "value": "Downloading: 100%" - } - }, - "b9d0610202ad48d6996e7f026cc01c9b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "ba54641fa7a94ff588ea86ca3f2d94cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_cb936476c0144700a1484749d2767f26", - "IPY_MODEL_32bcb06cc25c4acda72925aee6d0db47", - "IPY_MODEL_894bf6fa3e324d7bac3245a613d4baa9" - ], - "layout": "IPY_MODEL_2bccf81f193e4153a1ac3f87751893ca" - } - }, - "ba600193ac9940969fa674a59c58c4e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_93316e8f392b4d7ca4ea22488db43819", - "style": "IPY_MODEL_ae49223d4df348caa21fc0e19287b8ec", - "value": "100%" - } - }, - "ba84aa3b40b344d9a76bd96e29ff48f3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "ba9f23d0aa064c9f95bcd55fd0b891c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_69e94aedff9c4bd1af752b54c1d7244b", - "style": "IPY_MODEL_0988f3d87a2840c5a90d4aefc3cb9dc8", - "value": "100%" - } - }, - "bac9fc9549b6448aacc1c09c3c6df159": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_07f526a4584943198cb19186ea3e274d", - "max": 264, - "style": "IPY_MODEL_5f48c6bb8084499389fbac7c47510eeb", - "value": 264 - } - }, - "baf7ff34e8304e1d98081e16cff9e9b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "bb11b429e4bb458d89a068c83b97958a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_8997b74c0abc4cfcb63f6e4e37d102ea", - "IPY_MODEL_8b41d06cf9f341f7be52ea922f21feb9", - "IPY_MODEL_98417af07aee4673a5e7d0c0f97badc0" - ], - "layout": "IPY_MODEL_9a1639c51e024ce1897355d1259808b0" - } - }, - "bb48c4f2115241ae9cb06aaced18d7be": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "bb5caa0726d24ce2884bedb453e4a6f3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "bc50e48b05c341079956b022ac5adb4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_3cfdb9d2f89b44458016e6e562c5a235", - "style": "IPY_MODEL_0b50269deb734c20905ea10701badb5e", - "value": "Downloading: 100%" - } - }, - "bc901470b6784a45825299ce2cfdcf4b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_ba9f23d0aa064c9f95bcd55fd0b891c8", - "IPY_MODEL_b521b769d0d24ee49438759f3f492ee1", - "IPY_MODEL_dc615469761f493fba8f7c6cdcb062d9" - ], - "layout": "IPY_MODEL_1e0cd6a51a0245b9ae22028ffe144026" - } - }, - "bca2a606e0e64f6e9e76cb0334c209bf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "be45cd0759d146318fa9b8a41a10b355": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "be4cef9a54fc43c3ae742f06d4a5dac3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_080211f2e8034a6d8f966b988ec457cd", - "style": "IPY_MODEL_1b535a85e8c04761a4279fd3f1c9d642", - "value": " 1390/1390 [00:02<00:00, 660.69ex/s]" - } - }, - "beb27f086f28401c9e58f891a4c590d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "bf4f6dbf5c724478ba1cc10f3b704b2b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_942352a3eac4476890e87f998dfe403b", - "style": "IPY_MODEL_ed356cc14c3641e29302ec7df80e3489", - "value": " 2/2 [00:00<00:00, 3.01ba/s]" - } - }, - "bf7eb0259aaf42e3930681d0063f7a54": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "bfa3df8bee9d43939055204801eef8b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "c01f8d5218fc495795f1dbf915228298": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "c0991b8988424b7c874c6f6b5c2e81e2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "c0cc08c74360458c87f5cc7feeaf1049": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "c0cd051c9e104dfeabbd5eb477dc010d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "c123b8e01e394da4a3072a965cc9ad96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "c16928f2c4344705a9dcdd9c279d4127": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_6027fe6ca76f44cba40fab280a4299c4", - "IPY_MODEL_9ff061a6229c4b81acd23c62aef05697", - "IPY_MODEL_d0b0e0c38353432d8366b2fa402faad5" - ], - "layout": "IPY_MODEL_236cbe2484344f56af7cc21f49ec4430" - } - }, - "c1f4ba58d981450794c6d7e03a550b5a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "c3bbbc3d1dab406698ae8a9ed3880d9e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "c41d4c566c594fa489612f9f492e0806": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_c7c1af7fbcde454eb78538b7f3c328a3", - "IPY_MODEL_df430ddcc26d47ac9a3f4bda660b2892", - "IPY_MODEL_19dd5e60e4b54dde89c9a39b9a11ec0b" - ], - "layout": "IPY_MODEL_4852df9d08cd4a3391e2c05ab4301a98" - } - }, - "c4450c3a1ae24634b69bdb273a1aefe2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "c4b444f255b04bda83242e0e4d53187f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_170ff439d3574773b8b7118881c44657", - "style": "IPY_MODEL_1b26acb6935a40fdbbffc78b8805528d", - "value": "Downloading: 100%" - } - }, - "c64bfd626d734c00b1bd41139a2103ba": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "c6b919e945d04d6589676f82ae4a0026": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_e67d28b190574642833892ce6dd0e855", - "IPY_MODEL_0651c71dc99e4faab331bdec4413ba7c", - "IPY_MODEL_faf3cf09667e4964b419afa5b570e3fd" - ], - "layout": "IPY_MODEL_f80026d7b1194b1aa16434394cc8c33a" - } - }, - "c6b9f9ccac774d7abcee7760d0d73f2c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "c72401249d054acab1e7163131c27d48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_e9bf884b74524d0983d7eb11559870b1", - "style": "IPY_MODEL_dd6f0a750b2d42b39a022b71c0c47d17", - "value": "100%" - } - }, - "c7c1af7fbcde454eb78538b7f3c328a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_634767f5c7fd4ea7906e47d97593cdb5", - "style": "IPY_MODEL_59b7ca7b01144e5eb76bc44845967be4", - "value": "Downloading: 100%" - } - }, - "c8145e90ce694ba4b5989657f44d3b9d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "c8267fa9421445fe9ace1a61c19f3234": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "c951b413644740a2b6548a1cb1732a22": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_1020efb8045748a982ef4e501aa75bb8", - "IPY_MODEL_e2df2978124a401795ae0eaf76d05a1e", - "IPY_MODEL_e704771569834c1cbb9f89f2beb16243" - ], - "layout": "IPY_MODEL_1e0c30113b0d4f259f8e1b7ccf349757" - } - }, - "c9695b34364f41e5a4470ce3f8d220a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_ba600193ac9940969fa674a59c58c4e4", - "IPY_MODEL_9a07492ae8bf41a6af69f9dd2eff9614", - "IPY_MODEL_85dde2754a6c4b5e886ad1b459bef37a" - ], - "layout": "IPY_MODEL_6efd32169fea4c129884c95b243455d9" - } - }, - "cb0e3a7fbb7442389601d142ba74501b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_b9a188980fb8477189e092f248074c4a", - "style": "IPY_MODEL_2b328479261d40ff9e61c032fef10aa2", - "value": " 1390/1390 [00:19<00:00, 74.19ex/s]" - } - }, - "cb1040e232114af59e874c5410e57cd8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_cfd9b5494afc4779a87d3c7300024b4d", - "IPY_MODEL_9e6dc3fe2e6e470091152b651eea8f0e", - "IPY_MODEL_4ac97176706247d69512c913cba8faa4" - ], - "layout": "IPY_MODEL_e96ebeea443749daaece0a0e51426d1a" - } - }, - "cb936476c0144700a1484749d2767f26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_b80281ba1cca485c980b4f71214f1297", - "style": "IPY_MODEL_e05adf2ccd254ae18b53a22c12181675", - "value": "Downloading: 100%" - } - }, - "cccfbcfce7e946ffaa69abbb1fe97a36": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "ce00b0ce67f64c6797501857d70aa50a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "ce1e6ba228f04603adaa2b82d04de52f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "cf6f18eee4c54755bb7a82870b0c85ff": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "cfd9b5494afc4779a87d3c7300024b4d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_8b60563624504460a7d04bbcc601e0f5", - "style": "IPY_MODEL_1331643494cd4420be8f9eca0255f727", - "value": "100%" - } - }, - "d0b0e0c38353432d8366b2fa402faad5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_b34d8e186f0f4f85b195cf342eeb63c4", - "style": "IPY_MODEL_beb27f086f28401c9e58f891a4c590d7", - "value": " 1390/1390 [01:56<00:00, 12.71ex/s]" - } - }, - "d1166658e6f44ee7992c032da46276ba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_326ae8ff921d4a44bd19ac429b8db569", - "max": 709146103, - "style": "IPY_MODEL_6ffa53391c5f431192a7c1cfce09a585", - "value": 709146103 - } - }, - "d16c25805bfe4a7dabd4401461a5d3c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "d170fd6f220a42b2a4261f388aae75b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_9b823adb0caa4b8597031b78a5f1be1c", - "style": "IPY_MODEL_b9d0610202ad48d6996e7f026cc01c9b", - "value": "100%" - } - }, - "d248f2dcb5614d9f8fc9f00f7dc345ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_320184abbcdf4efd98d3037b32fc9c6d", - "max": 1390, - "style": "IPY_MODEL_31177b93c29d442f9aa3ae09df40a972", - "value": 1390 - } - }, - "d40c8782a91a4d33a7eca12e58831d30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_514e81e5fe744f4ab78cdab5d3a7794d", - "style": "IPY_MODEL_f177681b25c04829a95de5ae87ce8c69", - "value": "100%" - } - }, - "d5f3aaf6417b4e4894cfb430ca6557e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_78d0eb13230f4c46a43f06d5eb709b29", - "IPY_MODEL_218683b0ee39497a893d78cde9afa0ce", - "IPY_MODEL_4f3290e9d0e7451b95cc4b45184fbed5" - ], - "layout": "IPY_MODEL_bf7eb0259aaf42e3930681d0063f7a54" - } - }, - "d7a218a6d68b422e9076267465749cda": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "d7c799857d834728a4cc3bc6f7da3e4d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "d7d12045579a4d86845f2fa5ba6f7648": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "d7ebca2da90f43668718ba8843baea6b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "d80e9d8f9e594e16902b27e20acd6cff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "d8ab18381d5c4db1b0a51325740ba46b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "d90c5c45e4d6486bb0bb5c64905c65b9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "d945f7faea2e420592156ff3f6b48297": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_fa86720355ca49c8bc44a8a1d31268cc", - "max": 5559, - "style": "IPY_MODEL_413181e5ce3d45a5b8ef3a7e8f0cd287", - "value": 5559 - } - }, - "d95dec26323c4411bcddfd679df34bcf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "d96aeb217a644134a89819efb2beeb3a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_385f90fc5c3a4c23a48e0c8db9d34a7c", - "max": 995526, - "style": "IPY_MODEL_1f2a0ced79fc4b9aaad3f1ef2ca227f2", - "value": 995526 - } - }, - "d985b75d84ec42f8b5a683db4231f181": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "da0c407b7f4d4f5c8ac8ecef5e8ca394": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "db98b83fa66c4b4792eb61cf9cf0071e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "dbb0b99a500e40a29f86239a7070a88d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_9dafe1bb2de8416db87d6271f87ddd59", - "max": 87, - "style": "IPY_MODEL_4551ca0bf1a947e79d71666d1247c2d5", - "value": 87 - } - }, - "dc2726fde54748a9a9e2e57bdaf9b5a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_3225c4be3fcb4b258c8c7dae6b02f534", - "IPY_MODEL_e59fa8bfd5144fbbbc1d57d6fd10fb76", - "IPY_MODEL_be4cef9a54fc43c3ae742f06d4a5dac3" - ], - "layout": "IPY_MODEL_3a1c6f07607d4c5e811b79cdb2d631a5" - } - }, - "dc615469761f493fba8f7c6cdcb062d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_8934ce9135fa444ea9db62a51dd98191", - "style": "IPY_MODEL_df8f712d748a4a5a8e092ca9fbe7eac3", - "value": " 2/2 [00:00<00:00, 6.46ba/s]" - } - }, - "dce3303f19c74ce2b0aad9f3acdf1e1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_4479bf779ba3468e8f37067c50baed81", - "style": "IPY_MODEL_721f9838df4f43c7b5942fc7faf8e002", - "value": " 348/348 [00:49<00:00, 7.00ba/s]" - } - }, - "dcfc899352c545d0bb57b7cb07e78f96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "dd06db7c48e4406e9b8ec00e6759728c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "dd6f0a750b2d42b39a022b71c0c47d17": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "dda190ec480842858552f96133540e5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "df2c57a8ed6546a88b1ad005a7412ee8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "df430ddcc26d47ac9a3f4bda660b2892": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_6ea6cb7ca0a24b57a480a254975f7f89", - "max": 29, - "style": "IPY_MODEL_2962c27974804c368efd3df7336f4ca7", - "value": 29 - } - }, - "df7ed4a356bb491c8e4100437d95d67d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "df8f712d748a4a5a8e092ca9fbe7eac3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "e05adf2ccd254ae18b53a22c12181675": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "e0cd4c8b612e4a599dc9197fbf2f37c7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "e1b9147bb4b24c95be42b8c715b08866": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_6b237b221412407f9ccc188ce1b4d90b", - "style": "IPY_MODEL_8615158ca0574299a22747a6ec300941", - "value": " 5559/5559 [00:08<00:00, 705.98ex/s]" - } - }, - "e1ba20f9cf0e4efb9495f5a260e1e558": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_c4450c3a1ae24634b69bdb273a1aefe2", - "max": 2, - "style": "IPY_MODEL_9efc9ccfa8f545e9a2ce30a0c794970e", - "value": 2 - } - }, - "e1cd4649482e4b42a2bc3032878c56dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "e1d6cedb943e46e0ba8a21b910a3598b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_2514c5f98bed4607a9cd9437a1b27cff", - "style": "IPY_MODEL_03d63347fb92463289add09226a20019", - "value": "100%" - } - }, - "e1f7a7f11b584fa29544781b6c192a88": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_6b94a963e4ab4ec6a217ad3586b1a25d", - "style": "IPY_MODEL_002e841ab923418381596abd9cec2fa8", - "value": "Downloading: 100%" - } - }, - "e2df2978124a401795ae0eaf76d05a1e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_3b41509658ed4212abe2fa395e8c3921", - "max": 87, - "style": "IPY_MODEL_3956d66a970a4ee9a30f398f0b57fed6", - "value": 87 - } - }, - "e30b3e1b446646c2b21248177cf2b08c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_74554082b33c4069b883587c1c0d6deb", - "style": "IPY_MODEL_b7b61d47705f40ddb5026f777ff9bc0e", - "value": " 5559/5559 [00:09<00:00, 675.54ex/s]" - } - }, - "e3b10795ee8c4780a7c1a0ae4d2e83e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_abbf32e0fd9d432197f66aca5c27a046", - "style": "IPY_MODEL_d16c25805bfe4a7dabd4401461a5d3c3", - "value": "100%" - } - }, - "e5443d92db2845f296f8ca7872f4563a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "e571910d85444667b7e4f535fb996f15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "e58034433d89426a859c55eb316a92b8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "e598abff664f423fab16aebffb3d32d7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "e59fa8bfd5144fbbbc1d57d6fd10fb76": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_3ffa93f71dd345d68cb00b51c089a880", - "max": 1390, - "style": "IPY_MODEL_dcfc899352c545d0bb57b7cb07e78f96", - "value": 1390 - } - }, - "e5a2e8bdc0cf48e89893a54caf7aafab": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "e63eb7ed68af44dea53d560f19f26a0e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "e67d28b190574642833892ce6dd0e855": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_db98b83fa66c4b4792eb61cf9cf0071e", - "style": "IPY_MODEL_b1af430f569842cb902bd6af6a6d9057", - "value": "100%" - } - }, - "e704771569834c1cbb9f89f2beb16243": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_e86bd5fbb10f40968b12076c89685507", - "style": "IPY_MODEL_aecec71300044f1cb25e8d6599ecd048", - "value": " 87/87 [00:12<00:00, 7.22ba/s]" - } - }, - "e716a92d4ce84d75a4e9886320a17c13": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_ce00b0ce67f64c6797501857d70aa50a", - "max": 348, - "style": "IPY_MODEL_8e32036825b2404fbe7b40f4e20ef2af", - "value": 348 - } - }, - "e7986977599c471d8f2fa8abe0c5d618": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "e86bd5fbb10f40968b12076c89685507": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "e9311bf60afb49c0be6df9fc4bda9c6f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "e96ebeea443749daaece0a0e51426d1a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "e9bf884b74524d0983d7eb11559870b1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "ea2542ce46504eb2846b091d5541884c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "ea5eb2193ee04386a4573e00841533ef": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "ea7721682a9d44a884f00484e9b7f1a8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "eb53d84e66b34ff7aa0ca5d9b8c202ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_ce1e6ba228f04603adaa2b82d04de52f", - "style": "IPY_MODEL_0bca65497b764e1386e7a69f7de3bf11", - "value": "100%" - } - }, - "ed356cc14c3641e29302ec7df80e3489": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "ed953a21812e485faf38d6897e5c0b5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "ee4e6306627644098b8c58a48e9c7599": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_683770347e5b40ef828bb6377fecf5c7", - "IPY_MODEL_7784b2cdafed4007ad7721a76d009f1c", - "IPY_MODEL_8f5139aab2b0478695f1a548c0224848" - ], - "layout": "IPY_MODEL_9ce596837a6242efa34ea8ce082801a8" - } - }, - "efcc5eb9028744f99e6bac877af2684a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_406a32ae9c234eea8a3150fd8f287163", - "IPY_MODEL_08259ba02dd444f090aeb052cb3f1573", - "IPY_MODEL_af55040311694e7a8d62f5ccde9bfb28" - ], - "layout": "IPY_MODEL_160183a43c694d44b63cef13c7d222b6" - } - }, - "f005f6330a86446885cff4b7be7623d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_e0cd4c8b612e4a599dc9197fbf2f37c7", - "max": 2, - "style": "IPY_MODEL_031f0fbf56af4d50aa05559b5c759864", - "value": 2 - } - }, - "f11cc0c6ba9d4d5887a79d3a14394ce4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_76e01244c15c40eca4985fd2d9d3726b", - "max": 1961828, - "style": "IPY_MODEL_baf7ff34e8304e1d98081e16cff9e9b3", - "value": 1961828 - } - }, - "f177681b25c04829a95de5ae87ce8c69": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "f19f6f9cecdd43d49b65609114e69f13": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "f1c357893adc48b3869aa6319c8371d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_d90c5c45e4d6486bb0bb5c64905c65b9", - "max": 5559, - "style": "IPY_MODEL_a734dbd039284f6398af720079454810", - "value": 5559 - } - }, - "f2e211f1e1f84a4c82cbee09cc95d477": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "f3199300d4f44c369d7b66435ec4ddb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_6d2e86c1efa34946b84e48b5b3aaec7a", - "style": "IPY_MODEL_70fb65fde9044c5faef948f74dc00163", - "value": " 5559/5559 [00:08<00:00, 692.53ex/s]" - } - }, - "f41c8cf2b23045c3b417f8310395222d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "f5b648cd76ca4057957391fb6768ba18": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "f5d136e906c34f628b0d48e0cf4e8a85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "f6047d5f6b1d4ec897d6daba869385cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "f6850cec019d48a7b18f255197e655ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "f6998bc96c5a49ea8decd03a95fb51f5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "f6acdb35b23243639f1dede27fd3eebf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_adf32fc9789d4b51b75926d0613aac52", - "style": "IPY_MODEL_491f5d951554473cae0beec7e74c249d", - "value": " 1390/1390 [00:02<00:00, 638.53ex/s]" - } - }, - "f80026d7b1194b1aa16434394cc8c33a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "f80ac083117842e6a4c633b928c20a2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_e9311bf60afb49c0be6df9fc4bda9c6f", - "style": "IPY_MODEL_2a0a590fc5294eb5b51048cfc6d3f3cf", - "value": " 676M/676M [00:16<00:00, 44.3MB/s]" - } - }, - "f83b733575484bdca0dec3651308a667": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "f881fa161b9743af95ce783f313697fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_7e43280a741347f4b602b192ff6b6bab", - "style": "IPY_MODEL_1c2f3079d581443eb41f5ff50579fa52", - "value": " 5559/5559 [00:09<00:00, 668.91ex/s]" - } - }, - "f8ee48f2f4b94c2bb81c648558f0aa9e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_4134799bb39445969cecc66809d95b55", - "IPY_MODEL_bac9fc9549b6448aacc1c09c3c6df159", - "IPY_MODEL_75e0f9850ddf4d179076c671445991f6" - ], - "layout": "IPY_MODEL_25e0cd284100462ea605842316026183" - } - }, - "f95e12341c484f169c2d0b9c52f7570a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "f9b15c404b7e4408a357c890dedf03ff": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "fa760e4acd954272981152ef1700203f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_94677f34a2364c658a091f50308efa3e", - "IPY_MODEL_2adc23438ecd41d9a6eae74e8e9d4889", - "IPY_MODEL_8721f66e611f43d094fffba1dbb01bc7" - ], - "layout": "IPY_MODEL_c64bfd626d734c00b1bd41139a2103ba" - } - }, - "fa86720355ca49c8bc44a8a1d31268cc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "faf3cf09667e4964b419afa5b570e3fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_ba84aa3b40b344d9a76bd96e29ff48f3", - "style": "IPY_MODEL_0c37e2e8c9464605917242f0319decdc", - "value": " 348/348 [00:45<00:00, 7.62ba/s]" - } - }, - "fba24976bb6a463cb0f12f0e5e6175fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_801495d1fd614dd79a115731132a58a7", - "IPY_MODEL_9eb02559e4ef4035b6ab3495c1dcc0f2", - "IPY_MODEL_30241c63b1274a5a802a9cce0ea502a6" - ], - "layout": "IPY_MODEL_1621a17be2b3429999541088706b266e" - } - }, - "fcc74af4ddc44ecc880ee79b3dedceab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "fd2c392d57e64b2e902e83aa10efa107": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "fe5e5202b92348198a15e7c7f0aa64b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_859b54cd3dfb4a408d92d931fdec5922", - "max": 2, - "style": "IPY_MODEL_b404abd4d3364cbda3df55a0b1280de1", - "value": 2 - } - }, - "fe8432c77f9b49a7b8e6c0d7937556e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_1315f3e0ac084d3a8c7ccf4ef7e4c2aa", - "max": 348, - "style": "IPY_MODEL_d7d12045579a4d86845f2fa5ba6f7648", - "value": 348 - } - }, - "ff2be633283f40df9175cde43adda0af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "ff3a702486a44640a7b2512d13323f32": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_05103e136d4e4eac98e5fa19d7832d8f", - "style": "IPY_MODEL_dd06db7c48e4406e9b8ec00e6759728c", - "value": "100%" - } - }, - "ffa0acc7157048b18a90544cf814c32a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_ea5eb2193ee04386a4573e00841533ef", - "style": "IPY_MODEL_9a4f0689cba94412a6b3ca3052271637", - "value": "100%" + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "98b5663a1ddb40c6981d40238ed75f0a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf5434b668cd4c1ea48d50451781aa2c", + "IPY_MODEL_5f51063c060747c29258f3397d95cd41", + "IPY_MODEL_f1f57bc9762a474c8c5f58a1a3382432" + ], + "layout": "IPY_MODEL_9f6b3d091fac4b73a7abf40d2330ea8d" + } + }, + "cf5434b668cd4c1ea48d50451781aa2c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fbda555247024cd88ba591b185de48b9", + "placeholder": "​", + "style": "IPY_MODEL_551c0cda446244f0aee1623fe4de7b71", + "value": "Downloading (…)okenizer_config.json: 100%" + } + }, + "5f51063c060747c29258f3397d95cd41": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9bfa5a1f66f84deba2e358a2b6cb286b", + "max": 29, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b825b5d945624e7c946f6a0411343f49", + "value": 29 + } + }, + "f1f57bc9762a474c8c5f58a1a3382432": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f2f1d5051b414acd8b940e078f255cdf", + "placeholder": "​", + "style": "IPY_MODEL_5aa9ca17b85f4170b7515fca94a27c04", + "value": " 29.0/29.0 [00:00<00:00, 2.29kB/s]" + } + }, + "9f6b3d091fac4b73a7abf40d2330ea8d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fbda555247024cd88ba591b185de48b9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "551c0cda446244f0aee1623fe4de7b71": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9bfa5a1f66f84deba2e358a2b6cb286b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b825b5d945624e7c946f6a0411343f49": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f2f1d5051b414acd8b940e078f255cdf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5aa9ca17b85f4170b7515fca94a27c04": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9e025774336d41f99202cc8e783f2aa9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fda84d00961941af87410431b8f12a63", + "IPY_MODEL_3a6351a4a95b46e6b1b527bb2a62082e", + "IPY_MODEL_530508480403461687b31c9e3c9092d0" + ], + "layout": "IPY_MODEL_a3c3f1d46daa46089c29e6367db80e32" + } + }, + "fda84d00961941af87410431b8f12a63": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_eb1ad44d35c0469a9f234c159ac8874a", + "placeholder": "​", + "style": "IPY_MODEL_455195e642434214baf41acf37e91cf4", + "value": "Downloading (…)lve/main/config.json: 100%" + } + }, + "3a6351a4a95b46e6b1b527bb2a62082e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e70f13f1083845deade56d7911329d53", + "max": 466, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f5c739f99241476990b02cf2630239ef", + "value": 466 + } + }, + "530508480403461687b31c9e3c9092d0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4d748059485244c0bacdcea2f4978d41", + "placeholder": "​", + "style": "IPY_MODEL_2f7ede5d9a41405882ad73c0299c129e", + "value": " 466/466 [00:00<00:00, 36.6kB/s]" + } + }, + "a3c3f1d46daa46089c29e6367db80e32": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eb1ad44d35c0469a9f234c159ac8874a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "455195e642434214baf41acf37e91cf4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e70f13f1083845deade56d7911329d53": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f5c739f99241476990b02cf2630239ef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4d748059485244c0bacdcea2f4978d41": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2f7ede5d9a41405882ad73c0299c129e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0a31ec3ef0b042dd8683584ca8c6aec7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e9f6a793519c4fb6ae4eeb74752e80ac", + "IPY_MODEL_ee58735741864d3c9bb2cf67bdac6cf7", + "IPY_MODEL_36e0caf7c4c44f46bc96f17ac11464e5" + ], + "layout": "IPY_MODEL_5c53b40e78354a6da75ef6dce51fd203" + } + }, + "e9f6a793519c4fb6ae4eeb74752e80ac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_05f7ce05e9894d6bb49b5d259328fb9d", + "placeholder": "​", + "style": "IPY_MODEL_765d8c6396f448868fae13a882772d7d", + "value": "Downloading (…)solve/main/vocab.txt: 100%" + } + }, + "ee58735741864d3c9bb2cf67bdac6cf7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aa6d0b49af9f45569e9988d38992cbf2", + "max": 995526, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7a2e04cb21e342f38852298090a4506f", + "value": 995526 + } + }, + "36e0caf7c4c44f46bc96f17ac11464e5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5a94aa5351724f14a53395b48709222f", + "placeholder": "​", + "style": "IPY_MODEL_029dc684cefb4c629e7897330a60dec0", + "value": " 996k/996k [00:00<00:00, 9.21MB/s]" + } + }, + "5c53b40e78354a6da75ef6dce51fd203": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "05f7ce05e9894d6bb49b5d259328fb9d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "765d8c6396f448868fae13a882772d7d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "aa6d0b49af9f45569e9988d38992cbf2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7a2e04cb21e342f38852298090a4506f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5a94aa5351724f14a53395b48709222f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "029dc684cefb4c629e7897330a60dec0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f152d155899045b48182b775041a6a27": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0e3d52305d8d4c0f85eb090fe00e5cde", + "IPY_MODEL_6ba99193f9bf4838b35bae8493283a44", + "IPY_MODEL_6c1f962313024cb28cde3bee68f4c9a2" + ], + "layout": "IPY_MODEL_3675a709a80d45e8aa9c29183c65f1f9" + } + }, + "0e3d52305d8d4c0f85eb090fe00e5cde": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aa5e0dd4211048029a6e6846ae26d91f", + "placeholder": "​", + "style": "IPY_MODEL_5d16e5d516d44604974be29732afd396", + "value": "Downloading (…)/main/tokenizer.json: 100%" + } + }, + "6ba99193f9bf4838b35bae8493283a44": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fd7fde3740594e89b5ee68e9bc5d7a13", + "max": 1961828, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d18d23296a904667ab6a7f85f599e79f", + "value": 1961828 + } + }, + "6c1f962313024cb28cde3bee68f4c9a2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_085f58f3e0d043f8b5b2831a1e2a1b54", + "placeholder": "​", + "style": "IPY_MODEL_fcec0374bfd3446cbc183057a3f8e28f", + "value": " 1.96M/1.96M [00:00<00:00, 24.8MB/s]" + } + }, + "3675a709a80d45e8aa9c29183c65f1f9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aa5e0dd4211048029a6e6846ae26d91f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5d16e5d516d44604974be29732afd396": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fd7fde3740594e89b5ee68e9bc5d7a13": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d18d23296a904667ab6a7f85f599e79f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "085f58f3e0d043f8b5b2831a1e2a1b54": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fcec0374bfd3446cbc183057a3f8e28f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7ce0b5785c2448cea7d0d1f1a87ebc2d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_89e3a11241384650b8965245dbd3792c", + "IPY_MODEL_a34a732dd35742e4a4824c8d8a3ad802", + "IPY_MODEL_df639efa669d4f79aacb986358d51ce3" + ], + "layout": "IPY_MODEL_348702e795c84a73962c96b921e50717" + } + }, + "89e3a11241384650b8965245dbd3792c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_edb157f92e984a01a21ae2b06f3498ab", + "placeholder": "​", + "style": "IPY_MODEL_9999a4e4578d41b2a26ed13be0828f9f", + "value": "Map: 100%" + } + }, + "a34a732dd35742e4a4824c8d8a3ad802": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e9958a996eed4d56b4ba278d1d0636d6", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_eaf861a0c98d40be96de756da12c5c8a", + "value": 5559 + } + }, + "df639efa669d4f79aacb986358d51ce3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_00c02c2cc2784e42b04c439efd858d6e", + "placeholder": "​", + "style": "IPY_MODEL_5ae6713d303d4e8cb40d1bb8193d2808", + "value": " 5559/5559 [00:03<00:00, 1546.37 examples/s]" + } + }, + "348702e795c84a73962c96b921e50717": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "edb157f92e984a01a21ae2b06f3498ab": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9999a4e4578d41b2a26ed13be0828f9f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e9958a996eed4d56b4ba278d1d0636d6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eaf861a0c98d40be96de756da12c5c8a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "00c02c2cc2784e42b04c439efd858d6e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5ae6713d303d4e8cb40d1bb8193d2808": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2ff3aa3cbc084b018e532313e3a62868": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_df5bdc4dbbc24f518a9b6a729b0e4465", + "IPY_MODEL_8190c12611bd4b1181d109f8b266d12e", + "IPY_MODEL_fbcc9f281d42422f8c584dbc7248cf25" + ], + "layout": "IPY_MODEL_d82ebc1918b04278aaa7a3424876d512" + } + }, + "df5bdc4dbbc24f518a9b6a729b0e4465": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_215db69430ac4835b14a0208ee8e4c2a", + "placeholder": "​", + "style": "IPY_MODEL_f6a251a9d3a8407b9bd5bdd849ce3e7e", + "value": "Map: 100%" + } + }, + "8190c12611bd4b1181d109f8b266d12e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_791078cacb4740fabdaf8eae3b5bb7f1", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8906283631694146b18824265be2b6f6", + "value": 1390 + } + }, + "fbcc9f281d42422f8c584dbc7248cf25": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bad4ae381c224f108ace413c9af946b0", + "placeholder": "​", + "style": "IPY_MODEL_34063b2bc88a4ae7a965d1d882104b32", + "value": " 1390/1390 [00:00<00:00, 1845.78 examples/s]" + } + }, + "d82ebc1918b04278aaa7a3424876d512": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "215db69430ac4835b14a0208ee8e4c2a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f6a251a9d3a8407b9bd5bdd849ce3e7e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "791078cacb4740fabdaf8eae3b5bb7f1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8906283631694146b18824265be2b6f6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bad4ae381c224f108ace413c9af946b0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "34063b2bc88a4ae7a965d1d882104b32": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9c43faef3dbd4919b84622bf311a055f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8940ed6274f1413cb57b9823131be494", + "IPY_MODEL_c2fdcaeb805f41a9aafad35cee5f0d4e", + "IPY_MODEL_f1dcb8ed4eeb470fb6802d72fdfaab5a" + ], + "layout": "IPY_MODEL_3d0f159182e3457492d6f1b70d6f04c2" + } + }, + "8940ed6274f1413cb57b9823131be494": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b287cbb03a264654968d10d85d32e365", + "placeholder": "​", + "style": "IPY_MODEL_7e761125a9684685b8b845bbab01b297", + "value": "Map: 100%" + } + }, + "c2fdcaeb805f41a9aafad35cee5f0d4e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf1053a919fb47aebc4971c1b86fcab8", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c5799a3b73464728afc0f23b2b25188a", + "value": 5559 + } + }, + "f1dcb8ed4eeb470fb6802d72fdfaab5a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_791c1687dc4b47928e8075658f238f7b", + "placeholder": "​", + "style": "IPY_MODEL_1814292c69d34a758378760127308ef9", + "value": " 5559/5559 [00:03<00:00, 1394.80 examples/s]" + } + }, + "3d0f159182e3457492d6f1b70d6f04c2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b287cbb03a264654968d10d85d32e365": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e761125a9684685b8b845bbab01b297": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bf1053a919fb47aebc4971c1b86fcab8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c5799a3b73464728afc0f23b2b25188a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "791c1687dc4b47928e8075658f238f7b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1814292c69d34a758378760127308ef9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "010ec2102cb64726b037d15a26a88b65": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b200a63fc8d24eafb67958aea139b90f", + "IPY_MODEL_6008d614d11c4120add33abdb91a8985", + "IPY_MODEL_df0d33aaf9a54f1fbdd0f785cb6ca7c6" + ], + "layout": "IPY_MODEL_557d06369ad04c63aec623d8fc1fa218" + } + }, + "b200a63fc8d24eafb67958aea139b90f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_607fd46718fa41dfacdbc6341623c8e8", + "placeholder": "​", + "style": "IPY_MODEL_f61c59bab83a442c87d5f2e16ded8f1d", + "value": "Map: 100%" + } + }, + "6008d614d11c4120add33abdb91a8985": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8eb37a97384a4b6f811f51b4de9c9a32", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_449fb956db964fa98a6a1c8b530fd218", + "value": 1390 + } + }, + "df0d33aaf9a54f1fbdd0f785cb6ca7c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_baef974696724608a22aca48f4b9c846", + "placeholder": "​", + "style": "IPY_MODEL_b2c3a629122d454dafea780c3722666f", + "value": " 1390/1390 [00:00<00:00, 1463.17 examples/s]" + } + }, + "557d06369ad04c63aec623d8fc1fa218": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "607fd46718fa41dfacdbc6341623c8e8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f61c59bab83a442c87d5f2e16ded8f1d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8eb37a97384a4b6f811f51b4de9c9a32": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "449fb956db964fa98a6a1c8b530fd218": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "baef974696724608a22aca48f4b9c846": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b2c3a629122d454dafea780c3722666f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "08ceb14dc17a424eb9bbf3b32de86c1b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d00662d6ed55463aba326b6805620af3", + "IPY_MODEL_4d6755b6c83e4f13a97e9b1b0e609bb5", + "IPY_MODEL_286f86ae10874cb38ce22df2aab01820" + ], + "layout": "IPY_MODEL_2ce61168f9f044889986249f29ae0688" + } + }, + "d00662d6ed55463aba326b6805620af3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b0a473526061496c888f1e461549bb6d", + "placeholder": "​", + "style": "IPY_MODEL_0d0c1de6161d44eca750d49122405c39", + "value": "Map: 100%" + } + }, + "4d6755b6c83e4f13a97e9b1b0e609bb5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6709139dd99840c2aeb4fdd54fee4dbb", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e12aad1e1624479784a4e9053bb5f06b", + "value": 5559 + } + }, + "286f86ae10874cb38ce22df2aab01820": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2d956a9eaed0479c8d59a618feb9f475", + "placeholder": "​", + "style": "IPY_MODEL_96c0b88835b74b52911896476a380fe3", + "value": " 5559/5559 [00:01<00:00, 3558.57 examples/s]" + } + }, + "2ce61168f9f044889986249f29ae0688": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b0a473526061496c888f1e461549bb6d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d0c1de6161d44eca750d49122405c39": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6709139dd99840c2aeb4fdd54fee4dbb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e12aad1e1624479784a4e9053bb5f06b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2d956a9eaed0479c8d59a618feb9f475": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "96c0b88835b74b52911896476a380fe3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ef037aa5769a4dd2af9eecdc43143f5d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1ac9b9e9c924479c8f75634e421a48de", + "IPY_MODEL_c6add275de114c8994b1331c0f0174d7", + "IPY_MODEL_abfd941bb9be4e52a7d7c49751bc4374" + ], + "layout": "IPY_MODEL_66626be91b784c5fa1dae53689c57b86" + } + }, + "1ac9b9e9c924479c8f75634e421a48de": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e339b71029634c288ecb6028e0c93d10", + "placeholder": "​", + "style": "IPY_MODEL_14fe842fc28e4438a5720cc0ab7c9586", + "value": "Map: 100%" + } + }, + "c6add275de114c8994b1331c0f0174d7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_18cbf6e09774445d95569037f2561ac6", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_06e3bf4651c44bd5b93ce7e2115b909c", + "value": 1390 + } + }, + "abfd941bb9be4e52a7d7c49751bc4374": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c658ecb78847441eb166e0fcf79126d2", + "placeholder": "​", + "style": "IPY_MODEL_70dade4321f34ad59a4cd492fdee86c1", + "value": " 1390/1390 [00:00<00:00, 6680.50 examples/s]" + } + }, + "66626be91b784c5fa1dae53689c57b86": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e339b71029634c288ecb6028e0c93d10": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "14fe842fc28e4438a5720cc0ab7c9586": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "18cbf6e09774445d95569037f2561ac6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "06e3bf4651c44bd5b93ce7e2115b909c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c658ecb78847441eb166e0fcf79126d2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "70dade4321f34ad59a4cd492fdee86c1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a13e4156d0a6432caf4da59392e12323": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_05cdbc58fcf649f6aba5ef4d4f5c18ed", + "IPY_MODEL_6685a65e8c1d4335987d2b39c1f55100", + "IPY_MODEL_51f53e2cdb4f40c6867bc611d75d4334" + ], + "layout": "IPY_MODEL_6e8f3846056b4c83ac3dbc4a2436ff9e" + } + }, + "05cdbc58fcf649f6aba5ef4d4f5c18ed": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c6d542b5a5e14feaa9317d20ba7ec3b3", + "placeholder": "​", + "style": "IPY_MODEL_e8856e65ab5a407a88a84ef8d423b4e9", + "value": "Map: 100%" + } + }, + "6685a65e8c1d4335987d2b39c1f55100": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8f58f7096ab54b09bf8911401c541cf8", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_518e0c900feb45e69965e35274bcb570", + "value": 5559 + } + }, + "51f53e2cdb4f40c6867bc611d75d4334": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_adf59b34e63741d7956f58be5b6a26cc", + "placeholder": "​", + "style": "IPY_MODEL_6a8cb8e8428146b694516e2b8dcaf757", + "value": " 5559/5559 [00:03<00:00, 1763.94 examples/s]" + } + }, + "6e8f3846056b4c83ac3dbc4a2436ff9e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c6d542b5a5e14feaa9317d20ba7ec3b3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e8856e65ab5a407a88a84ef8d423b4e9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8f58f7096ab54b09bf8911401c541cf8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "518e0c900feb45e69965e35274bcb570": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "adf59b34e63741d7956f58be5b6a26cc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a8cb8e8428146b694516e2b8dcaf757": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "591089b40457413186dc8c7880d1dfec": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7bb2a99d6777483f9cdaa2e61bde0414", + "IPY_MODEL_0fa2cc05d1ee4908aa1298cb8c74fe10", + "IPY_MODEL_8fedf3c70f53498c8e3e1dedd160c06b" + ], + "layout": "IPY_MODEL_5e3d8ef4f64245e9b177dc68c5a90b87" + } + }, + "7bb2a99d6777483f9cdaa2e61bde0414": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_72b001321f8347fbac2a2fe57c302b1d", + "placeholder": "​", + "style": "IPY_MODEL_dde13f5a004e481f9dc9a0f65b481550", + "value": "Map: 100%" + } + }, + "0fa2cc05d1ee4908aa1298cb8c74fe10": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d4a3898402a143ec8adefad23a73f40c", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c5d12f454a5a4bd282d25293b0f9834d", + "value": 1390 + } + }, + "8fedf3c70f53498c8e3e1dedd160c06b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c43e20dacf0542a0b7ba198c4450a441", + "placeholder": "​", + "style": "IPY_MODEL_eb551d22a0f4404594fa74daa3766a4d", + "value": " 1390/1390 [00:00<00:00, 1959.65 examples/s]" + } + }, + "5e3d8ef4f64245e9b177dc68c5a90b87": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "72b001321f8347fbac2a2fe57c302b1d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dde13f5a004e481f9dc9a0f65b481550": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d4a3898402a143ec8adefad23a73f40c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c5d12f454a5a4bd282d25293b0f9834d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c43e20dacf0542a0b7ba198c4450a441": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eb551d22a0f4404594fa74daa3766a4d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8f0d224cfe294944a7bd161d995d7bda": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_42f3a829c2fb45749368dbee5e490a35", + "IPY_MODEL_867649fd4e3341ab9ce5a6926b10ce78", + "IPY_MODEL_433519f7276b4fddb38e862c414df5fd" + ], + "layout": "IPY_MODEL_5b80083779a54d34954d8af7a8a9fcd6" + } + }, + "42f3a829c2fb45749368dbee5e490a35": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f3e243c3c2224641babb7629a42f0248", + "placeholder": "​", + "style": "IPY_MODEL_2f6e3c1bab9b43d49976e890255d7c28", + "value": "Downloading model.safetensors: 100%" + } + }, + "867649fd4e3341ab9ce5a6926b10ce78": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3cf4034994f24ca6be2a1a24ded77627", + "max": 541795680, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b98d787fb58d4c00b277999cb4e81a6d", + "value": 541795680 + } + }, + "433519f7276b4fddb38e862c414df5fd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5fac8e3703a54610a862d115063debdd", + "placeholder": "​", + "style": "IPY_MODEL_8579b0149f574b36bcf9641481e2f834", + "value": " 542M/542M [00:03<00:00, 143MB/s]" + } + }, + "5b80083779a54d34954d8af7a8a9fcd6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f3e243c3c2224641babb7629a42f0248": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2f6e3c1bab9b43d49976e890255d7c28": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3cf4034994f24ca6be2a1a24ded77627": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b98d787fb58d4c00b277999cb4e81a6d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5fac8e3703a54610a862d115063debdd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8579b0149f574b36bcf9641481e2f834": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8ed80abd5ea7459580c458fff0089acc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d855649c9dcd4b4e9c4b377616d527a7", + "IPY_MODEL_d8a740862ec0449e9a9ea38eadf6549e", + "IPY_MODEL_cc2a4ba35e0e4d55a96715545f60cbf0" + ], + "layout": "IPY_MODEL_d14760dd70124ceab4a356f3ea480ef9" + } + }, + "d855649c9dcd4b4e9c4b377616d527a7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e4c79a204fd142b6a307c72d7dc10a38", + "placeholder": "​", + "style": "IPY_MODEL_694ecf5bbe544e228a98e8caa343a9e7", + "value": "Map: 100%" + } + }, + "d8a740862ec0449e9a9ea38eadf6549e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_22a3dbd954e343229d64b8b6e81697d3", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3ea26ec5e4474ede9bfa10cf598f622d", + "value": 5559 + } + }, + "cc2a4ba35e0e4d55a96715545f60cbf0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_308a0ac18d7549e69572e3dd810494e5", + "placeholder": "​", + "style": "IPY_MODEL_d2900942f9df47b28947c30c92de734f", + "value": " 5559/5559 [01:51<00:00, 49.40 examples/s]" + } + }, + "d14760dd70124ceab4a356f3ea480ef9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e4c79a204fd142b6a307c72d7dc10a38": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "694ecf5bbe544e228a98e8caa343a9e7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "22a3dbd954e343229d64b8b6e81697d3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3ea26ec5e4474ede9bfa10cf598f622d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "308a0ac18d7549e69572e3dd810494e5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d2900942f9df47b28947c30c92de734f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "85f532274aa34a19a5cadf440768d30b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_844681227c484b3398e7efb9fea80ee1", + "IPY_MODEL_a5a2bfe6a8464279b8cc5e0e6ebb1082", + "IPY_MODEL_521033f81bdb4bc5b841095d1441f8dc" + ], + "layout": "IPY_MODEL_8b7cac926a404a8c975a1b534254d6b5" + } + }, + "844681227c484b3398e7efb9fea80ee1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b115e3e3a6c74950ac1531366d3d1335", + "placeholder": "​", + "style": "IPY_MODEL_222842b061834510af99839d3b2310f1", + "value": "Map: 100%" + } + }, + "a5a2bfe6a8464279b8cc5e0e6ebb1082": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d3b19d20d3394eb088c6fa1e88e00b8b", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2daeb74a35b34ddfb932960196636047", + "value": 1390 + } + }, + "521033f81bdb4bc5b841095d1441f8dc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7a098858446147ccac3d996486da40ac", + "placeholder": "​", + "style": "IPY_MODEL_9c70d0b152df49e5827eaf7c4c680b2e", + "value": " 1390/1390 [00:26<00:00, 52.48 examples/s]" + } + }, + "8b7cac926a404a8c975a1b534254d6b5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b115e3e3a6c74950ac1531366d3d1335": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "222842b061834510af99839d3b2310f1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d3b19d20d3394eb088c6fa1e88e00b8b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2daeb74a35b34ddfb932960196636047": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7a098858446147ccac3d996486da40ac": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9c70d0b152df49e5827eaf7c4c680b2e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a2cf47da7e8a450aa8d5c77881873287": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_47b97501f50d4fd793af73e5f7ceaa4a", + "IPY_MODEL_2dfda44036cb4cb88a24f0cb7d34804c", + "IPY_MODEL_56a31f46d7554b3da300d363edc1b8dc" + ], + "layout": "IPY_MODEL_751fe4e50bdb4cc29bc615a7b212bf3a" + } + }, + "47b97501f50d4fd793af73e5f7ceaa4a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8ca31c08b7da43819df07badc22a179e", + "placeholder": "​", + "style": "IPY_MODEL_d72b1c4807db42d2a3969e57e8e9a636", + "value": "Map: 100%" + } + }, + "2dfda44036cb4cb88a24f0cb7d34804c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a484c9d090fb4cecaf781a0ae5f43f3e", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0bcbc8fe0861455f99c5a0784ae64c7a", + "value": 5559 + } + }, + "56a31f46d7554b3da300d363edc1b8dc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_259af91263c2451c8835deb8764a9241", + "placeholder": "​", + "style": "IPY_MODEL_9d7a6e1b52474cb884814647469ee6d5", + "value": " 5559/5559 [01:47<00:00, 52.62 examples/s]" + } + }, + "751fe4e50bdb4cc29bc615a7b212bf3a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8ca31c08b7da43819df07badc22a179e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d72b1c4807db42d2a3969e57e8e9a636": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a484c9d090fb4cecaf781a0ae5f43f3e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0bcbc8fe0861455f99c5a0784ae64c7a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "259af91263c2451c8835deb8764a9241": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9d7a6e1b52474cb884814647469ee6d5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5976809ff3b649b4a501c31a5679ac4e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_50a5071b535a47a0b88b728a47b89d11", + "IPY_MODEL_93dde85e17294ddd9e601f5bea74cbb6", + "IPY_MODEL_2b92e8b310de4efd8cec36f3552c9a6c" + ], + "layout": "IPY_MODEL_8c6f897388704644a23244153179b827" + } + }, + "50a5071b535a47a0b88b728a47b89d11": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_584fb7f0e37e4f07be0065d76e908606", + "placeholder": "​", + "style": "IPY_MODEL_f22f1a8cbed842afadde3eac96a11c44", + "value": "Map: 100%" + } + }, + "93dde85e17294ddd9e601f5bea74cbb6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8628e5935fb84f3593602277332ade4a", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_91f304d326d7495e9556161390588d27", + "value": 1390 + } + }, + "2b92e8b310de4efd8cec36f3552c9a6c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5c6167eaa65b45d68fba432b79090a59", + "placeholder": "​", + "style": "IPY_MODEL_62494f3d853b4398b57450d9990f9f91", + "value": " 1390/1390 [00:26<00:00, 51.76 examples/s]" + } + }, + "8c6f897388704644a23244153179b827": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "584fb7f0e37e4f07be0065d76e908606": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f22f1a8cbed842afadde3eac96a11c44": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8628e5935fb84f3593602277332ade4a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "91f304d326d7495e9556161390588d27": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5c6167eaa65b45d68fba432b79090a59": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "62494f3d853b4398b57450d9990f9f91": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "94e9b0b82ef24d50bcd22a69d330b8e3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_04c38476fb474cfca97cd39ba4d7b7d6", + "IPY_MODEL_ea57a35d4bec43dfb17bc720f66760ef", + "IPY_MODEL_ed7412d2d61241169f992d269eade30a" + ], + "layout": "IPY_MODEL_4263e489831f4695915a85d63e155f78" + } + }, + "04c38476fb474cfca97cd39ba4d7b7d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0c260d91e8c541d0800dab48c561532f", + "placeholder": "​", + "style": "IPY_MODEL_291c668611224d0bbe003d4afdb940d0", + "value": "Map: 100%" + } + }, + "ea57a35d4bec43dfb17bc720f66760ef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3595004ad04e440596caf9a909d0cb3a", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_633543a5e3474380a4dc02f1705e6381", + "value": 5559 + } + }, + "ed7412d2d61241169f992d269eade30a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9ac77dbf03b1450390506cf95bcaa6e4", + "placeholder": "​", + "style": "IPY_MODEL_08dc380285794f59bf458b3c7553f7fb", + "value": " 5559/5559 [01:46<00:00, 52.04 examples/s]" + } + }, + "4263e489831f4695915a85d63e155f78": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0c260d91e8c541d0800dab48c561532f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "291c668611224d0bbe003d4afdb940d0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3595004ad04e440596caf9a909d0cb3a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "633543a5e3474380a4dc02f1705e6381": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9ac77dbf03b1450390506cf95bcaa6e4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "08dc380285794f59bf458b3c7553f7fb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fe3b8ce1b4804ba69782b7a9266496fb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5668f91584334ed5b07509969388b7f2", + "IPY_MODEL_e9aa55c59bf7444aa2e2abe71eb6f134", + "IPY_MODEL_37662a39e78f4cb1b601f0a32ad6e65c" + ], + "layout": "IPY_MODEL_42931f45c63e48b1a99b7820a9ce4a4e" + } + }, + "5668f91584334ed5b07509969388b7f2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_78fe6770e8f144279c6be6200b79ecfd", + "placeholder": "​", + "style": "IPY_MODEL_7bd734cbe6c6497a9b21ed39c5da686d", + "value": "Map: 100%" + } + }, + "e9aa55c59bf7444aa2e2abe71eb6f134": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5d2c1928ecb04230bc15718f0da5245b", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_55e730f7626749079541f5ed86db447e", + "value": 1390 + } + }, + "37662a39e78f4cb1b601f0a32ad6e65c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f4af04ec1e2f4e5d94b667119fa68f8c", + "placeholder": "​", + "style": "IPY_MODEL_f7d2f7967b9348e793c9d250bda79da9", + "value": " 1390/1390 [00:26<00:00, 51.84 examples/s]" + } + }, + "42931f45c63e48b1a99b7820a9ce4a4e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "78fe6770e8f144279c6be6200b79ecfd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7bd734cbe6c6497a9b21ed39c5da686d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5d2c1928ecb04230bc15718f0da5245b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "55e730f7626749079541f5ed86db447e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f4af04ec1e2f4e5d94b667119fa68f8c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f7d2f7967b9348e793c9d250bda79da9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c0c0c6952f1d48f7be957066bac19ed5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_90b5ffd8825a4a1c9fc243723652a4d6", + "IPY_MODEL_af3079f2882443b79eb737a209c1787a", + "IPY_MODEL_acfbfccc008248c6b74509cddc0e2fe7" + ], + "layout": "IPY_MODEL_5f1db7f024f847bd93618601750b474c" + } + }, + "90b5ffd8825a4a1c9fc243723652a4d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ca72995210bd43408f96cc36f7577b92", + "placeholder": "​", + "style": "IPY_MODEL_959ae0c6077548e9bd64fd7a4bf9b7f5", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "af3079f2882443b79eb737a209c1787a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a03f8f70ac384db29225f51790acf56c", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b0c5f79e2d2e4851918c1ed2c2b33064", + "value": 5559 + } + }, + "acfbfccc008248c6b74509cddc0e2fe7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7be8a5052a174fa9b05e53b0c07117fe", + "placeholder": "​", + "style": "IPY_MODEL_364ed0dfa11d496a81e3e2d95455b5cb", + "value": " 5559/5559 [00:00<00:00, 43065.10 examples/s]" + } + }, + "5f1db7f024f847bd93618601750b474c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ca72995210bd43408f96cc36f7577b92": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "959ae0c6077548e9bd64fd7a4bf9b7f5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a03f8f70ac384db29225f51790acf56c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b0c5f79e2d2e4851918c1ed2c2b33064": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7be8a5052a174fa9b05e53b0c07117fe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "364ed0dfa11d496a81e3e2d95455b5cb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6ddeec81eeab4e60b7426bf313960252": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6caf1b50b88940c78df8ffaed4075c82", + "IPY_MODEL_c88e1931c8774b1a98dfb91eef23a56c", + "IPY_MODEL_200c49e4925246a7a92969be34dc80de" + ], + "layout": "IPY_MODEL_98253db133754a49a1ac090560140e33" + } + }, + "6caf1b50b88940c78df8ffaed4075c82": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b2ff5b74b18c4c20ac24649c94f89d6b", + "placeholder": "​", + "style": "IPY_MODEL_54d8348db2c348aa8148fe990ed1b33a", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "c88e1931c8774b1a98dfb91eef23a56c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dd0e419bf01340b8b3350490ab322439", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_85478fcd7ee04a2f8a1fe891d3818c3a", + "value": 1390 + } + }, + "200c49e4925246a7a92969be34dc80de": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_efe396a9fce84ddfb95794d1d6e5ab54", + "placeholder": "​", + "style": "IPY_MODEL_ece09fe9319e45aa8fc925360be92e09", + "value": " 1390/1390 [00:00<00:00, 25715.92 examples/s]" + } + }, + "98253db133754a49a1ac090560140e33": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b2ff5b74b18c4c20ac24649c94f89d6b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "54d8348db2c348aa8148fe990ed1b33a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dd0e419bf01340b8b3350490ab322439": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "85478fcd7ee04a2f8a1fe891d3818c3a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "efe396a9fce84ddfb95794d1d6e5ab54": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ece09fe9319e45aa8fc925360be92e09": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6e0ff75463754489a5174cac1d9b5822": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_738a0639d9bc40fc8f69f0c766038536", + "IPY_MODEL_7edb817203b449f68ff239b8712c592d", + "IPY_MODEL_3c8040823b5343f8aa1988035358d62e" + ], + "layout": "IPY_MODEL_545359cafd1048ffa7c815ed5534aa79" + } + }, + "738a0639d9bc40fc8f69f0c766038536": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_380ad081adba47d087ff581aaae181b0", + "placeholder": "​", + "style": "IPY_MODEL_88ace3f672e04c1d9999692ff85ba4ea", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "7edb817203b449f68ff239b8712c592d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_91afd40d9d1a48f58d3178c049fe0af7", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4183d077fe4a4a60a67bf93c051ea600", + "value": 5559 + } + }, + "3c8040823b5343f8aa1988035358d62e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_92feef36eed0474696c5fd819a30e8ea", + "placeholder": "​", + "style": "IPY_MODEL_da2a9434bb7f4d08bed438e2360be212", + "value": " 5559/5559 [00:00<00:00, 45839.61 examples/s]" + } + }, + "545359cafd1048ffa7c815ed5534aa79": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "380ad081adba47d087ff581aaae181b0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "88ace3f672e04c1d9999692ff85ba4ea": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "91afd40d9d1a48f58d3178c049fe0af7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4183d077fe4a4a60a67bf93c051ea600": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "92feef36eed0474696c5fd819a30e8ea": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "da2a9434bb7f4d08bed438e2360be212": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d17de88295f24936bb07e02bdde1ef18": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e91ff5ce47b64722a011e3d227c1e5d8", + "IPY_MODEL_62960d7214e549e4aa236dae77b3adcc", + "IPY_MODEL_2534601ee1494d0ea3ed3fdeee9e409c" + ], + "layout": "IPY_MODEL_c695710cb07048549d1c0ee460798838" + } + }, + "e91ff5ce47b64722a011e3d227c1e5d8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_680fa3c642974c18ba47e1c4f4ff8a0e", + "placeholder": "​", + "style": "IPY_MODEL_72d551809cbc4b2eb497db44c5adc46c", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "62960d7214e549e4aa236dae77b3adcc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_19ab9163969d4ba1aedd890e8456b3f2", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d65c3ae998494d1fa592052257e66c58", + "value": 1390 + } + }, + "2534601ee1494d0ea3ed3fdeee9e409c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9258f33f48714db0856c57e8efccba3e", + "placeholder": "​", + "style": "IPY_MODEL_967d9e918cdc44f8a6a1afebe8f35049", + "value": " 1390/1390 [00:00<00:00, 28750.78 examples/s]" + } + }, + "c695710cb07048549d1c0ee460798838": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "680fa3c642974c18ba47e1c4f4ff8a0e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "72d551809cbc4b2eb497db44c5adc46c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "19ab9163969d4ba1aedd890e8456b3f2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d65c3ae998494d1fa592052257e66c58": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9258f33f48714db0856c57e8efccba3e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "967d9e918cdc44f8a6a1afebe8f35049": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9aba4419261f433babdbacf2cddbaaae": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c4d27da25d7b46fe98a95b5f6f0c0ce8", + "IPY_MODEL_2df81efc712b4533acf87f15de43714d", + "IPY_MODEL_1d3171780d8e42988102b4cca3c113c6" + ], + "layout": "IPY_MODEL_e260174df0ad4d47864ed4ec99b25fea" + } + }, + "c4d27da25d7b46fe98a95b5f6f0c0ce8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0c0a76b141ce4c48b951c3f4e8406ce0", + "placeholder": "​", + "style": "IPY_MODEL_f15f80503f43492fba9c88cd3c624edb", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "2df81efc712b4533acf87f15de43714d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ea01494848f64ee197d761be6236273c", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7769aa1581144b6db3198fc9c6c94927", + "value": 5559 + } + }, + "1d3171780d8e42988102b4cca3c113c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3f5ba3ff8b474e2780ce0f87edd73d26", + "placeholder": "​", + "style": "IPY_MODEL_af395a656b45411784c0f53579de2e4a", + "value": " 5559/5559 [00:00<00:00, 40342.41 examples/s]" + } + }, + "e260174df0ad4d47864ed4ec99b25fea": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0c0a76b141ce4c48b951c3f4e8406ce0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f15f80503f43492fba9c88cd3c624edb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ea01494848f64ee197d761be6236273c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7769aa1581144b6db3198fc9c6c94927": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3f5ba3ff8b474e2780ce0f87edd73d26": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "af395a656b45411784c0f53579de2e4a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c69bc5a9ef494ff1be688d3345b47951": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_047ca1cddbe74f378ce360e1df50937b", + "IPY_MODEL_283e7d7c9610439696622eac021cb1fa", + "IPY_MODEL_c29cd6ad1acb4a0d883ec60ac23ec295" + ], + "layout": "IPY_MODEL_c57ea7deb5b143b99e06357c41528cf1" + } + }, + "047ca1cddbe74f378ce360e1df50937b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6e889c250ea94043bad8867ddc10ec92", + "placeholder": "​", + "style": "IPY_MODEL_85e59a7172294e76b4e2f83bd60c1f2e", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "283e7d7c9610439696622eac021cb1fa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_914c186c1d5e4353b0881142cd23c52e", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b79e41c92a56412a824ef3b87636694f", + "value": 1390 + } + }, + "c29cd6ad1acb4a0d883ec60ac23ec295": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_56f7bd66913546b790cac64698f47d1f", + "placeholder": "​", + "style": "IPY_MODEL_e8dd5c4ec763417c9c01fda0e23af7dc", + "value": " 1390/1390 [00:00<00:00, 27892.60 examples/s]" + } + }, + "c57ea7deb5b143b99e06357c41528cf1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6e889c250ea94043bad8867ddc10ec92": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "85e59a7172294e76b4e2f83bd60c1f2e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "914c186c1d5e4353b0881142cd23c52e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b79e41c92a56412a824ef3b87636694f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "56f7bd66913546b790cac64698f47d1f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e8dd5c4ec763417c9c01fda0e23af7dc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8859929b31c548eaa0fceb367568af33": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f0f547acc2c44f10be2f6c7ffd5db923", + "IPY_MODEL_815ca085199c4f6a9dc202d3a174fdd5", + "IPY_MODEL_dc0772cdfd4d42ac9211675e32f48f44" + ], + "layout": "IPY_MODEL_c4703cc30b76400cbb482ef52d6d3791" + } + }, + "f0f547acc2c44f10be2f6c7ffd5db923": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3ecfc0861d334e8391ad99b43ab7b723", + "placeholder": "​", + "style": "IPY_MODEL_514b6b97e18e4dd897b082cfe5b36bcf", + "value": "Map: 100%" + } + }, + "815ca085199c4f6a9dc202d3a174fdd5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_da418dbc160c4b82a1c35722798a28e4", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f9e8fbba70044acfa947d2dd6e4c2d43", + "value": 5559 + } + }, + "dc0772cdfd4d42ac9211675e32f48f44": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8b97e9202169463792af0302a19f6af8", + "placeholder": "​", + "style": "IPY_MODEL_2c347ab097bb4170908b355dd7b71d9f", + "value": " 5559/5559 [00:01<00:00, 4098.91 examples/s]" + } + }, + "c4703cc30b76400cbb482ef52d6d3791": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3ecfc0861d334e8391ad99b43ab7b723": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "514b6b97e18e4dd897b082cfe5b36bcf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "da418dbc160c4b82a1c35722798a28e4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f9e8fbba70044acfa947d2dd6e4c2d43": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8b97e9202169463792af0302a19f6af8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2c347ab097bb4170908b355dd7b71d9f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "37bb3b9cd750470580d42d0792ea8e3b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c457da46eced414bab1662ca2953b86f", + "IPY_MODEL_f762156b82c5482a878a0c1c42da6836", + "IPY_MODEL_5c7f3a804425438da85a57efc4521a2e" + ], + "layout": "IPY_MODEL_da3addaf251f48cbb48533d0a115bef2" + } + }, + "c457da46eced414bab1662ca2953b86f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9459bb2fa5574d7fbed332a76760365e", + "placeholder": "​", + "style": "IPY_MODEL_ad926e85837b43f7b23dd42b1c8e977c", + "value": "Map: 100%" + } + }, + "f762156b82c5482a878a0c1c42da6836": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c18d64ce39c643beb6dfec5cbb1034c9", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_96b808e296584cd6b405d92bacb33857", + "value": 1390 + } + }, + "5c7f3a804425438da85a57efc4521a2e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a78fc8e06cd84d3d93000149a0f8b783", + "placeholder": "​", + "style": "IPY_MODEL_c7f80157d6f84c239ea6ee339354101c", + "value": " 1390/1390 [00:00<00:00, 4706.10 examples/s]" + } + }, + "da3addaf251f48cbb48533d0a115bef2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9459bb2fa5574d7fbed332a76760365e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad926e85837b43f7b23dd42b1c8e977c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c18d64ce39c643beb6dfec5cbb1034c9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "96b808e296584cd6b405d92bacb33857": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a78fc8e06cd84d3d93000149a0f8b783": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c7f80157d6f84c239ea6ee339354101c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a38d4960d8b347d5a27e3b6e4e1fb113": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e778619f05884fc6a625a4b4d791324c", + "IPY_MODEL_f4b2e06f854044a2b39d3c44f2e581c8", + "IPY_MODEL_3ae6c793683f4204a6c0a2e94c8c0f38" + ], + "layout": "IPY_MODEL_d09b95acf723434d8efc0441bb70c42b" + } + }, + "e778619f05884fc6a625a4b4d791324c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cf0d5b8201ab49d193edb2699eb83ec5", + "placeholder": "​", + "style": "IPY_MODEL_031029d1c7154f67aa36703d8c500d81", + "value": "Map: 100%" + } + }, + "f4b2e06f854044a2b39d3c44f2e581c8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_202292e0000146dda5d3d4947d912a0c", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7d10f210fd1245c59a0339e183c515cf", + "value": 5559 + } + }, + "3ae6c793683f4204a6c0a2e94c8c0f38": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ebdcd3076e304521aff61740d639b38f", + "placeholder": "​", + "style": "IPY_MODEL_ec6167948240441b9261d5448b3237ec", + "value": " 5559/5559 [00:01<00:00, 4016.98 examples/s]" + } + }, + "d09b95acf723434d8efc0441bb70c42b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cf0d5b8201ab49d193edb2699eb83ec5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "031029d1c7154f67aa36703d8c500d81": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "202292e0000146dda5d3d4947d912a0c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7d10f210fd1245c59a0339e183c515cf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ebdcd3076e304521aff61740d639b38f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ec6167948240441b9261d5448b3237ec": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0c3537ff57e04d7db9262aab594bcd5f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2d74142f04f349e19e808a98746390f2", + "IPY_MODEL_f6221bb71bc34c918db36e1aebe1aac4", + "IPY_MODEL_6206181637814e5b8e4213187a9dedb0" + ], + "layout": "IPY_MODEL_ee6b155dd8744028b375e56594d2b48a" + } + }, + "2d74142f04f349e19e808a98746390f2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8ce81913402e4ea49de86a20651add07", + "placeholder": "​", + "style": "IPY_MODEL_9ec9ef006d004103907e24442f7c80fe", + "value": "Map: 100%" + } + }, + "f6221bb71bc34c918db36e1aebe1aac4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dff32c0ac16d4f14a39096288f1aa8b8", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fad7778daf544f62bd8d74cbb1b015dc", + "value": 1390 + } + }, + "6206181637814e5b8e4213187a9dedb0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_db1d68dfb3fe437f9b8c67268f5a4ab2", + "placeholder": "​", + "style": "IPY_MODEL_f34edd60534c4f17b75fcff5fba45589", + "value": " 1390/1390 [00:00<00:00, 4554.11 examples/s]" + } + }, + "ee6b155dd8744028b375e56594d2b48a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8ce81913402e4ea49de86a20651add07": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9ec9ef006d004103907e24442f7c80fe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dff32c0ac16d4f14a39096288f1aa8b8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fad7778daf544f62bd8d74cbb1b015dc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "db1d68dfb3fe437f9b8c67268f5a4ab2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f34edd60534c4f17b75fcff5fba45589": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ac73a156c46644d7970e16e7781a5183": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b688e34e55b94fdb9d2cabb20fef3053", + "IPY_MODEL_775a6250bd854c1aa0247923d97ff9fd", + "IPY_MODEL_93549c8a61fa4894b4a19c3fca99a118" + ], + "layout": "IPY_MODEL_fec529325496499c94c6177b5d54c3eb" + } + }, + "b688e34e55b94fdb9d2cabb20fef3053": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_557d9c1161664117a7cf83affd6d3980", + "placeholder": "​", + "style": "IPY_MODEL_a501b1086d6a4d8ab3518b23cf02789d", + "value": "Map: 100%" + } + }, + "775a6250bd854c1aa0247923d97ff9fd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6c8190f1fcdc45f0939a82f9eefc5cad", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_acac3bd9c181437eade41fca54c92646", + "value": 5559 + } + }, + "93549c8a61fa4894b4a19c3fca99a118": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_575523c10a5f40de80d8135c76fccb76", + "placeholder": "​", + "style": "IPY_MODEL_ca7e438ad5904494809d67935892bb2d", + "value": " 5559/5559 [00:02<00:00, 3402.23 examples/s]" + } + }, + "fec529325496499c94c6177b5d54c3eb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "557d9c1161664117a7cf83affd6d3980": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a501b1086d6a4d8ab3518b23cf02789d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6c8190f1fcdc45f0939a82f9eefc5cad": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "acac3bd9c181437eade41fca54c92646": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "575523c10a5f40de80d8135c76fccb76": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ca7e438ad5904494809d67935892bb2d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "56ab07e2da3340d7a5548ad251b507fa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5981828186cd4cfc8c4d9965b22d3718", + "IPY_MODEL_d84b745464254fcabdfd97422f03ee50", + "IPY_MODEL_fdfc7556cc4c4d1588fa53412a33a7ca" + ], + "layout": "IPY_MODEL_f822c415536240868446e730383ab21d" + } + }, + "5981828186cd4cfc8c4d9965b22d3718": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_061e5070e4d44f79b35a87f07647c265", + "placeholder": "​", + "style": "IPY_MODEL_756f1da19f454852af074af6e9767b16", + "value": "Map: 100%" + } + }, + "d84b745464254fcabdfd97422f03ee50": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_df7ced2045694585bf5caab44d2219de", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3680dc3182db4b0994d21e70d86a9fb1", + "value": 1390 + } + }, + "fdfc7556cc4c4d1588fa53412a33a7ca": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ca4efa3ede794e85b856adbf87edb53b", + "placeholder": "​", + "style": "IPY_MODEL_9da06a1fcd77401e926701eb80bd7619", + "value": " 1390/1390 [00:00<00:00, 4406.05 examples/s]" + } + }, + "f822c415536240868446e730383ab21d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "061e5070e4d44f79b35a87f07647c265": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "756f1da19f454852af074af6e9767b16": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "df7ced2045694585bf5caab44d2219de": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3680dc3182db4b0994d21e70d86a9fb1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ca4efa3ede794e85b856adbf87edb53b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9da06a1fcd77401e926701eb80bd7619": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "338d1ffeb8364875b1e3eba99eb75d0a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7275f894b10449d2b00a494e7a109f87", + "IPY_MODEL_ce54d113c2944f0c961501a967028b30", + "IPY_MODEL_ff0f15dcd86e49338cee6af7ef89395b" + ], + "layout": "IPY_MODEL_d1022bbf6fd149638383529c47051f93" + } + }, + "7275f894b10449d2b00a494e7a109f87": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fe30bd2fe55140ec9a61a55b72615524", + "placeholder": "​", + "style": "IPY_MODEL_b5db735f399d490eabfeb025a0dad1c3", + "value": "Map: 100%" + } + }, + "ce54d113c2944f0c961501a967028b30": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_708703e4fd9246f1ae61126f2be90578", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_410d2908686b4039b5e00d427644a576", + "value": 5559 + } + }, + "ff0f15dcd86e49338cee6af7ef89395b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1262a69f9f5448c38112759d637102b7", + "placeholder": "​", + "style": "IPY_MODEL_b7e157b1383a4c92b9ab4dc8a8d07e91", + "value": " 5559/5559 [01:46<00:00, 52.46 examples/s]" + } + }, + "d1022bbf6fd149638383529c47051f93": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fe30bd2fe55140ec9a61a55b72615524": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b5db735f399d490eabfeb025a0dad1c3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "708703e4fd9246f1ae61126f2be90578": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "410d2908686b4039b5e00d427644a576": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1262a69f9f5448c38112759d637102b7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b7e157b1383a4c92b9ab4dc8a8d07e91": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e3da77ab25d548fbbb1ad74b532f8c7d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b1ad913a10fd4c14801c68d6b5e31bc8", + "IPY_MODEL_d2746a51c2a643a68b813dc9d100721b", + "IPY_MODEL_2f490e9dab4b44d59f9b8d148911ae79" + ], + "layout": "IPY_MODEL_74bb44ca631a4f6cb832269a39518cd3" + } + }, + "b1ad913a10fd4c14801c68d6b5e31bc8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6cf7db0b71144e7b915f1c569386e834", + "placeholder": "​", + "style": "IPY_MODEL_dee4dd1ec2ea41a7be94073e291002c3", + "value": "Map: 100%" + } + }, + "d2746a51c2a643a68b813dc9d100721b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2f99de0601824cee8f0a7525f58c4726", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_db2642b85eb048a1853c061567ea01fa", + "value": 1390 + } + }, + "2f490e9dab4b44d59f9b8d148911ae79": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_51228ddf46e9405685247b445ec55dfe", + "placeholder": "​", + "style": "IPY_MODEL_133b07406b014ebc9ff41a244838a23a", + "value": " 1390/1390 [00:26<00:00, 51.97 examples/s]" + } + }, + "74bb44ca631a4f6cb832269a39518cd3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6cf7db0b71144e7b915f1c569386e834": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dee4dd1ec2ea41a7be94073e291002c3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2f99de0601824cee8f0a7525f58c4726": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "db2642b85eb048a1853c061567ea01fa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "51228ddf46e9405685247b445ec55dfe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "133b07406b014ebc9ff41a244838a23a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "88ab9b0630634433a38ec1a1041b6793": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a69938d2b5ef4b8e99d9a1b1c20f1d55", + "IPY_MODEL_e5e254c3143540998ac5a90294dbe490", + "IPY_MODEL_35578a8ace994593b59e7404e49c1fe1" + ], + "layout": "IPY_MODEL_403503061ca6475eab164690ed0a35de" + } + }, + "a69938d2b5ef4b8e99d9a1b1c20f1d55": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3915829c49f948119803ec5ba3ac6bbf", + "placeholder": "​", + "style": "IPY_MODEL_1b06a7cb6a7a49918ff546c21d7208f5", + "value": "Map: 100%" + } + }, + "e5e254c3143540998ac5a90294dbe490": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3e4f5d3074514aa58216884ad9a054e9", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fc325bb097f04411b1e46bc9a0adc7b9", + "value": 5559 + } + }, + "35578a8ace994593b59e7404e49c1fe1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_72c126b0b7284c9f9d0d851c7037a2d1", + "placeholder": "​", + "style": "IPY_MODEL_9bdeaef34b28447aaadc6bdc6faeed57", + "value": " 5559/5559 [01:46<00:00, 51.85 examples/s]" + } + }, + "403503061ca6475eab164690ed0a35de": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3915829c49f948119803ec5ba3ac6bbf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1b06a7cb6a7a49918ff546c21d7208f5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3e4f5d3074514aa58216884ad9a054e9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fc325bb097f04411b1e46bc9a0adc7b9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "72c126b0b7284c9f9d0d851c7037a2d1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9bdeaef34b28447aaadc6bdc6faeed57": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6b5c8a5a7934422a903a7d0ecc91f321": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_05e2dc79509649588adc10d0e27a5ab1", + "IPY_MODEL_29c9dc340f4a422ea0a4b21513b89ddb", + "IPY_MODEL_7ecb6a88b5754c0abc125b054eba7389" + ], + "layout": "IPY_MODEL_2a17ba043fb74a0b9581f32208a74732" + } + }, + "05e2dc79509649588adc10d0e27a5ab1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9ef9ed8d47154ff495177e3ce6f0ccab", + "placeholder": "​", + "style": "IPY_MODEL_2f8cab7a7e584b75b4dcd027512e7ae8", + "value": "Map: 100%" + } + }, + "29c9dc340f4a422ea0a4b21513b89ddb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f7332463f4da4e598d0c76a7cf0e1160", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3636683727324018a5472386ed6990ca", + "value": 1390 + } + }, + "7ecb6a88b5754c0abc125b054eba7389": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_84e62572b55b418fa40d3cb3c1ce0f14", + "placeholder": "​", + "style": "IPY_MODEL_77a56d8ee48e46a08e2ecaa5d676be0b", + "value": " 1390/1390 [00:26<00:00, 51.86 examples/s]" + } + }, + "2a17ba043fb74a0b9581f32208a74732": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9ef9ed8d47154ff495177e3ce6f0ccab": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2f8cab7a7e584b75b4dcd027512e7ae8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f7332463f4da4e598d0c76a7cf0e1160": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3636683727324018a5472386ed6990ca": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "84e62572b55b418fa40d3cb3c1ce0f14": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "77a56d8ee48e46a08e2ecaa5d676be0b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ffcb83603765474d9379a90187bc3a27": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aeaed39127bf45a1acfa3632224babd1", + "IPY_MODEL_21d9e3e2ebb540c5bf7649b10a0258ea", + "IPY_MODEL_8297e4bda30b4e8cb9ac8ed97defc75b" + ], + "layout": "IPY_MODEL_a074133c31d2406c8b68f4881acb0f62" + } + }, + "aeaed39127bf45a1acfa3632224babd1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ff8f39d347ca4672b691a38d34bf0dd1", + "placeholder": "​", + "style": "IPY_MODEL_8eca63e0ea5b4e578dffc3f10212d558", + "value": "Map: 100%" + } + }, + "21d9e3e2ebb540c5bf7649b10a0258ea": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_51ba5660537f4a1cb8e1fc430652b051", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_67327719377c4fc691be3f72f5a36747", + "value": 5559 + } + }, + "8297e4bda30b4e8cb9ac8ed97defc75b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3b1109fb54d84f179d202759e8b66495", + "placeholder": "​", + "style": "IPY_MODEL_a1cec3a032bc4ef08f921d9be506c9de", + "value": " 5559/5559 [01:46<00:00, 52.61 examples/s]" + } + }, + "a074133c31d2406c8b68f4881acb0f62": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ff8f39d347ca4672b691a38d34bf0dd1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8eca63e0ea5b4e578dffc3f10212d558": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "51ba5660537f4a1cb8e1fc430652b051": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "67327719377c4fc691be3f72f5a36747": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3b1109fb54d84f179d202759e8b66495": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a1cec3a032bc4ef08f921d9be506c9de": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "84f23c987e614f0992dbdae071fb6314": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0a148286887b421bbfb2579c3eab211d", + "IPY_MODEL_bea4705f37d9422c875d9fa13669950a", + "IPY_MODEL_39a2d7b0750e4f84ab56ca52b66b94be" + ], + "layout": "IPY_MODEL_98e36923b3f948bcabcbe2c3d950d82b" + } + }, + "0a148286887b421bbfb2579c3eab211d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5914f98fb60341deb7966b634faa360b", + "placeholder": "​", + "style": "IPY_MODEL_73017793c9394f818104215972655c2b", + "value": "Map: 100%" + } + }, + "bea4705f37d9422c875d9fa13669950a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5def40185d6543e091aa714c9b891ac9", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0112437a720846dca2e16f634c862ce8", + "value": 1390 + } + }, + "39a2d7b0750e4f84ab56ca52b66b94be": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_16e007cf72174f60a0edd1bd3735549b", + "placeholder": "​", + "style": "IPY_MODEL_2d2ed668b80547dca68771be04264059", + "value": " 1390/1390 [00:26<00:00, 51.61 examples/s]" + } + }, + "98e36923b3f948bcabcbe2c3d950d82b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5914f98fb60341deb7966b634faa360b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "73017793c9394f818104215972655c2b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5def40185d6543e091aa714c9b891ac9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0112437a720846dca2e16f634c862ce8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "16e007cf72174f60a0edd1bd3735549b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2d2ed668b80547dca68771be04264059": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "25171061d90a40068fdd9cc385050aeb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_95a3e9f6b0c24aa5976042ce50e669f7", + "IPY_MODEL_3789d006f67e48aeb3c41504caafa634", + "IPY_MODEL_ede8b23198334ae9a16d06ee134d1023" + ], + "layout": "IPY_MODEL_a6a8d8cb31604e6caca980432245ef7f" + } + }, + "95a3e9f6b0c24aa5976042ce50e669f7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6fdafd894d354b9abed9c335d1d6e943", + "placeholder": "​", + "style": "IPY_MODEL_069398105c3d47ccb215475d097fccae", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "3789d006f67e48aeb3c41504caafa634": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7a5896e66d084ccda618082d735dcba9", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d3ace19af72b4c91a96535ee74353cca", + "value": 5559 + } + }, + "ede8b23198334ae9a16d06ee134d1023": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c831615c79d847c0b84179cb86720b78", + "placeholder": "​", + "style": "IPY_MODEL_0f6f967388174a3ca14eaec5b5cece38", + "value": " 5559/5559 [00:00<00:00, 41812.54 examples/s]" + } + }, + "a6a8d8cb31604e6caca980432245ef7f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6fdafd894d354b9abed9c335d1d6e943": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "069398105c3d47ccb215475d097fccae": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7a5896e66d084ccda618082d735dcba9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d3ace19af72b4c91a96535ee74353cca": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c831615c79d847c0b84179cb86720b78": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0f6f967388174a3ca14eaec5b5cece38": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d3b0ab351fe24f6c8c94db179bddfe82": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3763230ceae34b57ab800df9f52fb4c3", + "IPY_MODEL_fe19f45121c940a09d4f6ca7203d14f3", + "IPY_MODEL_c9d9ad64c1744e70baa2d9fcba04381d" + ], + "layout": "IPY_MODEL_a17542b65b2f489d918d5c2ea0efbf14" + } + }, + "3763230ceae34b57ab800df9f52fb4c3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5573793fd299467eb4258e27b3629a9d", + "placeholder": "​", + "style": "IPY_MODEL_68c2bc2ea11a4d6893ec9a400c7072df", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "fe19f45121c940a09d4f6ca7203d14f3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a33e610f4b064359a78d639632b91228", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_169684652ce9425db5d0ed190749fdf7", + "value": 1390 + } + }, + "c9d9ad64c1744e70baa2d9fcba04381d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5cba2d1c85ad4e82933bf92fb8154885", + "placeholder": "​", + "style": "IPY_MODEL_5c2755ed53f84c8382ca67d7b25985db", + "value": " 1390/1390 [00:00<00:00, 31131.96 examples/s]" + } + }, + "a17542b65b2f489d918d5c2ea0efbf14": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5573793fd299467eb4258e27b3629a9d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "68c2bc2ea11a4d6893ec9a400c7072df": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a33e610f4b064359a78d639632b91228": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "169684652ce9425db5d0ed190749fdf7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5cba2d1c85ad4e82933bf92fb8154885": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c2755ed53f84c8382ca67d7b25985db": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e27d3f29de024968b35a25d755a9abf6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5a7908d105174393987c8c8a5461a4c0", + "IPY_MODEL_53b343b183e14c398f4f96fc7efcb017", + "IPY_MODEL_47a96c0b881747529b37bbaf4d31c66d" + ], + "layout": "IPY_MODEL_73c86ddeb50f49a0b81bf07a598b4442" + } + }, + "5a7908d105174393987c8c8a5461a4c0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_252a7cd731bf40a7959a370d6146a95f", + "placeholder": "​", + "style": "IPY_MODEL_7036a7d40faf42498db22dd68212bd15", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "53b343b183e14c398f4f96fc7efcb017": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1345735c960a40179f21f9950386f24e", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7f33c98181574426bf5526db319b50d3", + "value": 5559 + } + }, + "47a96c0b881747529b37bbaf4d31c66d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bafa736d2fca4004be822dfab9916ae1", + "placeholder": "​", + "style": "IPY_MODEL_525bda7c29214bd09981186d4e39cde4", + "value": " 5559/5559 [00:00<00:00, 44506.80 examples/s]" + } + }, + "73c86ddeb50f49a0b81bf07a598b4442": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "252a7cd731bf40a7959a370d6146a95f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7036a7d40faf42498db22dd68212bd15": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1345735c960a40179f21f9950386f24e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7f33c98181574426bf5526db319b50d3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bafa736d2fca4004be822dfab9916ae1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "525bda7c29214bd09981186d4e39cde4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "92d69515e6c246ffba8dbc9389875efb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4402d0c3b2b2409d8aca3bfa87b3bb2c", + "IPY_MODEL_3132cbb00d16405a996c2efdb4fb86ef", + "IPY_MODEL_16bfa0ea08c4484f8be77b3fa76d98b1" + ], + "layout": "IPY_MODEL_be7d33d41de74c20a195a2e9a96ffa80" + } + }, + "4402d0c3b2b2409d8aca3bfa87b3bb2c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f9920508dbb94df98a1d328cd967769c", + "placeholder": "​", + "style": "IPY_MODEL_ffc90b0962284848a7d393f8b328b805", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "3132cbb00d16405a996c2efdb4fb86ef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_31f5a53161ad4ccbb5bbd4b18e17ff09", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_cc26324bc67f437fb91e53565dd00afe", + "value": 1390 + } + }, + "16bfa0ea08c4484f8be77b3fa76d98b1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0e28586042ac4be4a3d8d84d412ea3a3", + "placeholder": "​", + "style": "IPY_MODEL_84a7817fb46549608bfa8b8f5d3b5aa8", + "value": " 1390/1390 [00:00<00:00, 30533.58 examples/s]" + } + }, + "be7d33d41de74c20a195a2e9a96ffa80": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f9920508dbb94df98a1d328cd967769c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ffc90b0962284848a7d393f8b328b805": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "31f5a53161ad4ccbb5bbd4b18e17ff09": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cc26324bc67f437fb91e53565dd00afe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0e28586042ac4be4a3d8d84d412ea3a3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "84a7817fb46549608bfa8b8f5d3b5aa8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7b7cfee0c19a418ca5a8892796d1764d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_671416fe8ccf49d2bcbb86a4b1f34e37", + "IPY_MODEL_b846f21cadb2441bb8c0176577e6e4ac", + "IPY_MODEL_2f6c5e2f216649f295b42870dd47ed4a" + ], + "layout": "IPY_MODEL_b5f605db39c3468d8ee0cd12fb57fbfe" + } + }, + "671416fe8ccf49d2bcbb86a4b1f34e37": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_96583fa6a2974012a68a03a68a50a51a", + "placeholder": "​", + "style": "IPY_MODEL_68091e0a86b24f07926dc12d0b6d81f8", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "b846f21cadb2441bb8c0176577e6e4ac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1f8574ed99f840e597c36e3a9e464827", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_14b195ddb341465d93c140ee4fec3eae", + "value": 5559 + } + }, + "2f6c5e2f216649f295b42870dd47ed4a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f0b49fb723c74a709a559ceab47e2298", + "placeholder": "​", + "style": "IPY_MODEL_14bd51b1afda4fb6aa21a99cbecd0477", + "value": " 5559/5559 [00:00<00:00, 40408.48 examples/s]" + } + }, + "b5f605db39c3468d8ee0cd12fb57fbfe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "96583fa6a2974012a68a03a68a50a51a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "68091e0a86b24f07926dc12d0b6d81f8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1f8574ed99f840e597c36e3a9e464827": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "14b195ddb341465d93c140ee4fec3eae": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f0b49fb723c74a709a559ceab47e2298": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "14bd51b1afda4fb6aa21a99cbecd0477": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c17f3526e8cf4d4f909fb45e980c405e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c1a5cc55d3d3426396a06ec7dd2851f1", + "IPY_MODEL_b59c4ee41345481c98115ab079a4c915", + "IPY_MODEL_b5e9b9d525a4487d81266b47451e6e20" + ], + "layout": "IPY_MODEL_a26a7799687545758d0057168ea00aaf" + } + }, + "c1a5cc55d3d3426396a06ec7dd2851f1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0be030a620ab4eaf89f3f25bed03c0cd", + "placeholder": "​", + "style": "IPY_MODEL_66771ce5d79d439d88cb8095e7f58dc4", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "b59c4ee41345481c98115ab079a4c915": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_789591a72e9046139927b9d4d2d85ae1", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6706374cb7d1452cbf198207f5eeb1ae", + "value": 1390 + } + }, + "b5e9b9d525a4487d81266b47451e6e20": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_eb441c0cf54241cca31fc0e47a38f457", + "placeholder": "​", + "style": "IPY_MODEL_32905dd3bba94d9a8034c9d7a2892493", + "value": " 1390/1390 [00:00<00:00, 27672.82 examples/s]" + } + }, + "a26a7799687545758d0057168ea00aaf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0be030a620ab4eaf89f3f25bed03c0cd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "66771ce5d79d439d88cb8095e7f58dc4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "789591a72e9046139927b9d4d2d85ae1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6706374cb7d1452cbf198207f5eeb1ae": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "eb441c0cf54241cca31fc0e47a38f457": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "32905dd3bba94d9a8034c9d7a2892493": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5034dad0e3fe47ceb3a20148f5792be6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4570394dee324e6cb9130713be09a95f", + "IPY_MODEL_eed4861bd33a40229185411b951ae7d7", + "IPY_MODEL_d498f9fef62d4021aaa5fddac7ea7642" + ], + "layout": "IPY_MODEL_9f6092eb37354c31b6267a6d022798ae" + } + }, + "4570394dee324e6cb9130713be09a95f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cef357675e694cb2b5ec7e3d555ef742", + "placeholder": "​", + "style": "IPY_MODEL_1fad1da202d447a5b70d992dbc287632", + "value": "Map: 100%" + } + }, + "eed4861bd33a40229185411b951ae7d7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8a0d54e87d6b40f9baf9ba9637e4d804", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b9773d963d234d02b29b91682d362eed", + "value": 5559 + } + }, + "d498f9fef62d4021aaa5fddac7ea7642": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_126d29a7e53949c7b41b816828baac8a", + "placeholder": "​", + "style": "IPY_MODEL_c139fddf7f1a4db99dd9698e3ed5169b", + "value": " 5559/5559 [00:01<00:00, 2672.72 examples/s]" + } + }, + "9f6092eb37354c31b6267a6d022798ae": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cef357675e694cb2b5ec7e3d555ef742": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1fad1da202d447a5b70d992dbc287632": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8a0d54e87d6b40f9baf9ba9637e4d804": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b9773d963d234d02b29b91682d362eed": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "126d29a7e53949c7b41b816828baac8a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c139fddf7f1a4db99dd9698e3ed5169b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0335aa51e5d34138bfc2b0a579a814d7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_38d70205cc8a4b43b9b6becc54263d8b", + "IPY_MODEL_f43cfcd4ee704bb6a16edf7a182e7473", + "IPY_MODEL_628d3cddbf464951a363ce16c08751f3" + ], + "layout": "IPY_MODEL_1544874d7e774df8af088b770be4dccc" + } + }, + "38d70205cc8a4b43b9b6becc54263d8b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5e00c1cb9e864ac09fdec4d859adf2e1", + "placeholder": "​", + "style": "IPY_MODEL_b968ce2633a6410c9c92e77dd6cbc754", + "value": "Map: 100%" + } + }, + "f43cfcd4ee704bb6a16edf7a182e7473": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a57fe2ada4042899cc66b83fad04ddb", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_051d6e3aabd54222b3138578853cd8db", + "value": 1390 + } + }, + "628d3cddbf464951a363ce16c08751f3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_060ba3d9303042648c2f573b6536fb69", + "placeholder": "​", + "style": "IPY_MODEL_898eb3017be0487a909de4a8fb31cc1c", + "value": " 1390/1390 [00:00<00:00, 4588.17 examples/s]" + } + }, + "1544874d7e774df8af088b770be4dccc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5e00c1cb9e864ac09fdec4d859adf2e1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b968ce2633a6410c9c92e77dd6cbc754": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0a57fe2ada4042899cc66b83fad04ddb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "051d6e3aabd54222b3138578853cd8db": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "060ba3d9303042648c2f573b6536fb69": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "898eb3017be0487a909de4a8fb31cc1c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e773ba097a3f434eb44f2584e154f6f6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b669bcca5e00419cbfb91d4d1f6e062a", + "IPY_MODEL_49b63c26912048568b5b98ac1a62bc6f", + "IPY_MODEL_4263b494d7d144e0b7944f6e9f58acf3" + ], + "layout": "IPY_MODEL_440f4a3b7d464140868133bb7e36fe25" + } + }, + "b669bcca5e00419cbfb91d4d1f6e062a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f734c1a444564389b3a462ca3f0c3d8d", + "placeholder": "​", + "style": "IPY_MODEL_5f3a5e30bf624d96aa395b92245bcd74", + "value": "Map: 100%" + } + }, + "49b63c26912048568b5b98ac1a62bc6f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c82badd876bd489d8a4a85750f6fd67a", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_980185848a1e47078f9da4329d4b1baa", + "value": 5559 + } + }, + "4263b494d7d144e0b7944f6e9f58acf3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e6789b3bc2014d3dbf89d293dded59e7", + "placeholder": "​", + "style": "IPY_MODEL_33d9e3c66ab5457c8500a852849066c4", + "value": " 5559/5559 [00:01<00:00, 4556.29 examples/s]" + } + }, + "440f4a3b7d464140868133bb7e36fe25": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f734c1a444564389b3a462ca3f0c3d8d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5f3a5e30bf624d96aa395b92245bcd74": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c82badd876bd489d8a4a85750f6fd67a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "980185848a1e47078f9da4329d4b1baa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e6789b3bc2014d3dbf89d293dded59e7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "33d9e3c66ab5457c8500a852849066c4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "53ecd38b4d364424966bf6fb209a5dec": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_45c03b5ea2094a219a1285a9d6468e03", + "IPY_MODEL_24b9fa74b4e741538b65348a76b706bc", + "IPY_MODEL_d25d332a247c4819b382d18243fb1ba1" + ], + "layout": "IPY_MODEL_9dd784fe64bf44f68034bdd58f28f663" + } + }, + "45c03b5ea2094a219a1285a9d6468e03": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fb29ea64da3044d5a35f4d66f67f0fd9", + "placeholder": "​", + "style": "IPY_MODEL_34ee1ff16660410588a3146ce223e38b", + "value": "Map: 100%" + } + }, + "24b9fa74b4e741538b65348a76b706bc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4fb277b45013402a8de30f51d97284f6", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_44478466268643aa9a765b95622a3ec8", + "value": 1390 + } + }, + "d25d332a247c4819b382d18243fb1ba1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1ffcab679880495aa36381d32738a01b", + "placeholder": "​", + "style": "IPY_MODEL_84ab8a58b26e41cbbf5e407fbf443310", + "value": " 1390/1390 [00:00<00:00, 4454.83 examples/s]" + } + }, + "9dd784fe64bf44f68034bdd58f28f663": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fb29ea64da3044d5a35f4d66f67f0fd9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "34ee1ff16660410588a3146ce223e38b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4fb277b45013402a8de30f51d97284f6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "44478466268643aa9a765b95622a3ec8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1ffcab679880495aa36381d32738a01b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "84ab8a58b26e41cbbf5e407fbf443310": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bf9651c1a1e8405892e43f72b6aba784": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cc2c4ae127ed46a8846f03aaa724d4aa", + "IPY_MODEL_15cb0216bf144607a0dde58717010094", + "IPY_MODEL_4ac5c4efce42442fbbcb60c1346b33cb" + ], + "layout": "IPY_MODEL_c69aa4d145c943d79b4903a961353d0c" + } + }, + "cc2c4ae127ed46a8846f03aaa724d4aa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf409d51992f4dba85d06bb225fb0cd1", + "placeholder": "​", + "style": "IPY_MODEL_de74e6632fb24428a87af62ff3ff77cd", + "value": "Map: 100%" + } + }, + "15cb0216bf144607a0dde58717010094": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_78fbb8b976794a8bb86c1ed2906e5f98", + "max": 5559, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a1236188a7f1495da0c2b1c92c397a67", + "value": 5559 + } + }, + "4ac5c4efce42442fbbcb60c1346b33cb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5ab8d81f80414249b2681a79df68a8ed", + "placeholder": "​", + "style": "IPY_MODEL_409695e6b5534b91a32120d12bc60a7f", + "value": " 5559/5559 [00:02<00:00, 2236.41 examples/s]" + } + }, + "c69aa4d145c943d79b4903a961353d0c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bf409d51992f4dba85d06bb225fb0cd1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "de74e6632fb24428a87af62ff3ff77cd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "78fbb8b976794a8bb86c1ed2906e5f98": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a1236188a7f1495da0c2b1c92c397a67": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5ab8d81f80414249b2681a79df68a8ed": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "409695e6b5534b91a32120d12bc60a7f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6ae930de9d8e4f428c840cf6f020dca0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_05edc742dd73465b8b71346b0f8ab36b", + "IPY_MODEL_e511803d9d0447afa9e93140e729e459", + "IPY_MODEL_4298a23cc33946a8b1a95495a4677446" + ], + "layout": "IPY_MODEL_82b3218b228d45de88f240cc0774c828" + } + }, + "05edc742dd73465b8b71346b0f8ab36b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f9a04d25138f42feb8ec93810debaf1f", + "placeholder": "​", + "style": "IPY_MODEL_f2d5b0d06f384bc7a00837a14693afae", + "value": "Map: 100%" + } + }, + "e511803d9d0447afa9e93140e729e459": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0004f3961df248d684f02b275fa2278f", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c1577a8ac76d4eb590951b6e7f0c11b0", + "value": 1390 + } + }, + "4298a23cc33946a8b1a95495a4677446": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2b391d7675284905a45d38390dc5cdc8", + "placeholder": "​", + "style": "IPY_MODEL_5b84f00033714b2595eeab8aed6a3fe0", + "value": " 1390/1390 [00:00<00:00, 4343.34 examples/s]" + } + }, + "82b3218b228d45de88f240cc0774c828": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f9a04d25138f42feb8ec93810debaf1f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f2d5b0d06f384bc7a00837a14693afae": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0004f3961df248d684f02b275fa2278f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c1577a8ac76d4eb590951b6e7f0c11b0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2b391d7675284905a45d38390dc5cdc8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5b84f00033714b2595eeab8aed6a3fe0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "417140ff131946deb837591bcd4798c0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d2840413cb3647918dd209ed02f8adbd", + "IPY_MODEL_16b8498863764a08a77f8ac777a87436", + "IPY_MODEL_e1a7fdf268d94e34ad6a16435504d532" + ], + "layout": "IPY_MODEL_2ac6537fe9114614a24a3f66d05dad95" + } + }, + "d2840413cb3647918dd209ed02f8adbd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3919bfdaf9da46368520911822adb2fc", + "placeholder": "​", + "style": "IPY_MODEL_a60d72a71f0540178966c622ec56f736", + "value": "Map: 100%" + } + }, + "16b8498863764a08a77f8ac777a87436": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f00bed838d0f4c3ab299ce5262b6a798", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_cdde89a5a3fc4f43868f2f6015c2c2e9", + "value": 1390 + } + }, + "e1a7fdf268d94e34ad6a16435504d532": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1bdb39a03e4648929713a5cc06398640", + "placeholder": "​", + "style": "IPY_MODEL_51815cc800eb43809ffda39f1189659b", + "value": " 1390/1390 [00:35<00:00, 38.65 examples/s]" + } + }, + "2ac6537fe9114614a24a3f66d05dad95": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3919bfdaf9da46368520911822adb2fc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a60d72a71f0540178966c622ec56f736": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f00bed838d0f4c3ab299ce5262b6a798": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cdde89a5a3fc4f43868f2f6015c2c2e9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1bdb39a03e4648929713a5cc06398640": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "51815cc800eb43809ffda39f1189659b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7673cb93bbdb4a6b892b16fd4d1ce652": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_564ac17789894c88a217ffcd9ba0ca76", + "IPY_MODEL_1365493485fa468ea3349de592e3907f", + "IPY_MODEL_94da900685a34397b689f7304710126b" + ], + "layout": "IPY_MODEL_7078410ec64a478f9719b2f6668e814a" + } + }, + "564ac17789894c88a217ffcd9ba0ca76": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_325997139c4140b39c3fd1b7d2052bd9", + "placeholder": "​", + "style": "IPY_MODEL_0b65902e95034eeab6c6ef9405d9548c", + "value": "Map: 100%" + } + }, + "1365493485fa468ea3349de592e3907f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d85bc144efd54d62aba3878f87a6f990", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3e621df89e934cbf8362c79cb02e9eb5", + "value": 1390 + } + }, + "94da900685a34397b689f7304710126b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ad168d9ef0f6401d86983bb577b76dd5", + "placeholder": "​", + "style": "IPY_MODEL_82ec607265204206a33103ecf0e98d21", + "value": " 1390/1390 [00:00<00:00, 4335.27 examples/s]" + } + }, + "7078410ec64a478f9719b2f6668e814a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "325997139c4140b39c3fd1b7d2052bd9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0b65902e95034eeab6c6ef9405d9548c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d85bc144efd54d62aba3878f87a6f990": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3e621df89e934cbf8362c79cb02e9eb5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ad168d9ef0f6401d86983bb577b76dd5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "82ec607265204206a33103ecf0e98d21": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "486f11186d874b7e83dd2e088bae002e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f5b930386e2a4cb2acd3b2d528c70dd6", + "IPY_MODEL_069f96de1e34477582ce3ad8bcf0a7f2", + "IPY_MODEL_d5e9143bdf8e44429771da6b07934b48" + ], + "layout": "IPY_MODEL_83cd8944573b48c5ae1fa8582b259a60" + } + }, + "f5b930386e2a4cb2acd3b2d528c70dd6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f3a3d0f3895f486e9bdfbfa6581c2007", + "placeholder": "​", + "style": "IPY_MODEL_2696019fe4674ac28fd87898cc6780dd", + "value": "Downloading (…)lve/main/config.json: 100%" + } + }, + "069f96de1e34477582ce3ad8bcf0a7f2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dd5b7db237bb42209c35403616f2b525", + "max": 817, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fce9d772bcf74a809cff8c6c352abcb3", + "value": 817 + } + }, + "d5e9143bdf8e44429771da6b07934b48": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_99aa8b82bd2444999ef86bba75949976", + "placeholder": "​", + "style": "IPY_MODEL_c0d2cd311db247c1b21a19593c455762", + "value": " 817/817 [00:00<00:00, 78.8kB/s]" + } + }, + "83cd8944573b48c5ae1fa8582b259a60": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f3a3d0f3895f486e9bdfbfa6581c2007": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2696019fe4674ac28fd87898cc6780dd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dd5b7db237bb42209c35403616f2b525": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fce9d772bcf74a809cff8c6c352abcb3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "99aa8b82bd2444999ef86bba75949976": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c0d2cd311db247c1b21a19593c455762": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c9572f12724249a492816be24f394d76": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e17eae14f470471bb94730ccbee2c7b3", + "IPY_MODEL_9cbfaf9e319645118cdd384a4007915b", + "IPY_MODEL_2fd6bf638a824c49a4ce018cdb069177" + ], + "layout": "IPY_MODEL_ccb333e16f1e459ebb385956e478c373" + } + }, + "e17eae14f470471bb94730ccbee2c7b3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_87f5f6c06ecd422fa4675aa7de3e31f3", + "placeholder": "​", + "style": "IPY_MODEL_4c176765710b41cdbb625cefa1599800", + "value": "Downloading model.safetensors: 100%" + } + }, + "9cbfaf9e319645118cdd384a4007915b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b0d274fc0ea447e1a5f9a9de476332c2", + "max": 709085090, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7bc39d5ea97945338f47881a1421ff52", + "value": 709085090 + } + }, + "2fd6bf638a824c49a4ce018cdb069177": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_74f7007eee3241a3bd5002b8e5a6148d", + "placeholder": "​", + "style": "IPY_MODEL_cff1616b8ebc459fa434db0a69a195f2", + "value": " 709M/709M [00:13<00:00, 55.4MB/s]" + } + }, + "ccb333e16f1e459ebb385956e478c373": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "87f5f6c06ecd422fa4675aa7de3e31f3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4c176765710b41cdbb625cefa1599800": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b0d274fc0ea447e1a5f9a9de476332c2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7bc39d5ea97945338f47881a1421ff52": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "74f7007eee3241a3bd5002b8e5a6148d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cff1616b8ebc459fa434db0a69a195f2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f35a9eec4f7a4dd18de10815281b5a2a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_402640a0df79496f836b2dee7b12e374", + "IPY_MODEL_9c61d2cd86e4430f8207fcb328378463", + "IPY_MODEL_3f185063faa0444abc845b88cb7cf70c" + ], + "layout": "IPY_MODEL_be99854c11c14402b518756040346159" + } + }, + "402640a0df79496f836b2dee7b12e374": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_999c2dc53fa34547ba4e8a4d753d885b", + "placeholder": "​", + "style": "IPY_MODEL_0111d78b54e14041b19c18ec2efd0c02", + "value": "Downloading (…)okenizer_config.json: 100%" + } + }, + "9c61d2cd86e4430f8207fcb328378463": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_300832a0c66e4a4cadc1fc7d2825d647", + "max": 264, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_868f963c1e1844499a0240ae345940e8", + "value": 264 + } + }, + "3f185063faa0444abc845b88cb7cf70c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2ac949e50cc74b14b35dc8ff948e36a8", + "placeholder": "​", + "style": "IPY_MODEL_b415d3920503453097975ce8575a83cc", + "value": " 264/264 [00:00<00:00, 23.5kB/s]" + } + }, + "be99854c11c14402b518756040346159": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "999c2dc53fa34547ba4e8a4d753d885b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0111d78b54e14041b19c18ec2efd0c02": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "300832a0c66e4a4cadc1fc7d2825d647": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "868f963c1e1844499a0240ae345940e8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2ac949e50cc74b14b35dc8ff948e36a8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b415d3920503453097975ce8575a83cc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e47af479ba2947728edead722e37507a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6f79ec17441f4b23a52aa96d37fefd13", + "IPY_MODEL_8f206492a6cb4c59978d3edbf0a22601", + "IPY_MODEL_3b6f8d1596d64fa6b88e2b3f3192d820" + ], + "layout": "IPY_MODEL_99708f3e63aa49f99fb350f21d69e71e" + } + }, + "6f79ec17441f4b23a52aa96d37fefd13": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1931acef87bb46b99d6ff96b9d26ea4b", + "placeholder": "​", + "style": "IPY_MODEL_8fea0d18b21c4f41bff4e9cab9fafd9b", + "value": "Downloading (…)solve/main/vocab.txt: 100%" + } + }, + "8f206492a6cb4c59978d3edbf0a22601": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3d55048e65134e33895e0c9f11cd1ba7", + "max": 995526, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c6db58831b2845949fca86a2bbc12ae5", + "value": 995526 + } + }, + "3b6f8d1596d64fa6b88e2b3f3192d820": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ca7f36ddc0594a7584a0b266bf71ebca", + "placeholder": "​", + "style": "IPY_MODEL_379aadd411804cb8b435f5ec03cf8941", + "value": " 996k/996k [00:00<00:00, 9.24MB/s]" + } + }, + "99708f3e63aa49f99fb350f21d69e71e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1931acef87bb46b99d6ff96b9d26ea4b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8fea0d18b21c4f41bff4e9cab9fafd9b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3d55048e65134e33895e0c9f11cd1ba7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c6db58831b2845949fca86a2bbc12ae5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ca7f36ddc0594a7584a0b266bf71ebca": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "379aadd411804cb8b435f5ec03cf8941": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d753541428e4471d94d44c3cbb83d5b8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8c08b8d2bcbf4a449e90efbd0f436873", + "IPY_MODEL_f4d1d35507dc49dbb0ca8d1616013b3e", + "IPY_MODEL_7e2892dee05147b6b7597d7087d5d08b" + ], + "layout": "IPY_MODEL_42019918b32f43fead5e531292cab5dc" + } + }, + "8c08b8d2bcbf4a449e90efbd0f436873": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_05106957703944b9991803c6eb9d006d", + "placeholder": "​", + "style": "IPY_MODEL_e438e7017e924a428cc47bbee78cacf3", + "value": "Downloading (…)cial_tokens_map.json: 100%" + } + }, + "f4d1d35507dc49dbb0ca8d1616013b3e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3c38cb2d3c5747f79b12915ce195e910", + "max": 112, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2a93b900107f4c24ad3fb04cdd2f5293", + "value": 112 + } + }, + "7e2892dee05147b6b7597d7087d5d08b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3bd2b91ef73347068af0ed288fd17e53", + "placeholder": "​", + "style": "IPY_MODEL_a1caf52d25ef450287b3ca5a57660bee", + "value": " 112/112 [00:00<00:00, 8.20kB/s]" + } + }, + "42019918b32f43fead5e531292cab5dc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "05106957703944b9991803c6eb9d006d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e438e7017e924a428cc47bbee78cacf3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3c38cb2d3c5747f79b12915ce195e910": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2a93b900107f4c24ad3fb04cdd2f5293": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3bd2b91ef73347068af0ed288fd17e53": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a1caf52d25ef450287b3ca5a57660bee": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4d6cd358cf3142ca8f6d97c3ea467165": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d84281814e1248dca0cbe97c182552f2", + "IPY_MODEL_e67e2a11fb10484e834bf976a454fac3", + "IPY_MODEL_500a601091eb4c359beed1c5dd143e56" + ], + "layout": "IPY_MODEL_3aee35faf2fc43d8beff5fe68b27c8af" + } + }, + "d84281814e1248dca0cbe97c182552f2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_037c286ac5a2478f87adfbed0858d194", + "placeholder": "​", + "style": "IPY_MODEL_0b2e1db7008346f3b79cc51db50acaa8", + "value": "Map: 100%" + } + }, + "e67e2a11fb10484e834bf976a454fac3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1e8511680e944af8adfafee67945bb52", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c0564b4e129f4f80aede254fec5e57ab", + "value": 1390 + } + }, + "500a601091eb4c359beed1c5dd143e56": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b0b322d936dc476bbd284456502f9365", + "placeholder": "​", + "style": "IPY_MODEL_1593150538b64361a97b7bb522a42a60", + "value": " 1390/1390 [02:25<00:00, 6.79 examples/s]" + } + }, + "3aee35faf2fc43d8beff5fe68b27c8af": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "037c286ac5a2478f87adfbed0858d194": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0b2e1db7008346f3b79cc51db50acaa8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1e8511680e944af8adfafee67945bb52": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c0564b4e129f4f80aede254fec5e57ab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b0b322d936dc476bbd284456502f9365": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1593150538b64361a97b7bb522a42a60": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "387894ba27fe4f7faf45f167413e9b5f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_37fa4a773b554f47b112b51e4ebb938a", + "IPY_MODEL_0670fcc46d654ee0ae20ff7f34f9ab9c", + "IPY_MODEL_9b8c7ba357a64687a41f08c785e908a9" + ], + "layout": "IPY_MODEL_cca21899324c4fceb638c2ba5dd6579d" + } + }, + "37fa4a773b554f47b112b51e4ebb938a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dbe87476d4ad4e729fb958d9c8d3fe1f", + "placeholder": "​", + "style": "IPY_MODEL_d284f7127d794451951680445b6cda8c", + "value": "Map: 100%" + } + }, + "0670fcc46d654ee0ae20ff7f34f9ab9c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_030843630f09481ba274bff6e7424c57", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fc2ea502e43b4c479b9ec436ab73982b", + "value": 1390 + } + }, + "9b8c7ba357a64687a41f08c785e908a9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a5cd9edbb68d41b48c891090ad7a1c19", + "placeholder": "​", + "style": "IPY_MODEL_e426b72d26fa4196a244b6882c025efc", + "value": " 1390/1390 [00:00<00:00, 4430.11 examples/s]" + } + }, + "cca21899324c4fceb638c2ba5dd6579d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dbe87476d4ad4e729fb958d9c8d3fe1f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d284f7127d794451951680445b6cda8c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "030843630f09481ba274bff6e7424c57": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fc2ea502e43b4c479b9ec436ab73982b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a5cd9edbb68d41b48c891090ad7a1c19": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e426b72d26fa4196a244b6882c025efc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f23f875a300a4a3ea7c266830c636f15": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_98a2a10004ea466890dfeb6bbbbbaa8e", + "IPY_MODEL_ea431fa4e48f470e941f955ca54e7fe1", + "IPY_MODEL_a07f93b94c4e4433b2e202ad6a040d9a" + ], + "layout": "IPY_MODEL_a6febba2e4214b95a6805794b6f36b12" + } + }, + "98a2a10004ea466890dfeb6bbbbbaa8e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bad729b30fa741ad98907efcd676cd8c", + "placeholder": "​", + "style": "IPY_MODEL_3bfb85c28b124170835e8eef3ab1efbc", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "ea431fa4e48f470e941f955ca54e7fe1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bc6848a19db8420398466d8a3a29965d", + "max": 1390, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b6cd9fcec9104022b7328f0c87588846", + "value": 1390 + } + }, + "a07f93b94c4e4433b2e202ad6a040d9a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fd90470ad4ed44b09ca704bcd4de2c92", + "placeholder": "​", + "style": "IPY_MODEL_1ccec633c01b4c599d199bd1ee10bdf7", + "value": " 1390/1390 [00:00<00:00, 42123.35 examples/s]" + } + }, + "a6febba2e4214b95a6805794b6f36b12": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bad729b30fa741ad98907efcd676cd8c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3bfb85c28b124170835e8eef3ab1efbc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bc6848a19db8420398466d8a3a29965d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b6cd9fcec9104022b7328f0c87588846": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fd90470ad4ed44b09ca704bcd4de2c92": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1ccec633c01b4c599d199bd1ee10bdf7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } } - } - }, - "version_major": 2, - "version_minor": 0 - } - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/12 - NLP Using Transformers/Actuarial_Applications_of_NLP_Part_2.ipynb b/12 - NLP Using Transformers/Actuarial_Applications_of_NLP_Part_2.ipynb index 4ccbd29..4301c54 100644 --- a/12 - NLP Using Transformers/Actuarial_Applications_of_NLP_Part_2.ipynb +++ b/12 - NLP Using Transformers/Actuarial_Applications_of_NLP_Part_2.ipynb @@ -1,52274 +1,22699 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "kmbK3sewEVGy" - }, - "source": [ - "# Actuarial Applications of Natural Language Processing Using Transformers\n", - "### A Case Study for Processing Text Features in an Actuarial Context\n", - "### Part II – Case Studies on Property Insurance Claim Descriptions - Unsupervised Techniques\n", - "\n", - "By Andreas Troxler, June 2022\n", - "\n", - "In this Part II of the tutorial, you will learn techniques that can be applied in situations with few or no labels.\n", - "This is very relevant in practice: text data is often available, but labels are missing or sparse! \n", - "\n", - "Let’s get started." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "EnmTW4uhEVG3" - }, - "source": [ - "## Notebook Overview\n", - "\n", - "This notebook is divided into tutorial is divided into six parts; they are:\n", - "\n", - "1. [Introduction.](#intro)
\n", - " We begin by explaining pre-requisites. Then we turn to loading and exploring the dataset – ca. 6k records of short property insurance claim description which we aim to classify by peril type.

\n", - "\n", - "2. [Classify by peril type in a supervised setting.](#supervised)
\n", - " To warm up, we apply supervised learning techniques you have learned in Part I to the dataset of this Part II.

\n", - "\n", - "3. [Zero-shot classification.](#zero_shot)
\n", - " This technique assigns each text sample to one element of a pre-defined list of candidate expressions. This allows classification without any task-specific training and without using the labels. This fully unsupervised approach is useful in situations with no labels.

\n", - "\n", - "4. [Unsupervised classification using similarity.](#similarity)
\n", - " This technique encodes each input sentence and each candidate expression into en embedding vector. Then, pairwise similarity scores between each input sequence and each candiate expression are calculated. The candidate expression with the highest similarity score is selected. This fully unsupervised approach is useful in situations with no labels.

\n", - " \n", - "5. [Unsupervised topic modeling by clustering of document embeddings.](#topic_modeling)
\n", - " This approach extracts clusters of similar text samples and proposes verbal representations of these clusters. The labels are not required, but may be used in the process if available. This technique does not require prior knowledge of candidate expressions.

\n", - " \n", - "6. [Conclusion](#conclusion)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "hcc6Je4lEVG4" - }, - "source": [ - "\n", - "\n", - "## 1. Introduction\n", - "\n", - "In this section we discuss the pre-requisites, load and inspect the dataset." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "iEu2UBDEEVG4" - }, - "source": [ - "\n", - "\n", - "### 1.1. Prerequisites\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2mGZv-UxvKO_" - }, - "source": [ - "#### Computing Power\n", - "\n", - "This notebook is computationally intensive. We recommend using a platform with GPU support.\n", - "\n", - "We have run this notebook on Google Colab and on an Amazon EC2 p2.xlarge instance (an older generation of GPU-based instances).\n", - "\n", - "Please note that the results may not be reproducible across platforms and versions." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qXPfoNIUIpuv" - }, - "source": [ - "#### Local files\n", - "Make sure the following files are available in the directory of the notebook:\n", - "* `tutorial_utils.py` - a collection of utility functions used throughout this notebook\n", - "* `peril.training.csv` - the training data\n", - "* `peril.validation.csv` - the validation data\n", - "\n", - "This notebook will create the following subdirectories:\n", - "* `models` - trained Transformer models\n", - "* `results` - figures and Excel files" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "3ahENX7-EVG5" - }, - "source": [ - "#### Getting started with Python and Jupyter Notebook\n", - "\n", - "For this tutorial, we assume that you are already familiar with Python and Jupyter Notebook.\n", - "We also assume that you have worked through Part I of this tutorial.\n", - "\n", - "In this section, Jupyter Notebook and Python settings are initialized.\n", - "For code in Python, the [PEP8 standard](https://www.python.org/dev/peps/pep-0008/)\n", - "(\"PEP = Python Enhancement Proposal\") is enforced with minor variations to improve readability.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "kmbK3sewEVGy" + }, + "source": [ + "# Actuarial Applications of Natural Language Processing Using Transformers\n", + "### A Case Study for Processing Text Features in an Actuarial Context\n", + "### Part II – Case Studies on Property Insurance Claim Descriptions - Unsupervised Techniques\n", + "\n", + "By Andreas Troxler, June 2022\n", + "\n", + "In this Part II of the tutorial, you will learn techniques that can be applied in situations with few or no labels.\n", + "This is very relevant in practice: text data is often available, but labels are missing or sparse!\n", + "\n", + "Let’s get started." + ] }, - "id": "1wK6e7a5EVG5", - "outputId": "96247e63-3acb-43bf-9371-05765dcc2024", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "EnmTW4uhEVG3" + }, + "source": [ + "## Notebook Overview\n", + "\n", + "This notebook is divided into tutorial is divided into six parts; they are:\n", + "\n", + "1. [Introduction.](#intro)
\n", + " We begin by explaining pre-requisites. Then we turn to loading and exploring the dataset – ca. 6k records of short property insurance claim description which we aim to classify by peril type.

\n", + "\n", + "2. [Classify by peril type in a supervised setting.](#supervised)
\n", + " To warm up, we apply supervised learning techniques you have learned in Part I to the dataset of this Part II.

\n", + "\n", + "3. [Zero-shot classification.](#zero_shot)
\n", + " This technique assigns each text sample to one element of a pre-defined list of candidate expressions. This allows classification without any task-specific training and without using the labels. This fully unsupervised approach is useful in situations with no labels.

\n", + "\n", + "4. [Unsupervised classification using similarity.](#similarity)
\n", + " This technique encodes each input sentence and each candidate expression into en embedding vector. Then, pairwise similarity scores between each input sequence and each candiate expression are calculated. The candidate expression with the highest similarity score is selected. This fully unsupervised approach is useful in situations with no labels.

\n", + " \n", + "5. [Unsupervised topic modeling by clustering of document embeddings.](#topic_modeling)
\n", + " This approach extracts clusters of similar text samples and proposes verbal representations of these clusters. The labels are not required, but may be used in the process if available. This technique does not require prior knowledge of candidate expressions.

\n", + " \n", + "6. [Conclusion](#conclusion)\n" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Notebook settings\n", - "\n", - "# clear the namespace variables\n", - "from IPython import get_ipython\n", - "get_ipython().run_line_magic(\"reset\", \"-sf\")\n", - "\n", - "# formatting: cell width\n", - "from IPython.display import display, HTML\n", - "display(HTML(\"\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5V9gFHqyEVG7" - }, - "source": [ - "#### Importing Required Libraries\n", - "\n", - "If you run this notebook on Google Colab, you will need to install the following libraries:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "Mxggg0WmFDuy", - "outputId": "b6ee319a-540d-400e-c889-f27245d894c9" - }, - "outputs": [], - "source": [ - "!pip install datasets" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + { + "cell_type": "markdown", + "metadata": { + "id": "hcc6Je4lEVG4" + }, + "source": [ + "\n", + "\n", + "## 1. Introduction\n", + "\n", + "In this section we discuss the pre-requisites, load and inspect the dataset." + ] }, - "id": "lSUQsZPlFeBu", - "outputId": "9828bf8d-6e1b-4b5f-bbe3-e5297cf85939" - }, - "outputs": [], - "source": [ - "!pip install transformers" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + { + "cell_type": "markdown", + "metadata": { + "id": "iEu2UBDEEVG4" + }, + "source": [ + "\n", + "\n", + "### 1.1. Prerequisites\n" + ] }, - "id": "1BEZPSNtGwzp", - "outputId": "0e0f193a-b652-4cfd-fada-1f6c7f941a96" - }, - "outputs": [], - "source": [ - "!pip install plotly" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + { + "cell_type": "markdown", + "metadata": { + "id": "2mGZv-UxvKO_" + }, + "source": [ + "#### Computing Power\n", + "\n", + "This notebook is computationally intensive. We recommend using a platform with GPU support.\n", + "\n", + "We have run this notebook on Google Colab and on an Amazon EC2 p2.xlarge instance (an older generation of GPU-based instances).\n", + "\n", + "Please note that the results may not be reproducible across platforms and versions." + ] }, - "id": "ItEs2TIcR8fz", - "outputId": "08fe2b77-d4ba-4193-91ce-cd81a9b3d62e" - }, - "outputs": [], - "source": [ - "!pip install kaleido" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + { + "cell_type": "markdown", + "metadata": { + "id": "qXPfoNIUIpuv" + }, + "source": [ + "#### Local files\n", + "Make sure the following files are available in the directory of the notebook:\n", + "* `tutorial_utils.py` - a collection of utility functions used throughout this notebook\n", + "* `peril.training.csv` - the training data\n", + "* `peril.validation.csv` - the validation data\n", + "\n", + "This notebook will create the following subdirectories:\n", + "* `models` - trained Transformer models\n", + "* `results` - figures and Excel files" + ] }, - "id": "iflvB6DtHIHj", - "outputId": "3476d786-2932-4412-cc46-630ddfad4e41" - }, - "outputs": [], - "source": [ - "!pip install pyyaml==5.4.1 ## https://github.com/yaml/pyyaml/issues/576" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + { + "cell_type": "markdown", + "metadata": { + "id": "3ahENX7-EVG5" + }, + "source": [ + "#### Getting started with Python and Jupyter Notebook\n", + "\n", + "For this tutorial, we assume that you are already familiar with Python and Jupyter Notebook.\n", + "We also assume that you have worked through Part I of this tutorial.\n", + "\n", + "In this section, Jupyter Notebook and Python settings are initialized.\n", + "For code in Python, the [PEP8 standard](https://www.python.org/dev/peps/pep-0008/)\n", + "(\"PEP = Python Enhancement Proposal\") is enforced with minor variations to improve readability.\n" + ] }, - "id": "zt3VhIayHUvh", - "outputId": "09678be9-24b9-4e53-d160-ddc2b22e9809" - }, - "outputs": [], - "source": [ - "!pip install bertopic" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7b2yEtZjEVG8" - }, - "source": [ - "and loaded:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "LuwY5ubtEVG9", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "import os\n", - "from collections import OrderedDict\n", - "import pandas as pd\n", - "import numpy as np\n", - "from scipy.special import softmax\n", - "from datasets import Dataset, DatasetDict\n", - "from transformers import AutoTokenizer, AutoModel, Trainer, TrainingArguments, trainer_utils, AutoModelForSequenceClassification\n", - "from transformers import pipeline\n", - "import torch\n", - "from sklearn.metrics import accuracy_score, f1_score\n", - "import plotly.express as px\n", - "from wordcloud import WordCloud\n", - "from bertopic import BERTopic\n", - "from umap import UMAP\n", - "from hdbscan import HDBSCAN\n", - "from tutorial_utils import extract_sequence_encoding, get_xy, dummy_classifier, logistic_regression_classifier, evaluate_classifier" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "44WiOM3SEVG-" - }, - "source": [ - "\n", - "\n", - "### 1.2. Loading the Data\n", - "\n", - "The dataset used throughout this tutorial concerns property insurance claims\n", - "of the Wisconsin Local Government Property Insurance Fund (LPGIF),\n", - "made available in the open text project of [Frees](https://ewfrees.github.io/Loss-Data-Analytics/).\n", - "The Wisconsin LGPIF is an insurance pool managed by the Wisconsin Office of the Insurance Commissioner.\n", - "This fund provides insurance protection to local governmental institutions such as counties, schools,\n", - "libraries, airports, etc.\n", - "It insures property claims at buildings and motor vehicles, and it excludes certain natural and man-made perils like\n", - "flood, earthquakes or nuclear accidents.\n", - "\n", - "The data consists of 6’030 records (4’991 in the training set, 1’039 in the test set)\n", - "which include a claim amount, a short English claim description and a hazard type with 9 different levels:\n", - "Fire, Lightning, Hail, Wind, WaterW (weather related water claims), WaterNW (other weather claims), Vehicle,\n", - "Vandalism and Misc (any other).\n", - "\n", - "The training and validation set are available in separate csv files, which we load into Pandas DataFrames,\n", - "create a single column containing the label, and finally create a `dataset`." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 17 + }, + "id": "1wK6e7a5EVG5", + "outputId": "c254f1de-a7fb-4412-f285-73dcf85eda4f", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "# Notebook settings\n", + "\n", + "# clear the namespace variables\n", + "from IPython import get_ipython\n", + "get_ipython().run_line_magic(\"reset\", \"-sf\")\n", + "\n", + "# formatting: cell width\n", + "from IPython.display import display, HTML\n", + "display(HTML(\"\"))" + ] }, - "id": "DogoPiqXEVG-", - "outputId": "997accba-fc26-4de7-f7d3-d7d582edd3b4", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "DatasetDict({\n", - " train: Dataset({\n", - " features: ['Vandalism', 'Fire', 'Lightning', 'Wind', 'Hail', 'Vehicle', 'WaterNW', 'WaterW', 'Misc', 'Loss', 'Description', 'labels'],\n", - " num_rows: 4991\n", - " })\n", - " test: Dataset({\n", - " features: ['Vandalism', 'Fire', 'Lightning', 'Wind', 'Hail', 'Vehicle', 'WaterNW', 'WaterW', 'Misc', 'Loss', 'Description', 'labels'],\n", - " num_rows: 1039\n", - " })\n", - "})\n" - ] - } - ], - "source": [ - "# load data\n", - "df_train = pd.read_csv(\"peril.training.csv\")\n", - "df_valid = pd.read_csv(\"peril.validation.csv\")\n", - "\n", - "# extract label texts and create column \"labels\" which encodes the peril\n", - "labels = df_train.columns[:9].to_list()\n", - "df_train[\"labels\"] = np.matmul(df_train.iloc[:, :9].values, np.array(range(9),).reshape((9,1)))\n", - "df_valid[\"labels\"] = np.matmul(df_valid.iloc[:, :9].values, np.array(range(9),).reshape((9,1)))\n", - "\n", - "# create dataset\n", - "ds = DatasetDict({\"train\": Dataset.from_pandas(df_train), \"test\": Dataset.from_pandas(df_valid)})\n", - "\n", - "print(f\"{ds}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ilcy8gKCEVG_" - }, - "source": [ - "\n", - "\n", - "### 1.3 Exploring the data\n", - "\n", - "The first records of the training dataset look like this:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 + "cell_type": "markdown", + "metadata": { + "id": "5V9gFHqyEVG7" + }, + "source": [ + "#### Importing Required Libraries\n", + "\n", + "If you run this notebook on Google Colab, you will need to install the following libraries:" + ] }, - "id": "de1ksaP-EVG_", - "outputId": "539bbca5-c64d-47a7-cb02-57927c7a41fb", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
VandalismFireLightningWindHailVehicleWaterNWWaterWMiscLossDescriptionlabels
00010000006838.87lightning damage ...2
10010000002085.00lightning damage at Comm. Center ...2
200100000011335.00lightning damage at water tower ...2
30010000001480.00lightning damge to radio tower ...2
4100000000600.00vandalism damage at recycle center ...0
\n", - "
" + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "Mxggg0WmFDuy", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "aa32bc1b-eee6-4e61-db0a-1766f975ef36" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting datasets\n", + " Downloading datasets-2.14.4-py3-none-any.whl (519 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m519.3/519.3 kB\u001b[0m \u001b[31m7.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (1.23.5)\n", + "Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (9.0.0)\n", + "Collecting dill<0.3.8,>=0.3.0 (from datasets)\n", + " Downloading dill-0.3.7-py3-none-any.whl (115 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.3/115.3 kB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (1.5.3)\n", + "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2.31.0)\n", + "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (4.66.1)\n", + "Collecting xxhash (from datasets)\n", + " Downloading xxhash-3.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m10.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting multiprocess (from datasets)\n", + " Downloading multiprocess-0.70.15-py310-none-any.whl (134 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m11.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n", + "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.8.5)\n", + "Collecting huggingface-hub<1.0.0,>=0.14.0 (from datasets)\n", + " Downloading huggingface_hub-0.16.4-py3-none-any.whl (268 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m11.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets) (23.1)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (6.0.1)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.1.0)\n", + "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (3.2.0)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.4)\n", + "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n", + "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.2)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.0)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0.0,>=0.14.0->datasets) (3.12.2)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0.0,>=0.14.0->datasets) (4.7.1)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2.0.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2023.7.22)\n", + "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.3)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n", + "Installing collected packages: xxhash, dill, multiprocess, huggingface-hub, datasets\n", + "Successfully installed datasets-2.14.4 dill-0.3.7 huggingface-hub-0.16.4 multiprocess-0.70.15 xxhash-3.3.0\n" + ] + } ], - "text/plain": [ - " Vandalism Fire Lightning Wind Hail Vehicle WaterNW WaterW Misc \\\n", - "0 0 0 1 0 0 0 0 0 0 \n", - "1 0 0 1 0 0 0 0 0 0 \n", - "2 0 0 1 0 0 0 0 0 0 \n", - "3 0 0 1 0 0 0 0 0 0 \n", - "4 1 0 0 0 0 0 0 0 0 \n", - "\n", - " Loss Description labels \n", - "0 6838.87 lightning damage ... 2 \n", - "1 2085.00 lightning damage at Comm. Center ... 2 \n", - "2 11335.00 lightning damage at water tower ... 2 \n", - "3 1480.00 lightning damge to radio tower ... 2 \n", - "4 600.00 vandalism damage at recycle center ... 0 " + "source": [ + "!pip install datasets" ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_train.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Axos90P1EVG_" - }, - "source": [ - "Let's look at the distribution of peril types in the training and validation set:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 }, - "id": "WwAKZ-KYEVHA", - "outputId": "fba350dd-8c84-4324-bce9-b75a05ef6d4c", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
periltrainvalid
0Vandalism1774310
1Fire17146
2Lightning832123
3Wind296107
4Hail7618
5Vehicle852227
6WaterNW20267
7WaterW42638
8Misc362103
9Total49911039
\n", - "
" + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "lSUQsZPlFeBu", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "5b259df6-c0a7-42b1-9da2-c8ae97386690" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting transformers[torch]\n", + " Downloading transformers-4.32.1-py3-none-any.whl (7.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.5/7.5 MB\u001b[0m \u001b[31m20.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (3.12.2)\n", + "Requirement already satisfied: huggingface-hub<1.0,>=0.15.1 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (0.16.4)\n", + "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (1.23.5)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (23.1)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (6.0.1)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (2023.6.3)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (2.31.0)\n", + "Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers[torch])\n", + " Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m64.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting safetensors>=0.3.1 (from transformers[torch])\n", + " Downloading safetensors-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m71.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (4.66.1)\n", + "Requirement already satisfied: torch!=1.12.0,>=1.9 in /usr/local/lib/python3.10/dist-packages (from transformers[torch]) (2.0.1+cu118)\n", + "Collecting accelerate>=0.20.3 (from transformers[torch])\n", + " Downloading accelerate-0.22.0-py3-none-any.whl (251 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m251.2/251.2 kB\u001b[0m \u001b[31m32.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.20.3->transformers[torch]) (5.9.5)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.15.1->transformers[torch]) (2023.6.0)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.15.1->transformers[torch]) (4.7.1)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.9->transformers[torch]) (1.12)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.9->transformers[torch]) (3.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.9->transformers[torch]) (3.1.2)\n", + "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.9->transformers[torch]) (2.0.0)\n", + "Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch!=1.12.0,>=1.9->transformers[torch]) (3.27.2)\n", + "Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch!=1.12.0,>=1.9->transformers[torch]) (16.0.6)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers[torch]) (3.2.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers[torch]) (3.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers[torch]) (2.0.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers[torch]) (2023.7.22)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch!=1.12.0,>=1.9->transformers[torch]) (2.1.3)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch!=1.12.0,>=1.9->transformers[torch]) (1.3.0)\n", + "Installing collected packages: tokenizers, safetensors, transformers, accelerate\n", + "Successfully installed accelerate-0.22.0 safetensors-0.3.3 tokenizers-0.13.3 transformers-4.32.1\n" + ] + } ], - "text/plain": [ - " peril train valid\n", - "0 Vandalism 1774 310\n", - "1 Fire 171 46\n", - "2 Lightning 832 123\n", - "3 Wind 296 107\n", - "4 Hail 76 18\n", - "5 Vehicle 852 227\n", - "6 WaterNW 202 67\n", - "7 WaterW 426 38\n", - "8 Misc 362 103\n", - "9 Total 4991 1039" + "source": [ + "!pip install transformers[torch]" ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "stats = pd.DataFrame({\n", - " \"peril\": df_train.columns.values[:-3],\n", - " \"train\": df_train.groupby(\"labels\")[\"labels\"].count().values,\n", - " \"valid\": df_valid.groupby(\"labels\")[\"labels\"].count().values\n", - "})\n", - "summary = pd.DataFrame({\"peril\": [\"Total\"], \"train\": [stats[\"train\"].sum()], \"valid\": [stats[\"valid\"].sum()]})\n", - "stats = pd.concat([stats, summary], ignore_index=True)\n", - "stats" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 }, - "id": "FKfk4QAoEVHA", - "outputId": "413a754f-0ae9-4040-df0d-2affba6f66f6", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "text/html": [ - " \n", - " " + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "1BEZPSNtGwzp", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "1297dc6e-751c-4562-c3be-cf1ad66fe3eb" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: plotly in /usr/local/lib/python3.10/dist-packages (5.15.0)\n", + "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly) (8.2.3)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from plotly) (23.1)\n" + ] + } + ], + "source": [ + "!pip install plotly" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "peril_type", - "format": "svg" + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "ItEs2TIcR8fz", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "e54eac1b-46b8-4a70-c21d-d34a95d835b3" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting kaleido\n", + " Downloading kaleido-0.2.1-py2.py3-none-manylinux1_x86_64.whl (79.9 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.9/79.9 MB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: kaleido\n", + "Successfully installed kaleido-0.2.1\n" + ] } - }, - "data": [ + ], + "source": [ + "!pip install kaleido" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "zt3VhIayHUvh", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "7cc81188-4819-4fe3-c2ba-02a5e8150791" + }, + "outputs": [ { - "alignmentgroup": "True", - "hovertemplate": "variable=labels
index=%{x}
value=%{y}", - "legendgroup": "labels", - "marker": { - "color": "#636efa", - "pattern": { - "shape": "" - } - }, - "name": "labels", - "offsetgroup": "labels", - "orientation": "v", - "showlegend": true, - "textposition": "auto", - "type": "bar", - "x": [ - 0, - 1, - 2, - 3, - 4, - 5, - 6, - 7, - 8 - ], - "xaxis": "x", - "y": [ - 2084, - 217, - 955, - 403, - 94, - 1079, - 269, - 464, - 465 - ], - "yaxis": "y" + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting bertopic\n", + " Downloading bertopic-0.15.0-py2.py3-none-any.whl (143 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.4/143.4 kB\u001b[0m \u001b[31m2.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: numpy>=1.20.0 in /usr/local/lib/python3.10/dist-packages (from bertopic) (1.23.5)\n", + "Collecting hdbscan>=0.8.29 (from bertopic)\n", + " Downloading hdbscan-0.8.33.tar.gz (5.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.2/5.2 MB\u001b[0m \u001b[31m16.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "Collecting umap-learn>=0.5.0 (from bertopic)\n", + " Downloading umap-learn-0.5.3.tar.gz (88 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m88.2/88.2 kB\u001b[0m \u001b[31m10.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: pandas>=1.1.5 in /usr/local/lib/python3.10/dist-packages (from bertopic) (1.5.3)\n", + "Requirement already satisfied: scikit-learn>=0.22.2.post1 in /usr/local/lib/python3.10/dist-packages (from bertopic) (1.2.2)\n", + "Requirement already satisfied: tqdm>=4.41.1 in /usr/local/lib/python3.10/dist-packages (from bertopic) (4.66.1)\n", + "Collecting sentence-transformers>=0.4.1 (from bertopic)\n", + " Downloading sentence-transformers-2.2.2.tar.gz (85 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.0/86.0 kB\u001b[0m \u001b[31m11.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: plotly>=4.7.0 in /usr/local/lib/python3.10/dist-packages (from bertopic) (5.15.0)\n", + "Requirement already satisfied: cython<3,>=0.27 in /usr/local/lib/python3.10/dist-packages (from hdbscan>=0.8.29->bertopic) (0.29.36)\n", + "Requirement already satisfied: scipy>=1.0 in /usr/local/lib/python3.10/dist-packages (from hdbscan>=0.8.29->bertopic) (1.10.1)\n", + "Requirement already satisfied: joblib>=1.0 in /usr/local/lib/python3.10/dist-packages (from hdbscan>=0.8.29->bertopic) (1.3.2)\n", + "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.1.5->bertopic) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.1.5->bertopic) (2023.3)\n", + "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly>=4.7.0->bertopic) (8.2.3)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from plotly>=4.7.0->bertopic) (23.1)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.22.2.post1->bertopic) (3.2.0)\n", + "Requirement already satisfied: transformers<5.0.0,>=4.6.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers>=0.4.1->bertopic) (4.32.1)\n", + "Requirement already satisfied: torch>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers>=0.4.1->bertopic) (2.0.1+cu118)\n", + "Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (from sentence-transformers>=0.4.1->bertopic) (0.15.2+cu118)\n", + "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from sentence-transformers>=0.4.1->bertopic) (3.8.1)\n", + "Collecting sentencepiece (from sentence-transformers>=0.4.1->bertopic)\n", + " Downloading sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m24.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: huggingface-hub>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers>=0.4.1->bertopic) (0.16.4)\n", + "Requirement already satisfied: numba>=0.49 in /usr/local/lib/python3.10/dist-packages (from umap-learn>=0.5.0->bertopic) (0.56.4)\n", + "Collecting pynndescent>=0.5 (from umap-learn>=0.5.0->bertopic)\n", + " Downloading pynndescent-0.5.10.tar.gz (1.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m32.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers>=0.4.1->bertopic) (3.12.2)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers>=0.4.1->bertopic) (2023.6.0)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers>=0.4.1->bertopic) (2.31.0)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers>=0.4.1->bertopic) (6.0.1)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.4.0->sentence-transformers>=0.4.1->bertopic) (4.7.1)\n", + "Requirement already satisfied: llvmlite<0.40,>=0.39.0dev0 in /usr/local/lib/python3.10/dist-packages (from numba>=0.49->umap-learn>=0.5.0->bertopic) (0.39.1)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from numba>=0.49->umap-learn>=0.5.0->bertopic) (67.7.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas>=1.1.5->bertopic) (1.16.0)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers>=0.4.1->bertopic) (1.12)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers>=0.4.1->bertopic) (3.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers>=0.4.1->bertopic) (3.1.2)\n", + "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6.0->sentence-transformers>=0.4.1->bertopic) (2.0.0)\n", + "Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.6.0->sentence-transformers>=0.4.1->bertopic) (3.27.2)\n", + "Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.6.0->sentence-transformers>=0.4.1->bertopic) (16.0.6)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers>=0.4.1->bertopic) (2023.6.3)\n", + "Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers>=0.4.1->bertopic) (0.13.3)\n", + "Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers>=0.4.1->bertopic) (0.3.3)\n", + "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers>=0.4.1->bertopic) (8.1.7)\n", + "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision->sentence-transformers>=0.4.1->bertopic) (9.4.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.6.0->sentence-transformers>=0.4.1->bertopic) (2.1.3)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers>=0.4.1->bertopic) (3.2.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers>=0.4.1->bertopic) (3.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers>=0.4.1->bertopic) (2.0.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.4.0->sentence-transformers>=0.4.1->bertopic) (2023.7.22)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.6.0->sentence-transformers>=0.4.1->bertopic) (1.3.0)\n", + "Building wheels for collected packages: hdbscan, sentence-transformers, umap-learn, pynndescent\n", + " Building wheel for hdbscan (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for hdbscan: filename=hdbscan-0.8.33-cp310-cp310-linux_x86_64.whl size=3039170 sha256=67ee3feb90bd27f3b3c604d9650215ee7bdbeb9d8a249c01ad432923ded042ba\n", + " Stored in directory: /root/.cache/pip/wheels/75/0b/3b/dc4f60b7cc455efaefb62883a7483e76f09d06ca81cf87d610\n", + " Building wheel for sentence-transformers (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for sentence-transformers: filename=sentence_transformers-2.2.2-py3-none-any.whl size=125923 sha256=6961625364758df913080d6b755f1910f2f5ef5db2d3b0f2632d70129c837329\n", + " Stored in directory: /root/.cache/pip/wheels/62/f2/10/1e606fd5f02395388f74e7462910fe851042f97238cbbd902f\n", + " Building wheel for umap-learn (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for umap-learn: filename=umap_learn-0.5.3-py3-none-any.whl size=82807 sha256=fa472aac87894c334dd21acc472eee753aeb2f4269a0576cafccdd63b7169f80\n", + " Stored in directory: /root/.cache/pip/wheels/a0/e8/c6/a37ea663620bd5200ea1ba0907ab3c217042c1d035ef606acc\n", + " Building wheel for pynndescent (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for pynndescent: filename=pynndescent-0.5.10-py3-none-any.whl size=55615 sha256=08fac3e6109a62dae1e2a144317f48eaadb79c7baedb4850bf8eae890b5b9c8e\n", + " Stored in directory: /root/.cache/pip/wheels/4a/38/5d/f60a40a66a9512b7e5e83517ebc2d1b42d857be97d135f1096\n", + "Successfully built hdbscan sentence-transformers umap-learn pynndescent\n", + "Installing collected packages: sentencepiece, pynndescent, hdbscan, umap-learn, sentence-transformers, bertopic\n", + "Successfully installed bertopic-0.15.0 hdbscan-0.8.33 pynndescent-0.5.10 sentence-transformers-2.2.2 sentencepiece-0.1.99 umap-learn-0.5.3\n" + ] } - ], - "layout": { - "barmode": "relative", - "legend": { - "title": { - "text": "variable" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } + ], + "source": [ + "!pip install bertopic" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7b2yEtZjEVG8" + }, + "source": [ + "and loaded:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "LuwY5ubtEVG9", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "import os\n", + "from collections import OrderedDict\n", + "import pandas as pd\n", + "import numpy as np\n", + "from scipy.special import softmax\n", + "from datasets import Dataset, DatasetDict\n", + "from transformers import AutoTokenizer, AutoModel, Trainer, TrainingArguments, trainer_utils, AutoModelForSequenceClassification\n", + "from transformers import pipeline\n", + "import torch\n", + "from sklearn.metrics import accuracy_score, f1_score\n", + "import plotly.express as px\n", + "from wordcloud import WordCloud\n", + "from bertopic import BERTopic\n", + "from umap import UMAP\n", + "from hdbscan import HDBSCAN\n", + "from tutorial_utils import extract_sequence_encoding, get_xy, dummy_classifier, logistic_regression_classifier, evaluate_classifier" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "44WiOM3SEVG-" + }, + "source": [ + "\n", + "\n", + "### 1.2. Loading the Data\n", + "\n", + "The dataset used throughout this tutorial concerns property insurance claims\n", + "of the Wisconsin Local Government Property Insurance Fund (LPGIF),\n", + "made available in the open text project of [Frees](https://ewfrees.github.io/Loss-Data-Analytics/).\n", + "The Wisconsin LGPIF is an insurance pool managed by the Wisconsin Office of the Insurance Commissioner.\n", + "This fund provides insurance protection to local governmental institutions such as counties, schools,\n", + "libraries, airports, etc.\n", + "It insures property claims at buildings and motor vehicles, and it excludes certain natural and man-made perils like\n", + "flood, earthquakes or nuclear accidents.\n", + "\n", + "The data consists of 6’030 records (4’991 in the training set, 1’039 in the test set)\n", + "which include a claim amount, a short English claim description and a hazard type with 9 different levels:\n", + "Fire, Lightning, Hail, Wind, WaterW (weather related water claims), WaterNW (other weather claims), Vehicle,\n", + "Vandalism and Misc (any other).\n", + "\n", + "The training and validation set are available in separate csv files, which we load into Pandas DataFrames,\n", + "create a single column containing the label, and finally create a `dataset`." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DogoPiqXEVG-", + "outputId": "3b6c80aa-d921-4d84-be97-d9f0659c7c72", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "DatasetDict({\n", + " train: Dataset({\n", + " features: ['Vandalism', 'Fire', 'Lightning', 'Wind', 'Hail', 'Vehicle', 'WaterNW', 'WaterW', 'Misc', 'Loss', 'Description', 'labels'],\n", + " num_rows: 4991\n", + " })\n", + " test: Dataset({\n", + " features: ['Vandalism', 'Fire', 'Lightning', 'Wind', 'Hail', 'Vehicle', 'WaterNW', 'WaterW', 'Misc', 'Loss', 'Description', 'labels'],\n", + " num_rows: 1039\n", + " })\n", + "})\n" ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" + } + ], + "source": [ + "# load data\n", + "df_train = pd.read_csv(\"peril.training.csv\")\n", + "df_valid = pd.read_csv(\"peril.validation.csv\")\n", + "\n", + "# extract label texts and create column \"labels\" which encodes the peril\n", + "labels = df_train.columns[:9].to_list()\n", + "df_train[\"labels\"] = np.matmul(df_train.iloc[:, :9].values, np.array(range(9),).reshape((9,1)))\n", + "df_valid[\"labels\"] = np.matmul(df_valid.iloc[:, :9].values, np.array(range(9),).reshape((9,1)))\n", + "\n", + "# create dataset\n", + "ds = DatasetDict({\"train\": Dataset.from_pandas(df_train), \"test\": Dataset.from_pandas(df_valid)})\n", + "\n", + "print(f\"{ds}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ilcy8gKCEVG_" + }, + "source": [ + "\n", + "\n", + "### 1.3 Exploring the data\n", + "\n", + "The first records of the training dataset look like this:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "de1ksaP-EVG_", + "outputId": "1a3a8647-f2b5-4fa7-c4de-07ba5de39dd3", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Vandalism Fire Lightning Wind Hail Vehicle WaterNW WaterW Misc \\\n", + "0 0 0 1 0 0 0 0 0 0 \n", + "1 0 0 1 0 0 0 0 0 0 \n", + "2 0 0 1 0 0 0 0 0 0 \n", + "3 0 0 1 0 0 0 0 0 0 \n", + "4 1 0 0 0 0 0 0 0 0 \n", + "\n", + " Loss Description labels \n", + "0 6838.87 lightning damage ... 2 \n", + "1 2085.00 lightning damage at Comm. Center ... 2 \n", + "2 11335.00 lightning damage at water tower ... 2 \n", + "3 1480.00 lightning damge to radio tower ... 2 \n", + "4 600.00 vandalism damage at recycle center ... 0 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
VandalismFireLightningWindHailVehicleWaterNWWaterWMiscLossDescriptionlabels
00010000006838.87lightning damage ...2
10010000002085.00lightning damage at Comm. Center ...2
200100000011335.00lightning damage at water tower ...2
30010000001480.00lightning damge to radio tower ...2
4100000000600.00vandalism damage at recycle center ...0
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n" ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "df_train.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Axos90P1EVG_" + }, + "source": [ + "Let's look at the distribution of peril types in the training and validation set:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "WwAKZ-KYEVHA", + "outputId": "88ac986d-2f92-4f2d-b2e0-135fad450cf2", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " peril train valid\n", + "0 Vandalism 1774 310\n", + "1 Fire 171 46\n", + "2 Lightning 832 123\n", + "3 Wind 296 107\n", + "4 Hail 76 18\n", + "5 Vehicle 852 227\n", + "6 WaterNW 202 67\n", + "7 WaterW 426 38\n", + "8 Misc 362 103\n", + "9 Total 4991 1039" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
periltrainvalid
0Vandalism1774310
1Fire17146
2Lightning832123
3Wind296107
4Hail7618
5Vehicle852227
6WaterNW20267
7WaterW42638
8Misc362103
9Total49911039
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n" + ] }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "number of claims by peril type" - }, - "width": 640, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "peril type" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "number of claims" - } + "metadata": {}, + "execution_count": 10 + } + ], + "source": [ + "stats = pd.DataFrame({\n", + " \"peril\": df_train.columns.values[:-3],\n", + " \"train\": df_train.groupby(\"labels\")[\"labels\"].count().values,\n", + " \"valid\": df_valid.groupby(\"labels\")[\"labels\"].count().values\n", + "})\n", + "summary = pd.DataFrame({\"peril\": [\"Total\"], \"train\": [stats[\"train\"].sum()], \"valid\": [stats[\"valid\"].sum()]})\n", + "stats = pd.concat([stats, summary], ignore_index=True)\n", + "stats" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 542 + }, + "id": "FKfk4QAoEVHA", + "outputId": "7d060915-3a5c-4ffe-f999-5178955afac0", + "pycharm": { + "name": "#%%\n" } - } }, - "text/html": [ - "
" + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "fig = px.bar(df_train[\"labels\"].value_counts().sort_index()+df_valid[\"labels\"].value_counts().sort_index(), width=640)\n", + "fig.update_layout(title=\"number of claims by peril type\", xaxis_title=\"peril type\",\n", + " yaxis_title=\"number of claims\")\n", + "fig.show(config={\"toImageButtonOptions\": {\"format\": 'svg', \"filename\": \"peril_type\"}})" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig = px.bar(df_train[\"labels\"].value_counts().sort_index()+df_valid[\"labels\"].value_counts().sort_index(), width=640)\n", - "fig.update_layout(title=\"number of claims by peril type\", xaxis_title=\"peril type\",\n", - " yaxis_title=\"number of claims\")\n", - "fig.show(config={\"toImageButtonOptions\": {\"format\": 'svg', \"filename\": \"peril_type\"}})" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "rrxncDLlEVHA" - }, - "source": [ - "Next, we want to see some statistics on the length of the claim descriptions.\n", - "To this end, we split the texts into words, with blank spaces as separator.\n", - "The text length averages to 5 words and does not seem to vary significantly by peril:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 }, - "id": "emd-I7T5EVHB", - "outputId": "5f169d71-129b-43ad-ae8a-2f3aa59ee0bf", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Overall number of words by claim description: min 1, average 5, max 11\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "rrxncDLlEVHA" + }, + "source": [ + "Next, we want to see some statistics on the length of the claim descriptions.\n", + "To this end, we split the texts into words, with blank spaces as separator.\n", + "The text length averages to 5 words and does not seem to vary significantly by peril:" + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "peril_len", - "format": "svg" + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 559 + }, + "id": "emd-I7T5EVHB", + "outputId": "3fe0942c-18ca-4024-c7eb-5c799d1f1009", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "alignmentgroup": "True", - "hovertemplate": "labels=%{x}
words per description=%{y}", - "legendgroup": "", - "marker": { - "color": "#636efa" - }, - "name": "", - "notched": false, - "offsetgroup": "", - "orientation": "v", - "showlegend": false, - "type": "box", - "x": [ - 2, - 2, - 2, - 2, - 0, - 0, - 3, - 2, - 5, - 8, - 7, - 2, - 8, - 2, - 3, - 5, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 5, - 7, - 5, - 2, - 5, - 6, - 0, - 0, - 8, - 2, - 3, - 6, - 5, - 0, - 8, - 2, - 6, - 7, - 7, - 0, - 6, - 0, - 5, - 0, - 0, - 7, - 0, - 7, - 2, - 2, - 6, - 3, - 7, - 5, - 2, - 6, - 2, - 5, - 7, - 8, - 0, - 8, - 5, - 5, - 6, - 5, - 7, - 2, - 3, - 5, - 5, - 5, - 3, - 3, - 2, - 7, - 3, - 0, - 8, - 7, - 5, - 5, - 5, - 5, - 2, - 2, - 0, - 6, - 2, - 2, - 2, - 5, - 6, - 0, - 0, - 0, - 8, - 0, - 2, - 7, - 0, - 8, - 3, - 3, - 3, - 2, - 5, - 1, - 7, - 3, - 2, - 2, - 2, - 7, - 0, - 3, - 8, - 2, - 2, - 2, - 8, - 2, - 8, - 5, - 3, - 5, - 7, - 2, - 5, - 8, - 5, - 8, - 7, - 7, - 3, - 3, - 0, - 6, - 5, - 2, - 2, - 7, - 2, - 2, - 5, - 5, - 5, - 8, - 5, - 3, - 3, - 2, - 2, - 0, - 8, - 0, - 8, - 5, - 0, - 0, - 3, - 0, - 3, - 4, - 0, - 0, - 0, - 0, - 5, - 5, - 0, - 0, - 0, - 5, - 5, - 2, - 1, - 2, - 1, - 6, - 2, - 0, - 2, - 7, - 7, - 2, - 0, - 2, - 2, - 3, - 7, - 2, - 2, - 2, - 2, - 2, - 2, - 8, - 5, - 0, - 2, - 1, - 4, - 5, - 2, - 8, - 2, - 0, - 5, - 6, - 5, - 8, - 5, - 2, - 2, - 3, - 8, - 5, - 5, - 5, - 2, - 8, - 2, - 2, - 7, - 5, - 2, - 8, - 7, - 8, - 1, - 6, - 7, - 0, - 7, - 7, - 0, - 7, - 0, - 0, - 7, - 0, - 2, - 0, - 0, - 6, - 0, - 0, - 3, - 0, - 0, - 0, - 3, - 0, - 8, - 6, - 7, - 7, - 3, - 8, - 7, - 2, - 0, - 0, - 0, - 3, - 0, - 0, - 0, - 7, - 0, - 2, - 8, - 6, - 0, - 0, - 7, - 0, - 0, - 1, - 0, - 0, - 2, - 5, - 7, - 6, - 0, - 0, - 6, - 0, - 0, - 7, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 0, - 0, - 5, - 0, - 5, - 0, - 3, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 8, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 0, - 0, - 0, - 1, - 0, - 0, - 0, - 0, - 0, - 8, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 8, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 8, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 8, - 0, - 6, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 8, - 0, - 0, - 0, - 7, - 0, - 0, - 7, - 6, - 0, - 0, - 7, - 0, - 5, - 0, - 0, - 0, - 0, - 7, - 0, - 5, - 0, - 5, - 0, - 0, - 0, - 0, - 6, - 0, - 0, - 0, - 5, - 1, - 0, - 0, - 7, - 0, - 2, - 0, - 0, - 0, - 0, - 2, - 5, - 0, - 0, - 0, - 6, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 1, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 6, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 7, - 0, - 0, - 5, - 6, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 6, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 6, - 0, - 7, - 0, - 0, - 2, - 0, - 0, - 0, - 0, - 7, - 0, - 3, - 0, - 0, - 7, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 3, - 2, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 2, - 0, - 6, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 2, - 0, - 0, - 0, - 0, - 1, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 3, - 0, - 7, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 6, - 6, - 0, - 0, - 2, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 8, - 3, - 0, - 6, - 2, - 8, - 2, - 2, - 8, - 7, - 1, - 2, - 3, - 6, - 2, - 8, - 3, - 8, - 7, - 7, - 3, - 7, - 8, - 2, - 5, - 2, - 6, - 2, - 7, - 7, - 8, - 2, - 7, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 8, - 3, - 5, - 2, - 2, - 3, - 1, - 8, - 3, - 2, - 2, - 7, - 4, - 2, - 2, - 8, - 8, - 8, - 8, - 5, - 5, - 2, - 2, - 1, - 1, - 5, - 0, - 3, - 6, - 7, - 3, - 2, - 5, - 0, - 5, - 5, - 5, - 2, - 2, - 1, - 0, - 2, - 2, - 5, - 2, - 2, - 3, - 2, - 2, - 6, - 2, - 5, - 5, - 7, - 5, - 7, - 7, - 5, - 0, - 7, - 3, - 5, - 3, - 3, - 2, - 8, - 8, - 1, - 5, - 5, - 5, - 5, - 5, - 5, - 1, - 2, - 3, - 2, - 2, - 3, - 8, - 5, - 2, - 8, - 5, - 5, - 2, - 2, - 5, - 2, - 5, - 2, - 2, - 2, - 7, - 7, - 5, - 2, - 2, - 3, - 2, - 7, - 7, - 0, - 0, - 2, - 2, - 8, - 2, - 0, - 2, - 2, - 2, - 0, - 3, - 2, - 2, - 3, - 2, - 0, - 6, - 6, - 5, - 8, - 2, - 0, - 0, - 0, - 7, - 5, - 0, - 0, - 8, - 5, - 5, - 6, - 5, - 2, - 0, - 2, - 7, - 3, - 0, - 8, - 3, - 3, - 2, - 3, - 2, - 0, - 2, - 2, - 2, - 8, - 7, - 2, - 7, - 2, - 2, - 0, - 2, - 2, - 2, - 2, - 4, - 5, - 0, - 0, - 8, - 2, - 0, - 0, - 0, - 8, - 2, - 2, - 0, - 2, - 3, - 1, - 2, - 6, - 7, - 8, - 7, - 2, - 6, - 2, - 0, - 5, - 5, - 1, - 6, - 5, - 2, - 7, - 1, - 8, - 2, - 7, - 7, - 5, - 2, - 7, - 6, - 0, - 7, - 8, - 0, - 7, - 1, - 5, - 0, - 2, - 7, - 7, - 8, - 5, - 2, - 5, - 1, - 8, - 0, - 2, - 8, - 7, - 5, - 6, - 8, - 2, - 8, - 1, - 2, - 0, - 5, - 5, - 8, - 5, - 6, - 3, - 5, - 5, - 5, - 2, - 5, - 5, - 2, - 3, - 0, - 6, - 2, - 2, - 0, - 0, - 8, - 6, - 1, - 8, - 2, - 8, - 5, - 0, - 0, - 2, - 8, - 2, - 8, - 8, - 3, - 0, - 2, - 5, - 2, - 5, - 8, - 0, - 8, - 5, - 0, - 2, - 5, - 3, - 0, - 5, - 1, - 0, - 2, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 3, - 0, - 3, - 8, - 0, - 2, - 5, - 5, - 2, - 3, - 0, - 0, - 3, - 0, - 0, - 7, - 0, - 0, - 0, - 6, - 5, - 3, - 2, - 2, - 2, - 0, - 8, - 0, - 0, - 6, - 2, - 0, - 0, - 7, - 0, - 5, - 4, - 3, - 2, - 6, - 3, - 3, - 2, - 2, - 5, - 1, - 3, - 2, - 8, - 5, - 2, - 0, - 8, - 7, - 3, - 2, - 2, - 8, - 8, - 8, - 8, - 0, - 0, - 2, - 2, - 2, - 1, - 2, - 2, - 2, - 5, - 5, - 3, - 3, - 2, - 8, - 2, - 2, - 1, - 3, - 5, - 2, - 6, - 1, - 5, - 3, - 3, - 2, - 0, - 2, - 2, - 6, - 8, - 3, - 1, - 8, - 5, - 0, - 5, - 0, - 2, - 2, - 5, - 2, - 2, - 2, - 2, - 6, - 2, - 7, - 2, - 3, - 2, - 0, - 8, - 1, - 3, - 3, - 8, - 5, - 2, - 2, - 5, - 2, - 5, - 2, - 4, - 7, - 8, - 2, - 2, - 0, - 5, - 5, - 5, - 1, - 2, - 1, - 4, - 1, - 2, - 8, - 2, - 8, - 8, - 7, - 2, - 3, - 8, - 7, - 7, - 4, - 2, - 0, - 3, - 0, - 0, - 1, - 0, - 0, - 2, - 3, - 8, - 7, - 0, - 2, - 0, - 8, - 8, - 8, - 5, - 0, - 2, - 0, - 2, - 0, - 0, - 4, - 0, - 2, - 5, - 0, - 2, - 0, - 2, - 0, - 2, - 0, - 7, - 2, - 6, - 2, - 8, - 8, - 2, - 8, - 3, - 3, - 1, - 1, - 3, - 2, - 7, - 8, - 7, - 2, - 5, - 6, - 1, - 7, - 1, - 3, - 0, - 2, - 3, - 5, - 7, - 8, - 0, - 2, - 1, - 7, - 2, - 3, - 5, - 2, - 0, - 2, - 0, - 2, - 0, - 2, - 2, - 0, - 2, - 0, - 2, - 0, - 0, - 2, - 3, - 2, - 8, - 7, - 8, - 6, - 2, - 3, - 3, - 3, - 2, - 0, - 4, - 0, - 2, - 2, - 8, - 2, - 5, - 8, - 1, - 3, - 7, - 3, - 0, - 2, - 7, - 8, - 2, - 4, - 8, - 6, - 2, - 8, - 6, - 6, - 0, - 7, - 2, - 7, - 7, - 0, - 6, - 6, - 7, - 4, - 7, - 7, - 3, - 8, - 0, - 0, - 4, - 3, - 0, - 0, - 3, - 2, - 2, - 7, - 8, - 1, - 2, - 3, - 7, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 1, - 8, - 6, - 7, - 8, - 2, - 7, - 0, - 7, - 0, - 3, - 2, - 7, - 7, - 2, - 3, - 0, - 0, - 0, - 1, - 5, - 3, - 3, - 0, - 7, - 2, - 7, - 6, - 0, - 0, - 7, - 8, - 3, - 3, - 2, - 3, - 7, - 2, - 0, - 8, - 1, - 2, - 0, - 5, - 8, - 0, - 0, - 0, - 0, - 5, - 0, - 8, - 0, - 2, - 5, - 3, - 2, - 7, - 2, - 2, - 8, - 0, - 2, - 2, - 2, - 5, - 0, - 0, - 6, - 2, - 0, - 2, - 8, - 8, - 3, - 2, - 2, - 2, - 2, - 8, - 2, - 7, - 7, - 0, - 2, - 2, - 8, - 0, - 8, - 2, - 0, - 8, - 0, - 2, - 2, - 2, - 8, - 0, - 0, - 8, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 8, - 0, - 0, - 6, - 0, - 8, - 0, - 6, - 6, - 6, - 2, - 0, - 8, - 0, - 6, - 6, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 8, - 0, - 0, - 3, - 7, - 0, - 0, - 0, - 6, - 6, - 0, - 0, - 6, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 2, - 0, - 0, - 8, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 7, - 6, - 0, - 0, - 0, - 0, - 0, - 1, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 3, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 7, - 0, - 0, - 6, - 2, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 6, - 3, - 0, - 5, - 6, - 0, - 7, - 0, - 6, - 0, - 0, - 8, - 7, - 6, - 6, - 3, - 3, - 5, - 5, - 6, - 7, - 3, - 3, - 0, - 5, - 0, - 0, - 1, - 7, - 6, - 2, - 8, - 7, - 6, - 5, - 2, - 2, - 0, - 2, - 3, - 2, - 2, - 7, - 0, - 2, - 1, - 7, - 1, - 2, - 2, - 0, - 2, - 8, - 0, - 6, - 2, - 4, - 5, - 0, - 8, - 8, - 2, - 2, - 3, - 7, - 7, - 7, - 1, - 2, - 0, - 0, - 2, - 2, - 7, - 3, - 3, - 8, - 8, - 0, - 0, - 0, - 0, - 2, - 5, - 0, - 4, - 3, - 7, - 3, - 8, - 7, - 7, - 7, - 7, - 0, - 0, - 0, - 2, - 2, - 6, - 6, - 6, - 2, - 0, - 8, - 1, - 1, - 2, - 0, - 2, - 7, - 8, - 6, - 7, - 2, - 8, - 8, - 8, - 6, - 4, - 2, - 0, - 0, - 8, - 7, - 7, - 6, - 0, - 7, - 2, - 3, - 1, - 7, - 3, - 6, - 2, - 0, - 7, - 0, - 6, - 8, - 2, - 0, - 0, - 0, - 0, - 0, - 3, - 3, - 3, - 7, - 6, - 2, - 7, - 7, - 2, - 7, - 2, - 8, - 2, - 6, - 3, - 0, - 6, - 0, - 2, - 4, - 7, - 6, - 0, - 2, - 8, - 8, - 7, - 2, - 4, - 2, - 8, - 0, - 0, - 8, - 7, - 7, - 0, - 2, - 7, - 6, - 7, - 6, - 2, - 5, - 0, - 2, - 6, - 0, - 6, - 0, - 8, - 3, - 6, - 8, - 1, - 6, - 7, - 7, - 7, - 6, - 0, - 8, - 5, - 5, - 8, - 0, - 6, - 2, - 2, - 0, - 8, - 2, - 8, - 2, - 8, - 8, - 1, - 2, - 3, - 8, - 7, - 7, - 7, - 8, - 2, - 8, - 2, - 7, - 2, - 3, - 7, - 2, - 0, - 7, - 3, - 8, - 7, - 4, - 0, - 0, - 3, - 0, - 0, - 0, - 0, - 4, - 2, - 2, - 7, - 7, - 7, - 7, - 8, - 2, - 7, - 5, - 7, - 5, - 8, - 8, - 8, - 7, - 0, - 2, - 0, - 0, - 7, - 0, - 8, - 0, - 5, - 7, - 5, - 5, - 2, - 8, - 2, - 2, - 2, - 0, - 2, - 2, - 2, - 2, - 0, - 1, - 1, - 2, - 6, - 8, - 7, - 8, - 8, - 0, - 6, - 0, - 0, - 0, - 0, - 7, - 0, - 7, - 5, - 0, - 1, - 0, - 3, - 5, - 6, - 0, - 0, - 5, - 2, - 0, - 0, - 0, - 7, - 7, - 0, - 0, - 2, - 3, - 6, - 3, - 2, - 2, - 0, - 2, - 6, - 1, - 2, - 7, - 7, - 7, - 2, - 6, - 2, - 1, - 0, - 7, - 3, - 6, - 2, - 8, - 7, - 3, - 5, - 2, - 2, - 7, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 7, - 0, - 6, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 6, - 0, - 0, - 1, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 2, - 0, - 0, - 0, - 0, - 3, - 2, - 7, - 0, - 0, - 0, - 6, - 0, - 0, - 1, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 1, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 7, - 7, - 0, - 0, - 0, - 0, - 2, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 6, - 0, - 0, - 0, - 7, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 6, - 0, - 0, - 0, - 2, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 6, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 6, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 8, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 6, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 5, - 0, - 6, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 6, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 0, - 0, - 7, - 0, - 0, - 0, - 8, - 0, - 0, - 0, - 0, - 0, - 6, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 6, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 4, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 6, - 8, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 8, - 0, - 0, - 0, - 7, - 8, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 0, - 0, - 0, - 8, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 2, - 0, - 0, - 2, - 0, - 0, - 0, - 0, - 6, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 4, - 0, - 0, - 8, - 0, - 0, - 2, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 8, - 0, - 2, - 0, - 8, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 8, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 6, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 8, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 6, - 5, - 0, - 1, - 3, - 0, - 0, - 6, - 0, - 0, - 0, - 0, - 0, - 3, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 8, - 0, - 1, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 6, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 3, - 5, - 0, - 0, - 0, - 3, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 8, - 0, - 0, - 0, - 8, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 2, - 3, - 2, - 0, - 7, - 2, - 7, - 2, - 2, - 8, - 5, - 0, - 8, - 7, - 2, - 2, - 1, - 8, - 2, - 2, - 2, - 7, - 2, - 7, - 6, - 2, - 2, - 5, - 2, - 0, - 5, - 6, - 2, - 0, - 2, - 0, - 5, - 7, - 1, - 2, - 2, - 5, - 0, - 5, - 0, - 2, - 8, - 2, - 5, - 0, - 5, - 2, - 0, - 6, - 1, - 2, - 5, - 2, - 2, - 0, - 2, - 0, - 0, - 7, - 0, - 7, - 0, - 1, - 2, - 6, - 2, - 2, - 7, - 7, - 1, - 0, - 1, - 4, - 1, - 3, - 1, - 2, - 6, - 5, - 0, - 2, - 6, - 2, - 7, - 2, - 2, - 0, - 7, - 8, - 8, - 7, - 0, - 0, - 2, - 0, - 2, - 7, - 8, - 7, - 0, - 2, - 8, - 6, - 0, - 6, - 6, - 6, - 0, - 7, - 0, - 7, - 8, - 7, - 7, - 7, - 7, - 1, - 8, - 6, - 2, - 3, - 2, - 7, - 8, - 2, - 8, - 3, - 7, - 0, - 0, - 8, - 3, - 8, - 5, - 2, - 7, - 5, - 8, - 6, - 8, - 2, - 2, - 0, - 0, - 0, - 0, - 8, - 2, - 3, - 0, - 0, - 2, - 0, - 2, - 2, - 5, - 2, - 8, - 4, - 8, - 3, - 8, - 2, - 2, - 3, - 6, - 3, - 7, - 7, - 8, - 6, - 0, - 7, - 7, - 6, - 5, - 2, - 8, - 7, - 3, - 7, - 0, - 2, - 3, - 7, - 3, - 3, - 7, - 7, - 8, - 0, - 2, - 8, - 8, - 0, - 8, - 8, - 3, - 3, - 0, - 2, - 0, - 0, - 7, - 7, - 7, - 7, - 7, - 3, - 3, - 8, - 0, - 1, - 0, - 7, - 8, - 7, - 3, - 2, - 0, - 3, - 4, - 2, - 7, - 8, - 2, - 8, - 8, - 8, - 8, - 2, - 2, - 7, - 2, - 5, - 2, - 7, - 3, - 6, - 2, - 7, - 0, - 7, - 7, - 0, - 1, - 8, - 7, - 0, - 7, - 8, - 8, - 0, - 1, - 8, - 0, - 7, - 6, - 7, - 6, - 0, - 3, - 8, - 2, - 7, - 2, - 2, - 3, - 3, - 1, - 7, - 1, - 1, - 6, - 2, - 1, - 7, - 1, - 0, - 7, - 1, - 0, - 2, - 6, - 8, - 7, - 3, - 5, - 5, - 5, - 2, - 6, - 5, - 8, - 1, - 0, - 0, - 0, - 8, - 2, - 2, - 5, - 2, - 3, - 2, - 5, - 2, - 2, - 4, - 2, - 0, - 5, - 5, - 8, - 8, - 5, - 0, - 5, - 5, - 5, - 1, - 5, - 5, - 5, - 5, - 2, - 5, - 2, - 5, - 2, - 0, - 5, - 5, - 7, - 5, - 5, - 3, - 5, - 7, - 5, - 5, - 0, - 5, - 2, - 5, - 3, - 5, - 5, - 2, - 8, - 5, - 5, - 5, - 5, - 5, - 5, - 0, - 7, - 5, - 2, - 5, - 6, - 2, - 2, - 2, - 0, - 0, - 5, - 2, - 5, - 5, - 5, - 5, - 5, - 3, - 5, - 5, - 2, - 5, - 0, - 5, - 2, - 5, - 5, - 5, - 5, - 5, - 3, - 5, - 2, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 0, - 2, - 2, - 5, - 2, - 5, - 3, - 5, - 2, - 2, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 2, - 2, - 2, - 5, - 7, - 3, - 6, - 5, - 7, - 3, - 0, - 5, - 5, - 7, - 8, - 0, - 8, - 5, - 0, - 0, - 0, - 5, - 8, - 5, - 4, - 3, - 2, - 7, - 6, - 4, - 3, - 3, - 5, - 5, - 5, - 6, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 3, - 5, - 5, - 0, - 5, - 7, - 0, - 2, - 2, - 2, - 2, - 4, - 5, - 2, - 2, - 7, - 7, - 2, - 5, - 5, - 5, - 5, - 5, - 1, - 6, - 0, - 5, - 6, - 5, - 5, - 0, - 7, - 1, - 0, - 5, - 7, - 8, - 2, - 5, - 0, - 5, - 8, - 5, - 5, - 7, - 5, - 7, - 5, - 5, - 5, - 5, - 7, - 7, - 6, - 5, - 5, - 5, - 1, - 5, - 2, - 5, - 5, - 5, - 2, - 5, - 8, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 3, - 5, - 5, - 5, - 3, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 2, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 2, - 5, - 5, - 8, - 5, - 8, - 5, - 8, - 2, - 5, - 3, - 1, - 7, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 7, - 8, - 2, - 5, - 0, - 5, - 5, - 5, - 2, - 5, - 2, - 0, - 5, - 5, - 7, - 5, - 2, - 5, - 5, - 5, - 5, - 7, - 5, - 5, - 1, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 0, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 3, - 5, - 5, - 3, - 5, - 0, - 5, - 5, - 5, - 8, - 0, - 2, - 5, - 3, - 7, - 2, - 5, - 2, - 8, - 2, - 2, - 8, - 2, - 8, - 2, - 7, - 6, - 0, - 1, - 7, - 8, - 2, - 2, - 2, - 3, - 2, - 5, - 5, - 7, - 7, - 0, - 8, - 0, - 8, - 5, - 5, - 2, - 7, - 7, - 5, - 1, - 2, - 4, - 5, - 2, - 1, - 8, - 0, - 0, - 1, - 5, - 0, - 6, - 0, - 1, - 7, - 5, - 0, - 0, - 5, - 0, - 4, - 3, - 0, - 0, - 7, - 0, - 0, - 0, - 7, - 7, - 4, - 7, - 5, - 7, - 0, - 7, - 0, - 7, - 5, - 5, - 5, - 5, - 8, - 0, - 2, - 5, - 0, - 0, - 1, - 0, - 8, - 5, - 2, - 8, - 8, - 0, - 0, - 8, - 5, - 5, - 8, - 0, - 5, - 0, - 0, - 8, - 4, - 1, - 8, - 5, - 8, - 5, - 4, - 0, - 4, - 3, - 7, - 2, - 7, - 0, - 5, - 0, - 0, - 8, - 0, - 2, - 7, - 5, - 2, - 2, - 2, - 2, - 2, - 2, - 8, - 5, - 5, - 5, - 0, - 2, - 5, - 5, - 3, - 5, - 5, - 2, - 1, - 5, - 5, - 5, - 3, - 0, - 2, - 5, - 7, - 2, - 4, - 4, - 0, - 7, - 2, - 5, - 2, - 0, - 2, - 2, - 3, - 2, - 2, - 5, - 8, - 2, - 2, - 2, - 1, - 0, - 5, - 5, - 5, - 2, - 5, - 4, - 5, - 5, - 0, - 5, - 5, - 5, - 5, - 2, - 5, - 5, - 1, - 1, - 7, - 7, - 5, - 6, - 2, - 2, - 0, - 2, - 2, - 6, - 2, - 7, - 2, - 1, - 5, - 5, - 8, - 6, - 8, - 7, - 7, - 3, - 0, - 7, - 2, - 0, - 7, - 0, - 0, - 5, - 3, - 5, - 2, - 3, - 0, - 6, - 5, - 5, - 5, - 5, - 3, - 5, - 3, - 3, - 5, - 0, - 5, - 7, - 5, - 5, - 5, - 5, - 3, - 5, - 0, - 5, - 5, - 0, - 5, - 0, - 0, - 5, - 5, - 5, - 5, - 8, - 5, - 5, - 6, - 7, - 8, - 7, - 3, - 3, - 8, - 7, - 5, - 2, - 2, - 8, - 0, - 6, - 3, - 5, - 5, - 2, - 5, - 5, - 5, - 7, - 2, - 5, - 2, - 5, - 1, - 1, - 2, - 1, - 7, - 7, - 0, - 2, - 0, - 5, - 6, - 6, - 0, - 2, - 0, - 5, - 2, - 5, - 5, - 2, - 2, - 8, - 2, - 0, - 8, - 2, - 2, - 0, - 5, - 2, - 2, - 1, - 0, - 2, - 0, - 3, - 3, - 1, - 2, - 5, - 5, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 1, - 1, - 2, - 2, - 2, - 2, - 0, - 2, - 5, - 5, - 2, - 4, - 5, - 0, - 5, - 2, - 5, - 5, - 2, - 2, - 0, - 5, - 0, - 3, - 5, - 8, - 5, - 5, - 8, - 1, - 5, - 8, - 0, - 0, - 5, - 3, - 3, - 5, - 2, - 5, - 5, - 7, - 0, - 7, - 5, - 8, - 0, - 3, - 2, - 5, - 5, - 4, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 2, - 2, - 7, - 1, - 3, - 0, - 2, - 8, - 8, - 2, - 6, - 5, - 6, - 1, - 5, - 5, - 6, - 8, - 5, - 5, - 5, - 3, - 6, - 5, - 0, - 2, - 7, - 0, - 3, - 0, - 1, - 5, - 5, - 3, - 0, - 7, - 2, - 5, - 7, - 3, - 5, - 2, - 2, - 2, - 2, - 4, - 8, - 8, - 2, - 7, - 7, - 0, - 3, - 0, - 0, - 0, - 8, - 5, - 2, - 2, - 6, - 4, - 5, - 5, - 2, - 2, - 5, - 2, - 2, - 2, - 0, - 0, - 2, - 5, - 2, - 2, - 2, - 2, - 8, - 2, - 8, - 2, - 3, - 2, - 2, - 1, - 0, - 0, - 6, - 2, - 3, - 1, - 5, - 7, - 5, - 2, - 7, - 7, - 7, - 0, - 2, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 2, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 6, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 2, - 5, - 5, - 5, - 2, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 0, - 7, - 5, - 8, - 5, - 5, - 0, - 5, - 5, - 5, - 5, - 5, - 5, - 2, - 5, - 5, - 2, - 5, - 5, - 5, - 2, - 0, - 2, - 2, - 1, - 3, - 8, - 8, - 7, - 7, - 4, - 0, - 1, - 7, - 0, - 2, - 2, - 2, - 7, - 3, - 0, - 1, - 7, - 1, - 2, - 3, - 5, - 7, - 5, - 3, - 5, - 5, - 5, - 6, - 5, - 0, - 5, - 5, - 5, - 0, - 5, - 0, - 3, - 6, - 7, - 3, - 4, - 8, - 8, - 7, - 2, - 5, - 5, - 5, - 5, - 5, - 5, - 2, - 0, - 2, - 5, - 5, - 5, - 0, - 5, - 5, - 5, - 5, - 1, - 5, - 5, - 5, - 0, - 2, - 2, - 3, - 6, - 2, - 2, - 0, - 8, - 2, - 2, - 8, - 8, - 1, - 2, - 2, - 2, - 1, - 6, - 2, - 2, - 3, - 5, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 2, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 5, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 5, - 5, - 5, - 2, - 1, - 5, - 3, - 7, - 2, - 5, - 1, - 5, - 5, - 1, - 2, - 2, - 8, - 2, - 7, - 2, - 5, - 5, - 3, - 3, - 5, - 7, - 5, - 2, - 7, - 5, - 8, - 0, - 2, - 2, - 0, - 5, - 2, - 0, - 0, - 7, - 2, - 5, - 2, - 0, - 2, - 2, - 4, - 3, - 4, - 5, - 0, - 8, - 2, - 5, - 2, - 0, - 2, - 0, - 2, - 8, - 8, - 5, - 5, - 7, - 5, - 8, - 5, - 3, - 0, - 5, - 8, - 8, - 5, - 0, - 2, - 3, - 0, - 2, - 0, - 2, - 2, - 8, - 3, - 5, - 1, - 5, - 8, - 7, - 5, - 5, - 0, - 2, - 6, - 5, - 8, - 3, - 2, - 7, - 2, - 6, - 7, - 3, - 3, - 3, - 7, - 7, - 1, - 4, - 5, - 5, - 2, - 3, - 0, - 7, - 4, - 0, - 0, - 1, - 6, - 2, - 0, - 2, - 2, - 2, - 6, - 0, - 2, - 8, - 0, - 5, - 5, - 5, - 0, - 4, - 0, - 4, - 7, - 5, - 3, - 5, - 0, - 7, - 5, - 5, - 8, - 3, - 0, - 5, - 3, - 2, - 2, - 8, - 0, - 5, - 0, - 4, - 5, - 0, - 5, - 2, - 2, - 8, - 8, - 8, - 0, - 1, - 5, - 3, - 5, - 4, - 4, - 5, - 5, - 2, - 2, - 4, - 8, - 2, - 2, - 0, - 8, - 4, - 5, - 2, - 5, - 5, - 3, - 0, - 5, - 5, - 3, - 7, - 7, - 4, - 5, - 3, - 2, - 2, - 2, - 3, - 2, - 0, - 8, - 2, - 4, - 3, - 5, - 2, - 1, - 5, - 5, - 8, - 2, - 3, - 5, - 2, - 2, - 3, - 2, - 0, - 0, - 7, - 2, - 2, - 7, - 3, - 2, - 2, - 5, - 3, - 0, - 2, - 8, - 2, - 3, - 7, - 7, - 7, - 5, - 5, - 5, - 2, - 8, - 5, - 2, - 5, - 7, - 0, - 2, - 7, - 2, - 3, - 3, - 3, - 8, - 0, - 0, - 5, - 0, - 5, - 7, - 0, - 1, - 3, - 2, - 4, - 2, - 3, - 0, - 4, - 5, - 5, - 4, - 5, - 5, - 5, - 2, - 8, - 4, - 5, - 3, - 2, - 2, - 0, - 8, - 2, - 5, - 2, - 2, - 3, - 5, - 5, - 2, - 0, - 0, - 7, - 5, - 0, - 2, - 5, - 2, - 5, - 0, - 2, - 5, - 1, - 0, - 5, - 0, - 2, - 5, - 2, - 0, - 3, - 0, - 0, - 7, - 6, - 5, - 5, - 8, - 3, - 8, - 0, - 2, - 1, - 5, - 1, - 5, - 7, - 1, - 7, - 2, - 2, - 5, - 8, - 3, - 2, - 3, - 5, - 0, - 7, - 3, - 1, - 7, - 2, - 2, - 0, - 2, - 8, - 0, - 2, - 5, - 7, - 8, - 1, - 5, - 6, - 2, - 0, - 8, - 8, - 5, - 3, - 7, - 2, - 5, - 0, - 1, - 2, - 3, - 8, - 2, - 5, - 5, - 5, - 2, - 2, - 5, - 0, - 0, - 7, - 2, - 2, - 2, - 5, - 1, - 3, - 2, - 8, - 5, - 5, - 6, - 7, - 2, - 7, - 7, - 4, - 7, - 2, - 7, - 0, - 1, - 2, - 2, - 2, - 2, - 0, - 0, - 6, - 2, - 8, - 0, - 7, - 3, - 1, - 5, - 2, - 2, - 2, - 2, - 5, - 0, - 8, - 1, - 2, - 3, - 6, - 5, - 5, - 2, - 7, - 5, - 0, - 2, - 1, - 2, - 5, - 5, - 0, - 3, - 2, - 2, - 5, - 8, - 0, - 5, - 1, - 5, - 5, - 5, - 7, - 7, - 8, - 0, - 0, - 3, - 4, - 7, - 2, - 2, - 7, - 7, - 7, - 5, - 5, - 7, - 5, - 7, - 7, - 5, - 6, - 6, - 2, - 4, - 5, - 5, - 2, - 0, - 2, - 8, - 0, - 0, - 0, - 7, - 2, - 7, - 2, - 5, - 8, - 1, - 2, - 1, - 5, - 7, - 5, - 8, - 2, - 2, - 1, - 6, - 0, - 5, - 2, - 8, - 2, - 2, - 2, - 3, - 3, - 8, - 4, - 7, - 0, - 4, - 3, - 8, - 5, - 3, - 2, - 3, - 2, - 2, - 2, - 6, - 2, - 8, - 6, - 2, - 0, - 2, - 2, - 2, - 5, - 7, - 2, - 2, - 8, - 8, - 7, - 8, - 6, - 2, - 5, - 5, - 8, - 0, - 7, - 2, - 0, - 2, - 0, - 0, - 0, - 2, - 5, - 5, - 5, - 5, - 0, - 5, - 3, - 0, - 2, - 2, - 0, - 4, - 2, - 2, - 2, - 2, - 2, - 2, - 0, - 5, - 3, - 3, - 6, - 3, - 3, - 8, - 3, - 0, - 2, - 0, - 5, - 5, - 0, - 0, - 0, - 0, - 3, - 2, - 2, - 8, - 0, - 2, - 2, - 2, - 2, - 0, - 3, - 1, - 2, - 2, - 1, - 5, - 0, - 0, - 8, - 4, - 5, - 1, - 2, - 0, - 0, - 0, - 0, - 1, - 6, - 3, - 2, - 2, - 0, - 2, - 3, - 3, - 2, - 0, - 5, - 8, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 0, - 5, - 5, - 5, - 5, - 7, - 7, - 5, - 2, - 2, - 5, - 5, - 5, - 5, - 5, - 4, - 2, - 7, - 5, - 3, - 3, - 5, - 1, - 5, - 3, - 2, - 8, - 1, - 5, - 6, - 0, - 2, - 7, - 2, - 7, - 2, - 2, - 2, - 2, - 2, - 0, - 3, - 2, - 5, - 3, - 3, - 3, - 7, - 3, - 2, - 3, - 5, - 2, - 1, - 2, - 6, - 3, - 2, - 8, - 2, - 2, - 6, - 2, - 2, - 2, - 4, - 5, - 2, - 2, - 2, - 0, - 2, - 0, - 2, - 3, - 3, - 2, - 2, - 5, - 6, - 2, - 4, - 0, - 7, - 5, - 5, - 7, - 4, - 8, - 5, - 5, - 5, - 0, - 3, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 0, - 1, - 2, - 5, - 5, - 2, - 5, - 8, - 2, - 8, - 8, - 8, - 5, - 2, - 0, - 5, - 5, - 5, - 2, - 2, - 5, - 7, - 7, - 8, - 2, - 0, - 5, - 2, - 8, - 8, - 2, - 8, - 5, - 7, - 7, - 1, - 4, - 2, - 8, - 5, - 2, - 2, - 8, - 2, - 4, - 4, - 3, - 8, - 5, - 5, - 6, - 6, - 8, - 8, - 3, - 1, - 6, - 7, - 5, - 8, - 7, - 1, - 2, - 1, - 1, - 2, - 8, - 0, - 1, - 5, - 5, - 0, - 8, - 3, - 2, - 5, - 0, - 2, - 6, - 7, - 2, - 2, - 0, - 6, - 2, - 4, - 1, - 5 - ], - "x0": " ", - "xaxis": "x", - "y": [ - 2, - 5, - 5, - 5, - 5, - 3, - 7, - 2, - 8, - 5, - 4, - 6, - 6, - 4, - 5, - 7, - 4, - 7, - 5, - 5, - 5, - 4, - 2, - 4, - 2, - 4, - 5, - 4, - 4, - 3, - 5, - 3, - 5, - 2, - 4, - 6, - 6, - 5, - 5, - 5, - 4, - 4, - 2, - 4, - 4, - 5, - 4, - 3, - 3, - 7, - 4, - 4, - 5, - 2, - 4, - 4, - 6, - 4, - 4, - 4, - 4, - 4, - 2, - 6, - 5, - 2, - 4, - 4, - 4, - 5, - 5, - 6, - 3, - 4, - 7, - 5, - 6, - 6, - 4, - 4, - 5, - 6, - 5, - 6, - 6, - 4, - 3, - 5, - 3, - 7, - 6, - 6, - 7, - 7, - 6, - 5, - 4, - 6, - 6, - 6, - 4, - 5, - 5, - 6, - 5, - 4, - 5, - 2, - 5, - 4, - 5, - 6, - 5, - 5, - 4, - 5, - 4, - 2, - 4, - 4, - 4, - 5, - 5, - 7, - 5, - 2, - 5, - 2, - 5, - 4, - 2, - 6, - 5, - 4, - 2, - 6, - 3, - 7, - 6, - 4, - 5, - 3, - 3, - 4, - 4, - 4, - 3, - 5, - 5, - 6, - 6, - 6, - 6, - 6, - 5, - 9, - 6, - 2, - 2, - 3, - 5, - 6, - 3, - 4, - 2, - 5, - 2, - 2, - 4, - 2, - 3, - 4, - 5, - 4, - 6, - 7, - 6, - 5, - 6, - 9, - 4, - 4, - 6, - 6, - 6, - 5, - 5, - 7, - 4, - 2, - 5, - 3, - 4, - 5, - 5, - 4, - 2, - 5, - 2, - 2, - 8, - 7, - 4, - 3, - 4, - 5, - 7, - 5, - 5, - 5, - 6, - 5, - 4, - 3, - 4, - 4, - 6, - 6, - 5, - 4, - 5, - 5, - 4, - 6, - 6, - 7, - 4, - 6, - 5, - 5, - 6, - 5, - 5, - 6, - 7, - 4, - 3, - 3, - 5, - 5, - 6, - 5, - 2, - 4, - 5, - 5, - 5, - 2, - 5, - 5, - 5, - 5, - 5, - 3, - 5, - 6, - 5, - 2, - 5, - 6, - 3, - 2, - 5, - 2, - 5, - 4, - 6, - 4, - 5, - 5, - 5, - 1, - 5, - 5, - 5, - 5, - 5, - 3, - 4, - 5, - 6, - 3, - 5, - 5, - 4, - 4, - 4, - 4, - 5, - 4, - 5, - 4, - 5, - 2, - 2, - 5, - 5, - 5, - 5, - 5, - 5, - 2, - 4, - 5, - 5, - 5, - 5, - 5, - 3, - 5, - 5, - 2, - 5, - 5, - 3, - 5, - 5, - 4, - 6, - 5, - 2, - 2, - 4, - 5, - 4, - 5, - 5, - 2, - 5, - 5, - 1, - 2, - 5, - 5, - 5, - 4, - 4, - 4, - 4, - 4, - 3, - 4, - 6, - 4, - 5, - 4, - 5, - 5, - 4, - 4, - 4, - 3, - 4, - 4, - 5, - 6, - 5, - 4, - 5, - 5, - 5, - 5, - 5, - 4, - 6, - 5, - 5, - 6, - 4, - 4, - 5, - 4, - 4, - 4, - 4, - 4, - 4, - 5, - 4, - 4, - 4, - 5, - 5, - 4, - 3, - 5, - 3, - 4, - 4, - 4, - 4, - 5, - 5, - 5, - 5, - 4, - 4, - 5, - 5, - 4, - 4, - 4, - 4, - 4, - 4, - 5, - 5, - 5, - 5, - 4, - 4, - 5, - 4, - 4, - 4, - 4, - 5, - 5, - 5, - 3, - 4, - 5, - 4, - 4, - 4, - 4, - 3, - 5, - 5, - 5, - 4, - 5, - 5, - 4, - 4, - 4, - 5, - 5, - 4, - 5, - 5, - 5, - 4, - 5, - 4, - 4, - 5, - 5, - 4, - 6, - 5, - 4, - 5, - 6, - 4, - 5, - 4, - 7, - 5, - 4, - 4, - 5, - 5, - 4, - 4, - 5, - 4, - 5, - 4, - 5, - 5, - 4, - 4, - 4, - 4, - 4, - 5, - 5, - 4, - 4, - 5, - 3, - 5, - 4, - 4, - 5, - 4, - 5, - 5, - 5, - 6, - 5, - 4, - 4, - 4, - 5, - 6, - 5, - 3, - 4, - 6, - 5, - 4, - 4, - 5, - 5, - 4, - 6, - 5, - 4, - 4, - 5, - 4, - 4, - 3, - 5, - 5, - 5, - 5, - 3, - 5, - 5, - 4, - 4, - 5, - 5, - 4, - 5, - 5, - 3, - 5, - 5, - 5, - 5, - 4, - 6, - 5, - 5, - 4, - 5, - 5, - 4, - 5, - 5, - 5, - 4, - 5, - 5, - 5, - 5, - 5, - 5, - 3, - 4, - 6, - 4, - 4, - 4, - 2, - 4, - 5, - 4, - 3, - 5, - 4, - 4, - 4, - 5, - 4, - 4, - 4, - 6, - 5, - 6, - 4, - 4, - 4, - 4, - 5, - 4, - 4, - 4, - 3, - 5, - 4, - 4, - 3, - 4, - 4, - 7, - 5, - 4, - 5, - 4, - 5, - 3, - 6, - 4, - 4, - 4, - 4, - 4, - 5, - 4, - 4, - 2, - 4, - 4, - 4, - 4, - 4, - 4, - 5, - 5, - 5, - 3, - 4, - 5, - 4, - 4, - 4, - 6, - 5, - 4, - 4, - 4, - 4, - 5, - 4, - 4, - 4, - 4, - 4, - 3, - 5, - 5, - 5, - 5, - 7, - 5, - 6, - 2, - 4, - 3, - 6, - 5, - 4, - 6, - 6, - 5, - 2, - 2, - 7, - 2, - 4, - 8, - 4, - 7, - 4, - 5, - 7, - 9, - 2, - 5, - 6, - 3, - 2, - 2, - 4, - 3, - 3, - 2, - 7, - 3, - 5, - 6, - 2, - 6, - 3, - 6, - 2, - 6, - 3, - 6, - 5, - 4, - 3, - 7, - 4, - 4, - 5, - 7, - 4, - 4, - 3, - 6, - 5, - 8, - 6, - 4, - 5, - 10, - 5, - 4, - 7, - 1, - 2, - 4, - 3, - 4, - 2, - 2, - 5, - 8, - 2, - 7, - 4, - 5, - 4, - 5, - 7, - 5, - 9, - 5, - 2, - 5, - 4, - 2, - 2, - 2, - 5, - 6, - 5, - 2, - 5, - 4, - 3, - 4, - 6, - 5, - 6, - 6, - 5, - 5, - 2, - 4, - 5, - 5, - 6, - 5, - 2, - 5, - 4, - 5, - 3, - 9, - 9, - 6, - 5, - 6, - 8, - 3, - 4, - 4, - 4, - 4, - 6, - 4, - 5, - 3, - 4, - 5, - 6, - 4, - 3, - 5, - 4, - 4, - 4, - 6, - 4, - 5, - 6, - 2, - 5, - 5, - 3, - 4, - 5, - 3, - 5, - 4, - 4, - 2, - 6, - 2, - 5, - 4, - 7, - 5, - 5, - 3, - 5, - 5, - 3, - 5, - 6, - 3, - 6, - 4, - 5, - 3, - 5, - 2, - 6, - 2, - 4, - 8, - 7, - 3, - 3, - 7, - 6, - 5, - 3, - 3, - 3, - 4, - 4, - 4, - 5, - 4, - 7, - 2, - 5, - 4, - 5, - 5, - 5, - 3, - 4, - 4, - 4, - 5, - 7, - 4, - 4, - 6, - 5, - 7, - 4, - 5, - 6, - 4, - 3, - 4, - 4, - 8, - 5, - 5, - 4, - 4, - 4, - 6, - 5, - 7, - 5, - 3, - 5, - 5, - 6, - 4, - 4, - 6, - 4, - 4, - 5, - 4, - 5, - 4, - 4, - 3, - 6, - 2, - 2, - 3, - 4, - 4, - 4, - 5, - 4, - 5, - 4, - 5, - 5, - 5, - 4, - 4, - 3, - 4, - 5, - 6, - 6, - 8, - 7, - 5, - 6, - 2, - 2, - 4, - 5, - 4, - 7, - 2, - 6, - 4, - 5, - 6, - 4, - 4, - 2, - 8, - 2, - 4, - 4, - 6, - 4, - 5, - 7, - 6, - 2, - 3, - 2, - 4, - 5, - 6, - 5, - 4, - 2, - 4, - 2, - 5, - 5, - 6, - 5, - 6, - 4, - 3, - 2, - 5, - 5, - 5, - 7, - 4, - 6, - 4, - 4, - 5, - 5, - 7, - 4, - 5, - 4, - 4, - 6, - 6, - 6, - 4, - 3, - 4, - 5, - 5, - 5, - 3, - 4, - 4, - 4, - 4, - 5, - 4, - 3, - 4, - 5, - 6, - 7, - 6, - 4, - 4, - 8, - 6, - 6, - 3, - 8, - 7, - 7, - 7, - 9, - 8, - 9, - 3, - 5, - 7, - 5, - 5, - 4, - 6, - 4, - 4, - 3, - 4, - 6, - 5, - 4, - 3, - 4, - 7, - 2, - 5, - 7, - 6, - 7, - 7, - 8, - 3, - 5, - 3, - 5, - 3, - 5, - 3, - 3, - 5, - 4, - 4, - 3, - 5, - 6, - 4, - 6, - 4, - 4, - 6, - 5, - 4, - 4, - 4, - 4, - 4, - 5, - 5, - 5, - 8, - 7, - 8, - 6, - 6, - 6, - 7, - 7, - 6, - 6, - 3, - 8, - 5, - 7, - 4, - 7, - 3, - 8, - 5, - 5, - 6, - 6, - 5, - 5, - 11, - 5, - 3, - 7, - 6, - 8, - 7, - 8, - 4, - 6, - 4, - 2, - 4, - 5, - 6, - 2, - 4, - 3, - 3, - 5, - 4, - 4, - 6, - 3, - 2, - 4, - 2, - 4, - 4, - 4, - 2, - 6, - 4, - 5, - 5, - 7, - 4, - 5, - 5, - 8, - 3, - 5, - 4, - 4, - 4, - 4, - 5, - 5, - 4, - 3, - 5, - 2, - 4, - 4, - 5, - 4, - 4, - 4, - 5, - 7, - 6, - 5, - 5, - 6, - 2, - 7, - 6, - 4, - 6, - 4, - 7, - 5, - 2, - 3, - 6, - 4, - 3, - 4, - 5, - 5, - 3, - 5, - 5, - 4, - 5, - 5, - 5, - 6, - 4, - 4, - 7, - 7, - 2, - 3, - 5, - 5, - 5, - 2, - 6, - 4, - 5, - 2, - 4, - 4, - 4, - 4, - 6, - 5, - 3, - 6, - 6, - 5, - 2, - 7, - 7, - 5, - 2, - 2, - 5, - 5, - 5, - 7, - 3, - 4, - 5, - 7, - 5, - 4, - 5, - 2, - 2, - 2, - 1, - 3, - 2, - 2, - 5, - 7, - 4, - 4, - 2, - 5, - 2, - 5, - 7, - 7, - 4, - 4, - 5, - 5, - 4, - 2, - 7, - 5, - 6, - 3, - 4, - 5, - 3, - 5, - 5, - 6, - 7, - 5, - 5, - 5, - 5, - 9, - 4, - 10, - 7, - 6, - 6, - 4, - 4, - 4, - 4, - 2, - 5, - 4, - 5, - 4, - 6, - 7, - 6, - 6, - 7, - 7, - 5, - 5, - 4, - 6, - 5, - 6, - 8, - 8, - 2, - 4, - 6, - 5, - 7, - 4, - 5, - 7, - 2, - 5, - 4, - 5, - 4, - 6, - 4, - 4, - 5, - 6, - 6, - 5, - 2, - 5, - 6, - 4, - 4, - 5, - 5, - 4, - 4, - 4, - 2, - 5, - 5, - 2, - 4, - 4, - 4, - 2, - 5, - 4, - 2, - 3, - 6, - 2, - 4, - 4, - 4, - 4, - 7, - 5, - 6, - 5, - 5, - 5, - 6, - 2, - 4, - 4, - 8, - 3, - 4, - 4, - 5, - 6, - 4, - 4, - 2, - 3, - 7, - 6, - 4, - 4, - 4, - 3, - 2, - 4, - 5, - 3, - 5, - 4, - 6, - 4, - 5, - 2, - 6, - 4, - 5, - 4, - 5, - 3, - 6, - 3, - 4, - 6, - 2, - 5, - 4, - 4, - 4, - 6, - 6, - 6, - 4, - 6, - 4, - 4, - 5, - 4, - 5, - 6, - 4, - 6, - 5, - 3, - 4, - 5, - 4, - 6, - 5, - 6, - 4, - 5, - 4, - 4, - 5, - 6, - 5, - 4, - 3, - 4, - 5, - 4, - 5, - 4, - 5, - 6, - 9, - 7, - 5, - 4, - 6, - 2, - 7, - 5, - 2, - 4, - 7, - 7, - 4, - 4, - 7, - 2, - 5, - 4, - 6, - 5, - 5, - 7, - 7, - 4, - 4, - 7, - 5, - 5, - 2, - 5, - 7, - 5, - 5, - 5, - 6, - 2, - 4, - 4, - 7, - 2, - 2, - 4, - 4, - 5, - 4, - 4, - 7, - 4, - 5, - 8, - 5, - 4, - 4, - 5, - 5, - 4, - 5, - 6, - 6, - 5, - 6, - 5, - 7, - 3, - 5, - 5, - 5, - 3, - 3, - 3, - 5, - 5, - 3, - 6, - 3, - 3, - 5, - 4, - 5, - 5, - 3, - 5, - 5, - 3, - 5, - 5, - 3, - 6, - 6, - 3, - 3, - 5, - 5, - 5, - 6, - 5, - 5, - 6, - 3, - 5, - 5, - 5, - 4, - 6, - 6, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 4, - 5, - 5, - 4, - 6, - 5, - 4, - 5, - 5, - 5, - 6, - 5, - 5, - 4, - 5, - 5, - 4, - 5, - 5, - 6, - 2, - 6, - 6, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 4, - 5, - 2, - 6, - 5, - 4, - 4, - 5, - 3, - 3, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 6, - 5, - 5, - 5, - 5, - 5, - 6, - 5, - 5, - 4, - 5, - 6, - 4, - 7, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 6, - 5, - 2, - 5, - 5, - 5, - 5, - 6, - 5, - 5, - 5, - 4, - 4, - 5, - 6, - 4, - 4, - 6, - 5, - 4, - 6, - 8, - 7, - 7, - 6, - 7, - 5, - 4, - 7, - 5, - 7, - 5, - 2, - 2, - 5, - 4, - 5, - 4, - 6, - 4, - 4, - 4, - 4, - 4, - 5, - 6, - 4, - 5, - 6, - 5, - 5, - 5, - 5, - 4, - 4, - 6, - 7, - 3, - 4, - 3, - 4, - 6, - 7, - 4, - 4, - 5, - 4, - 6, - 6, - 4, - 4, - 4, - 4, - 4, - 4, - 5, - 5, - 5, - 4, - 4, - 4, - 4, - 8, - 5, - 5, - 5, - 5, - 6, - 4, - 4, - 6, - 3, - 6, - 4, - 2, - 5, - 5, - 7, - 7, - 4, - 4, - 8, - 4, - 5, - 4, - 4, - 6, - 4, - 4, - 2, - 4, - 5, - 4, - 3, - 2, - 3, - 5, - 5, - 5, - 3, - 4, - 4, - 4, - 8, - 4, - 3, - 5, - 6, - 6, - 5, - 5, - 4, - 4, - 8, - 5, - 4, - 4, - 5, - 4, - 6, - 5, - 9, - 4, - 5, - 4, - 8, - 3, - 4, - 5, - 6, - 4, - 7, - 5, - 5, - 8, - 5, - 3, - 3, - 6, - 4, - 5, - 4, - 4, - 4, - 4, - 5, - 2, - 4, - 5, - 6, - 4, - 4, - 3, - 6, - 5, - 4, - 4, - 6, - 6, - 8, - 4, - 4, - 4, - 8, - 5, - 4, - 5, - 4, - 5, - 4, - 7, - 6, - 4, - 2, - 5, - 6, - 2, - 7, - 4, - 4, - 9, - 2, - 5, - 4, - 6, - 6, - 6, - 4, - 6, - 5, - 4, - 6, - 5, - 6, - 2, - 7, - 4, - 5, - 6, - 4, - 4, - 4, - 4, - 5, - 5, - 6, - 5, - 4, - 6, - 5, - 4, - 5, - 6, - 4, - 4, - 5, - 4, - 5, - 2, - 5, - 4, - 4, - 4, - 4, - 6, - 5, - 4, - 5, - 7, - 7, - 4, - 4, - 5, - 4, - 2, - 3, - 6, - 5, - 4, - 4, - 7, - 2, - 4, - 4, - 6, - 4, - 6, - 2, - 7, - 6, - 5, - 3, - 5, - 6, - 5, - 6, - 5, - 4, - 3, - 5, - 4, - 5, - 4, - 7, - 6, - 6, - 8, - 3, - 6, - 2, - 5, - 6, - 4, - 6, - 5, - 2, - 4, - 5, - 3, - 7, - 6, - 6, - 5, - 5, - 8, - 6, - 5, - 4, - 2, - 2, - 4, - 4, - 3, - 4, - 5, - 6, - 4, - 4, - 7, - 5, - 4, - 3, - 7, - 6, - 6, - 6, - 6, - 7, - 6, - 5, - 5, - 6, - 4, - 4, - 5, - 4, - 6, - 5, - 7, - 4, - 5, - 5, - 7, - 5, - 6, - 2, - 4, - 4, - 8, - 6, - 5, - 5, - 6, - 7, - 6, - 5, - 4, - 5, - 5, - 6, - 3, - 6, - 6, - 4, - 5, - 5, - 4, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 4, - 4, - 5, - 5, - 6, - 5, - 6, - 5, - 5, - 5, - 4, - 5, - 4, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 4, - 8, - 5, - 5, - 7, - 6, - 6, - 5, - 5, - 5, - 5, - 4, - 5, - 4, - 5, - 5, - 6, - 5, - 5, - 5, - 4, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 7, - 3, - 5, - 5, - 5, - 5, - 5, - 2, - 3, - 5, - 5, - 5, - 5, - 5, - 6, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 6, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 6, - 5, - 5, - 5, - 5, - 7, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 6, - 5, - 4, - 5, - 5, - 5, - 5, - 5, - 8, - 5, - 4, - 5, - 5, - 5, - 6, - 5, - 5, - 5, - 4, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 6, - 6, - 5, - 5, - 2, - 5, - 6, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 7, - 4, - 5, - 5, - 5, - 5, - 5, - 4, - 4, - 6, - 5, - 5, - 5, - 4, - 5, - 6, - 6, - 5, - 5, - 6, - 5, - 7, - 4, - 5, - 5, - 5, - 5, - 6, - 5, - 5, - 5, - 5, - 5, - 5, - 3, - 6, - 5, - 5, - 4, - 5, - 5, - 5, - 5, - 4, - 5, - 5, - 5, - 4, - 4, - 5, - 5, - 4, - 4, - 5, - 5, - 5, - 5, - 3, - 4, - 4, - 4, - 6, - 5, - 5, - 5, - 5, - 4, - 5, - 5, - 5, - 5, - 4, - 5, - 5, - 4, - 5, - 5, - 4, - 4, - 5, - 5, - 4, - 5, - 4, - 5, - 6, - 4, - 5, - 5, - 5, - 4, - 5, - 5, - 4, - 5, - 4, - 3, - 5, - 5, - 5, - 4, - 4, - 5, - 5, - 7, - 4, - 5, - 4, - 4, - 5, - 5, - 4, - 5, - 4, - 4, - 5, - 4, - 5, - 4, - 5, - 5, - 4, - 5, - 5, - 5, - 5, - 4, - 2, - 5, - 5, - 4, - 5, - 5, - 5, - 5, - 4, - 4, - 4, - 4, - 4, - 5, - 5, - 3, - 5, - 3, - 3, - 6, - 6, - 4, - 3, - 4, - 4, - 5, - 4, - 4, - 6, - 6, - 8, - 7, - 5, - 4, - 5, - 5, - 3, - 3, - 6, - 3, - 4, - 5, - 4, - 4, - 7, - 4, - 3, - 3, - 4, - 4, - 4, - 7, - 4, - 4, - 5, - 7, - 4, - 3, - 3, - 4, - 4, - 4, - 3, - 8, - 4, - 4, - 8, - 6, - 4, - 2, - 4, - 5, - 6, - 9, - 4, - 3, - 3, - 6, - 5, - 5, - 4, - 7, - 6, - 4, - 5, - 4, - 5, - 5, - 6, - 5, - 8, - 4, - 4, - 7, - 4, - 4, - 5, - 4, - 8, - 4, - 8, - 8, - 4, - 4, - 8, - 4, - 4, - 3, - 8, - 6, - 5, - 6, - 4, - 4, - 3, - 7, - 4, - 3, - 5, - 4, - 5, - 5, - 3, - 4, - 2, - 5, - 6, - 3, - 3, - 4, - 3, - 4, - 4, - 6, - 3, - 3, - 3, - 4, - 5, - 4, - 4, - 4, - 5, - 5, - 5, - 4, - 4, - 3, - 5, - 5, - 5, - 4, - 7, - 5, - 4, - 4, - 4, - 4, - 6, - 6, - 3, - 4, - 4, - 5, - 6, - 3, - 4, - 9, - 4, - 6, - 6, - 5, - 4, - 4, - 6, - 4, - 5, - 4, - 3, - 6, - 4, - 4, - 4, - 6, - 5, - 4, - 4, - 6, - 4, - 3, - 4, - 5, - 4, - 4, - 4, - 7, - 4, - 10, - 4, - 4, - 4, - 7, - 7, - 5, - 4, - 6, - 8, - 3, - 3, - 5, - 4, - 4, - 3, - 4, - 3, - 4, - 6, - 5, - 8, - 8, - 5, - 7, - 3, - 4, - 5, - 7, - 5, - 6, - 5, - 3, - 7, - 6, - 6, - 5, - 6, - 6, - 5, - 5, - 7, - 7, - 8, - 7, - 3, - 5, - 6, - 5, - 5, - 6, - 8, - 9, - 6, - 6, - 4, - 4, - 9, - 5, - 1, - 5, - 3, - 3, - 5, - 5, - 6, - 6, - 6, - 5, - 7, - 9, - 4, - 8, - 7, - 8, - 3, - 5, - 5, - 5, - 8, - 1, - 5, - 7, - 8, - 7, - 4, - 6, - 4, - 5, - 4, - 6, - 5, - 7, - 6, - 7, - 4, - 4, - 5, - 3, - 8, - 5, - 6, - 5, - 7, - 6, - 6, - 6, - 6, - 6, - 7, - 5, - 8, - 6, - 5, - 6, - 6, - 4, - 7, - 8, - 5, - 5, - 7, - 6, - 7, - 7, - 4, - 8, - 6, - 6, - 5, - 4, - 9, - 4, - 5, - 6, - 4, - 4, - 5, - 4, - 3, - 4, - 4, - 5, - 8, - 7, - 4, - 7, - 6, - 8, - 3, - 7, - 6, - 8, - 5, - 7, - 5, - 3, - 2, - 8, - 6, - 7, - 6, - 6, - 8, - 8, - 8, - 5, - 10, - 7, - 4, - 7, - 4, - 5, - 5, - 6, - 6, - 6, - 7, - 7, - 4, - 5, - 7, - 6, - 7, - 8, - 6, - 4, - 5, - 2, - 7, - 6, - 5, - 6, - 6, - 4, - 9, - 7, - 8, - 7, - 4, - 5, - 6, - 5, - 7, - 5, - 4, - 7, - 8, - 8, - 8, - 7, - 8, - 5, - 4, - 7, - 6, - 5, - 8, - 6, - 4, - 5, - 8, - 6, - 4, - 6, - 6, - 5, - 6, - 6, - 5, - 6, - 7, - 9, - 6, - 6, - 6, - 7, - 9, - 6, - 5, - 9, - 9, - 2, - 7, - 4, - 6, - 6, - 5, - 7, - 6, - 3, - 5, - 2, - 4, - 7, - 6, - 4, - 5, - 2, - 2, - 5, - 3, - 2, - 5, - 7, - 5, - 4, - 7, - 5, - 5, - 4, - 5, - 5, - 5, - 6, - 3, - 2, - 4, - 3, - 4, - 2, - 6, - 4, - 4, - 3, - 5, - 5, - 5, - 7, - 4, - 5, - 2, - 4, - 5, - 10, - 4, - 5, - 5, - 7, - 8, - 4, - 5, - 4, - 5, - 4, - 7, - 2, - 2, - 4, - 5, - 5, - 6, - 4, - 5, - 4, - 5, - 4, - 6, - 5, - 4, - 5, - 2, - 5, - 5, - 4, - 3, - 5, - 7, - 4, - 3, - 7, - 6, - 6, - 4, - 5, - 5, - 4, - 6, - 7, - 6, - 6, - 5, - 5, - 4, - 3, - 5, - 5, - 3, - 3, - 4, - 7, - 6, - 4, - 4, - 5, - 5, - 5, - 7, - 5, - 5, - 4, - 5, - 5, - 5, - 5, - 6, - 5, - 5, - 4, - 5, - 8, - 9, - 4, - 6, - 7, - 6, - 6, - 2, - 4, - 3, - 4, - 5, - 7, - 6, - 6, - 3, - 5, - 7, - 7, - 3, - 4, - 4, - 6, - 5, - 5, - 5, - 4, - 4, - 4, - 6, - 6, - 4, - 4, - 5, - 5, - 8, - 4, - 4, - 3, - 4, - 4, - 5, - 3, - 6, - 4, - 9, - 4, - 4, - 2, - 2, - 5, - 4, - 5, - 5, - 5, - 4, - 5, - 4, - 2, - 2, - 5, - 4, - 2, - 4, - 4, - 5, - 4, - 7, - 2, - 5, - 8, - 8, - 5, - 5, - 5, - 3, - 2, - 2, - 3, - 5, - 4, - 5, - 6, - 4, - 4, - 3, - 4, - 2, - 4, - 5, - 6, - 5, - 2, - 4, - 6, - 4, - 3, - 5, - 4, - 5, - 4, - 3, - 5, - 5, - 4, - 4, - 6, - 5, - 5, - 5, - 6, - 2, - 5, - 4, - 2, - 6, - 6, - 5, - 6, - 5, - 5, - 5, - 4, - 2, - 6, - 5, - 5, - 7, - 5, - 6, - 4, - 4, - 3, - 4, - 5, - 4, - 6, - 5, - 2, - 8, - 5, - 4, - 6, - 6, - 4, - 4, - 3, - 6, - 5, - 5, - 4, - 5, - 6, - 6, - 5, - 4, - 5, - 5, - 7, - 4, - 6, - 4, - 4, - 6, - 5, - 6, - 4, - 5, - 2, - 5, - 5, - 5, - 2, - 4, - 3, - 9, - 5, - 8, - 5, - 3, - 4, - 4, - 4, - 6, - 5, - 4, - 5, - 4, - 4, - 5, - 5, - 3, - 5, - 2, - 5, - 4, - 7, - 3, - 3, - 2, - 5, - 2, - 7, - 5, - 6, - 2, - 4, - 3, - 5, - 5, - 7, - 4, - 3, - 3, - 3, - 2, - 4, - 2, - 3, - 5, - 3, - 3, - 3, - 3, - 5, - 3, - 3, - 5, - 3, - 5, - 3, - 6, - 4, - 5, - 4, - 4, - 3, - 3, - 5, - 4, - 7, - 2, - 5, - 6, - 3, - 6, - 6, - 5, - 4, - 5, - 2, - 5, - 5, - 3, - 4, - 6, - 3, - 6, - 3, - 3, - 3, - 3, - 5, - 6, - 5, - 2, - 2, - 5, - 3, - 3, - 3, - 3, - 4, - 6, - 3, - 5, - 3, - 4, - 4, - 3, - 3, - 3, - 4, - 3, - 5, - 4, - 2, - 3, - 2, - 3, - 6, - 7, - 6, - 4, - 5, - 3, - 6, - 4, - 7, - 4, - 6, - 8, - 5, - 7, - 8, - 8, - 4, - 8, - 6, - 7, - 6, - 3, - 5, - 3, - 5, - 8, - 5, - 2, - 2, - 4, - 2, - 7, - 4, - 3, - 3, - 7, - 4, - 2, - 2, - 8, - 5, - 6, - 7, - 8, - 7, - 6, - 5, - 5, - 4, - 4, - 5, - 5, - 5, - 7, - 3, - 4, - 3, - 4, - 3, - 4, - 6, - 3, - 4, - 3, - 5, - 3, - 3, - 6, - 6, - 3, - 5, - 8, - 4, - 5, - 4, - 4, - 3, - 5, - 5, - 7, - 3, - 5, - 5, - 4, - 5, - 6, - 5, - 5, - 4, - 3, - 6, - 5, - 4, - 6, - 6, - 5, - 3, - 3, - 5, - 3, - 6, - 5, - 6, - 5, - 3, - 4, - 5, - 6, - 5, - 6, - 6, - 6, - 6, - 5, - 4, - 7, - 9, - 4, - 2, - 7, - 4, - 5, - 4, - 5, - 4, - 4, - 6, - 7, - 7, - 3, - 3, - 2, - 4, - 3, - 3, - 3, - 4, - 3, - 3, - 3, - 3, - 4, - 3, - 3, - 5, - 4, - 3, - 3, - 7, - 6, - 3, - 3, - 4, - 5, - 5, - 3, - 3, - 6, - 3, - 3, - 4, - 5, - 3, - 5, - 5, - 4, - 5, - 4, - 3, - 4, - 7, - 5, - 8, - 2, - 6, - 5, - 2, - 6, - 3, - 5, - 6, - 3, - 5, - 6, - 5, - 4, - 5, - 3, - 4, - 3, - 2, - 3, - 2, - 3, - 4, - 4, - 3, - 3, - 5, - 3, - 5, - 3, - 3, - 3, - 4, - 5, - 2, - 3, - 6, - 5, - 3, - 3, - 3, - 3, - 4, - 5, - 3, - 2, - 3, - 3, - 6, - 4, - 5, - 3, - 3, - 3, - 7, - 3, - 7, - 7, - 4, - 6, - 6, - 6, - 6, - 3, - 7, - 4, - 3, - 6, - 6, - 8, - 3, - 4, - 3, - 3, - 6, - 5, - 4, - 5, - 5, - 2, - 2, - 2, - 4, - 4, - 5, - 4, - 4, - 5, - 4, - 4, - 4, - 4, - 3, - 6, - 5, - 5, - 6, - 6, - 6, - 3, - 4, - 5, - 3, - 4, - 6, - 3, - 3, - 3, - 5, - 5, - 3, - 3, - 4, - 4, - 2, - 3, - 2, - 4, - 2, - 4, - 5, - 8, - 6, - 4, - 5, - 5, - 5, - 5, - 2, - 5, - 6, - 5, - 5, - 5, - 5, - 5, - 5, - 5, - 4, - 5, - 4, - 3, - 8, - 6, - 4, - 6, - 5, - 5, - 5, - 4, - 7, - 4, - 3, - 6, - 4, - 6, - 5, - 4, - 4, - 2, - 2, - 6, - 4, - 7, - 5, - 6, - 6, - 3, - 7, - 5, - 4, - 7, - 6, - 5, - 6, - 6, - 7, - 6, - 7, - 3, - 6, - 6, - 5, - 3, - 5, - 8, - 2, - 2, - 5, - 5, - 4, - 5, - 4, - 7, - 4, - 2, - 5, - 5, - 4, - 5, - 5, - 5, - 4, - 2, - 5, - 5, - 5, - 5, - 3, - 6, - 3, - 4, - 7, - 3, - 7, - 8, - 9, - 3, - 4, - 7, - 7, - 6, - 6, - 7, - 3, - 5, - 3, - 5, - 5, - 5, - 2, - 1, - 2, - 5, - 4, - 4, - 4, - 5, - 4, - 5, - 4, - 4, - 3, - 9, - 6, - 5, - 5, - 5, - 4, - 6, - 4, - 5, - 4, - 3, - 7, - 4, - 4, - 8, - 4, - 4, - 4, - 4, - 5, - 5, - 5, - 8, - 5, - 5, - 6, - 3, - 6, - 2, - 4, - 3, - 5, - 4, - 6, - 4, - 5, - 4, - 6, - 6, - 8, - 5, - 3, - 3, - 4, - 3, - 6, - 6, - 3, - 4, - 5, - 7, - 4, - 4, - 3, - 4, - 5, - 6, - 3, - 5, - 4, - 5, - 3, - 7, - 4, - 4, - 3, - 5, - 2, - 3, - 4, - 3, - 4, - 3, - 3, - 5, - 3, - 2, - 3, - 3, - 3, - 5, - 4, - 3, - 4, - 4, - 4, - 3, - 3, - 4, - 3, - 6, - 4, - 5, - 3, - 9, - 6, - 5, - 6, - 5, - 4, - 3, - 6, - 5, - 6, - 4, - 5, - 7, - 3, - 3, - 4, - 5, - 3, - 6, - 4, - 4, - 8, - 4, - 4, - 5, - 5, - 5, - 4, - 4, - 4, - 5, - 5, - 8, - 5, - 6, - 6, - 4, - 5, - 6, - 3, - 4, - 3, - 3, - 6, - 6, - 8, - 6, - 5, - 6, - 5, - 9, - 3, - 3, - 5, - 2, - 6, - 3, - 4, - 2, - 4, - 3, - 5, - 4, - 4, - 6, - 2, - 2, - 4, - 4, - 4, - 4, - 5, - 7, - 5, - 4, - 3, - 4, - 2, - 2, - 5, - 2, - 3, - 5, - 5, - 3, - 5, - 3, - 2, - 3, - 3, - 4, - 4, - 4, - 3, - 4, - 4, - 4, - 7, - 3, - 3, - 9, - 5, - 4, - 4, - 5, - 4, - 5, - 5, - 7, - 10, - 4, - 5, - 3, - 6, - 4, - 4, - 4, - 3, - 7, - 5, - 5, - 7, - 4, - 5, - 3, - 4, - 3, - 3, - 3, - 3, - 3, - 3, - 2, - 2, - 3, - 3, - 3, - 6, - 2, - 3, - 3, - 4, - 7, - 8, - 3, - 8, - 6, - 5, - 4, - 7, - 7, - 5, - 5, - 5, - 5, - 8, - 7, - 5, - 6, - 5, - 5, - 6, - 5, - 5, - 4, - 5, - 3, - 3, - 6, - 7, - 3, - 3, - 3, - 5, - 7, - 4, - 3, - 8, - 4, - 4, - 6, - 5, - 5, - 5, - 3, - 5, - 5, - 5, - 5, - 6, - 4, - 5, - 2, - 5, - 3, - 5, - 4, - 4, - 7, - 6, - 2, - 5, - 6, - 4, - 4, - 3, - 5, - 3, - 4, - 3, - 3, - 2, - 2, - 3, - 5, - 2, - 5, - 4, - 4, - 2, - 5, - 6, - 5, - 5, - 4, - 4, - 5, - 7, - 9, - 5, - 6, - 4, - 5, - 2, - 4, - 4, - 5, - 8, - 5, - 4, - 2, - 5, - 4, - 7, - 5, - 4, - 6, - 2, - 3, - 3, - 5, - 2, - 3, - 3, - 3, - 3, - 5, - 2, - 3, - 3, - 3, - 2, - 2, - 3, - 3, - 3, - 5, - 3, - 3, - 3, - 3, - 4, - 3, - 3, - 3, - 3, - 2, - 3, - 4, - 3, - 3, - 4, - 3, - 3, - 3, - 6, - 3, - 6, - 3, - 5, - 3, - 2, - 2, - 3, - 3, - 5, - 3, - 5, - 3, - 4, - 2, - 2, - 6, - 3, - 4, - 4, - 3, - 5, - 6, - 3, - 5, - 3, - 3, - 4, - 3, - 3, - 3, - 4, - 4, - 3, - 5, - 5, - 4, - 5, - 3, - 6, - 6, - 7, - 5, - 4, - 4, - 5, - 9, - 3, - 3, - 7, - 5, - 2, - 5, - 4, - 4, - 5, - 3, - 3, - 4, - 5, - 6, - 3, - 2, - 4, - 5, - 3, - 6, - 3, - 5, - 3, - 6, - 3, - 3, - 4, - 4, - 4, - 4, - 5, - 8, - 4, - 5, - 9, - 7, - 7, - 5, - 7, - 5, - 5, - 3, - 3, - 5, - 6, - 3, - 6, - 5, - 4, - 3, - 6, - 6, - 3, - 6, - 5, - 4, - 5, - 2, - 6, - 3, - 6, - 4, - 4, - 4, - 4, - 4, - 4, - 5, - 2, - 5, - 4, - 4, - 5, - 5, - 7, - 2, - 4, - 4, - 7, - 6, - 2, - 5, - 5, - 4, - 5, - 5, - 7, - 6, - 5, - 4, - 5, - 8, - 4, - 4, - 4, - 6, - 5, - 5, - 4, - 5, - 5, - 3, - 4, - 4, - 5, - 4, - 5, - 4, - 4, - 3, - 5, - 4, - 4, - 4, - 5, - 4, - 4, - 4, - 5, - 5, - 5, - 5, - 4, - 4, - 4, - 4, - 6, - 4, - 4, - 4, - 4, - 4, - 3, - 4, - 4, - 4, - 5, - 4, - 5, - 4, - 5, - 3, - 4, - 4, - 4, - 4, - 6, - 4, - 5, - 4, - 5, - 4, - 4, - 5, - 5, - 5, - 5, - 3, - 4, - 4, - 5, - 3, - 4, - 4, - 4, - 5, - 4, - 5, - 4, - 5, - 4, - 4, - 3, - 5, - 5, - 4, - 4, - 5, - 4, - 5, - 4, - 5, - 4, - 4, - 4, - 5, - 5, - 4, - 4, - 4, - 5, - 4, - 4, - 5, - 4, - 5, - 4, - 4, - 4, - 4, - 4, - 5, - 4, - 5, - 4, - 5, - 4, - 4, - 4, - 4, - 4, - 4, - 4, - 4, - 5, - 4, - 4, - 4, - 4, - 5, - 5, - 7, - 7, - 4, - 7, - 6, - 7, - 7, - 6, - 6, - 5, - 6, - 5, - 5, - 5, - 5, - 5, - 4, - 6, - 5, - 5, - 2, - 3, - 6, - 5, - 7, - 3, - 5, - 5, - 4, - 6, - 3, - 6, - 6, - 5, - 4, - 4, - 3, - 5, - 6, - 6, - 5, - 4, - 3, - 5, - 5, - 4, - 5, - 2, - 6, - 7, - 5, - 2, - 4, - 7, - 4, - 2, - 2, - 4, - 4, - 6, - 2, - 5, - 3, - 2, - 4, - 3, - 6, - 3, - 6, - 5, - 3, - 5, - 2, - 3, - 2, - 6, - 5, - 3, - 4, - 4, - 5, - 8, - 2, - 2, - 3, - 4, - 3, - 8, - 7, - 4, - 5, - 4, - 5, - 8, - 9, - 7, - 7, - 6, - 3, - 5, - 4, - 4, - 4, - 6, - 6, - 2, - 5, - 5, - 4, - 3, - 4, - 2, - 6, - 7, - 5, - 5, - 6, - 3, - 4, - 5, - 4, - 4, - 6, - 5, - 4, - 5, - 2, - 5, - 7, - 5, - 4, - 4, - 3, - 5, - 2, - 5, - 7, - 5, - 5, - 6, - 5, - 4, - 5, - 4, - 5, - 5, - 7, - 4, - 5, - 5, - 5, - 4, - 6, - 6, - 3, - 6, - 6, - 4, - 1, - 3, - 4, - 4, - 8, - 2, - 5, - 5, - 7, - 3, - 7, - 4, - 5, - 4, - 4, - 3, - 2, - 5, - 4, - 3, - 2, - 5, - 3, - 4, - 8, - 7, - 6, - 4, - 8, - 5, - 4, - 6, - 4, - 4, - 5, - 2, - 2, - 3, - 6, - 5, - 5, - 4, - 7, - 6, - 3, - 3, - 6, - 9, - 6, - 8, - 5, - 5, - 5, - 5, - 8, - 5, - 7, - 2, - 7, - 5, - 6, - 5, - 5, - 4, - 5, - 6, - 5, - 4, - 5, - 7, - 2, - 5, - 4, - 4, - 5, - 6, - 5, - 7, - 4, - 6, - 5, - 3, - 4, - 3, - 6, - 2, - 3, - 4, - 6, - 4, - 5, - 5, - 2, - 4, - 4, - 5, - 5, - 3, - 4, - 5, - 5, - 3, - 4, - 5, - 6, - 4, - 7, - 4, - 5, - 4, - 7, - 2, - 5, - 4, - 6, - 4, - 4, - 4, - 3, - 5, - 3, - 4, - 7, - 4, - 4, - 2, - 4, - 3, - 3, - 4, - 5, - 5, - 5, - 5, - 2, - 2, - 5, - 5, - 4, - 6, - 5, - 5, - 2, - 3, - 4, - 4, - 5, - 3, - 5, - 4, - 6, - 4, - 3, - 7, - 4, - 3, - 6, - 6, - 5, - 4, - 7, - 6, - 3, - 3, - 5, - 3, - 3, - 7, - 4, - 4, - 4, - 4, - 4, - 7, - 4, - 4, - 4, - 5, - 5, - 7, - 4, - 5, - 3, - 4, - 5, - 6, - 4, - 5, - 4, - 4, - 4, - 6, - 5, - 7, - 4, - 5, - 2, - 6, - 4, - 5, - 4, - 5, - 3, - 5, - 2, - 5, - 6, - 5, - 2, - 3, - 6, - 4, - 5, - 2, - 3, - 5, - 6, - 3, - 8, - 4, - 4, - 7, - 6, - 7, - 5, - 5, - 6, - 5, - 4, - 4, - 4, - 5, - 6, - 6, - 6, - 7, - 5, - 5, - 4, - 4, - 5, - 8, - 5, - 5, - 6, - 6, - 7, - 5, - 5, - 5, - 2, - 5, - 4, - 3, - 8, - 4, - 4, - 5, - 6, - 6, - 5, - 6, - 4, - 5, - 2, - 4, - 3, - 5, - 5, - 2, - 5, - 5, - 3, - 5, - 5, - 5, - 5, - 4, - 5, - 5, - 3, - 6, - 4, - 7, - 4, - 4, - 3, - 2, - 3, - 6, - 4, - 4, - 6, - 3, - 4, - 5, - 7, - 4, - 5, - 5, - 5, - 4, - 6, - 5, - 4, - 4, - 5, - 3, - 5, - 6, - 3, - 4, - 5, - 6, - 6, - 5, - 4, - 4, - 6, - 3, - 5, - 6, - 6, - 5, - 3, - 5, - 5, - 6, - 5, - 6, - 2, - 6, - 5, - 4, - 4, - 7, - 4, - 4, - 6, - 4, - 4, - 4, - 6, - 8, - 4, - 6, - 4, - 4, - 6, - 4, - 3, - 4, - 4, - 5, - 2, - 2, - 5, - 7, - 4, - 5, - 4, - 7, - 6, - 5, - 2, - 2, - 2, - 5, - 5, - 4, - 5, - 7, - 5, - 4, - 5, - 6, - 3, - 4, - 4, - 5, - 6, - 6, - 2, - 7, - 7, - 5, - 6, - 3, - 3, - 4, - 5, - 5, - 5, - 5, - 5, - 3, - 4, - 4, - 3, - 7, - 4, - 5, - 5, - 7, - 2, - 6, - 2, - 5, - 6, - 6, - 4, - 3, - 4, - 5, - 6, - 5, - 4, - 2, - 6, - 7, - 5, - 2, - 4, - 4, - 2, - 5, - 5, - 5, - 4, - 6, - 4, - 5, - 4, - 3, - 4, - 5, - 5, - 5, - 4, - 4, - 5, - 3, - 4, - 2, - 9, - 5, - 4, - 4, - 5, - 6, - 3, - 5, - 5, - 4, - 2, - 2, - 5, - 7, - 6, - 4, - 4, - 5, - 7, - 7, - 7, - 5, - 4, - 6, - 6, - 6, - 4, - 5, - 6, - 6, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 2, - 4, - 3, - 6, - 6, - 5, - 2, - 5, - 3, - 4, - 5, - 6, - 3, - 6, - 5, - 3, - 2, - 3, - 4, - 5, - 5, - 5, - 7, - 4, - 5, - 6, - 4, - 3, - 5, - 5, - 5, - 6, - 8, - 5, - 5, - 5, - 2, - 5, - 5, - 5, - 5, - 3, - 5, - 5, - 6, - 4, - 5, - 5, - 4, - 5, - 6, - 5, - 4, - 2, - 1, - 5, - 2, - 6, - 5, - 8, - 2, - 2, - 4, - 7, - 4, - 7, - 7, - 4, - 5, - 5, - 4, - 3, - 6, - 5, - 5, - 5, - 4, - 7, - 5, - 3, - 6, - 6, - 2, - 6, - 4, - 6, - 3, - 7, - 5, - 6, - 5, - 4, - 3, - 1, - 4, - 2, - 3, - 4, - 7, - 6, - 7, - 6, - 7, - 9, - 7, - 5, - 2, - 5, - 5, - 3, - 3, - 5, - 3, - 6, - 5, - 5, - 5, - 5, - 4, - 5, - 3, - 5, - 6, - 7, - 5, - 5, - 5, - 2, - 4, - 3, - 8, - 2, - 3, - 2, - 2, - 5, - 6, - 3, - 5, - 5, - 6, - 4, - 4, - 4, - 5, - 4, - 2, - 4, - 7, - 5, - 2, - 5, - 2, - 6, - 4, - 2, - 3, - 2, - 4, - 8, - 5, - 5, - 3, - 6, - 5, - 2, - 5, - 6, - 6, - 5, - 5, - 5, - 3, - 4, - 4, - 4, - 2, - 4, - 3, - 2, - 6, - 8, - 5, - 4, - 5, - 5, - 4, - 4, - 3, - 7, - 4, - 4, - 6, - 5 - ], - "y0": " ", - "yaxis": "y" + "output_type": "stream", + "name": "stdout", + "text": [ + "Overall number of words by claim description: min 1, average 5, max 11\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} } - ], - "layout": { - "boxmode": "group", - "legend": { - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" + ], + "source": [ + "# statistics of description length\n", + "df_train[\"words per description\"] = df_train[\"Description\"].str.split().apply(len)\n", + "print(f\"Overall number of words by claim description: min {df_train['words per description'].min()}, \"\n", + " f\"average {df_train['words per description'].mean():.0f}, max {df_train['words per description'].max()}\")\n", + "fig = px.box(df_train, x=\"labels\", y=\"words per description\", width=640)\n", + "fig.show(config={\"toImageButtonOptions\": {\"format\": \"svg\", \"filename\": \"peril_len\"}})" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rXOTLyd-EVHB" + }, + "source": [ + "To get an impression of the most frequent words, we generate a simple word cloud form all case descriptions.\n", + "By default, the word cloud excludes so-called stop words (such as articles, prepositions, pronouns, conjunctions, etc.),\n", + "which are the most common words and do not add much information to the text." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 542 + }, + "id": "eq952mq8EVHB", + "outputId": "bfd3701a-102e-4582-d9a8-01d4dfb8b884", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 640, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "labels" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "words per description" - } + "metadata": {} } - } + ], + "source": [ + "text = df_train[\"Description\"].str.cat(sep=\" \")\n", + "\n", + "# Create and generate a word cloud image:\n", + "word_cloud = WordCloud(scale=5, background_color=\"white\").generate(text)\n", + "\n", + "# Display the generated image:\n", + "fig = px.imshow(word_cloud, width=1440)\n", + "fig.update_layout(xaxis_showticklabels=False, yaxis_showticklabels=False)\n", + "fig.show(config={\"toImageButtonOptions\": {\"format\": \"svg\", \"filename\": \"peril_cloud\"}})" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7I4oINQQEVHB" }, - "text/html": [ - "
" + "source": [ + "\n", + "\n", + "## 2. Classify by Peril Type in a Supervised Setting\n", + "\n", + "In this section, we will train classifiers to predict the peril type (labels).\n", + "\n", + "We will follow two approaches:\n", + "\n", + "1. We use a transformer encoder to encode the claim descriptions,\n", + " and then train a logistic regression classifier to predict the peril type from the encoded descriptions.\n", + "\n", + "2. We train a transformer encoder with a classifier head directly.\n", + "\n", + "Let's get started." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# statistics of description length\n", - "df_train[\"words per description\"] = df_train[\"Description\"].str.split().apply(len)\n", - "print(f\"Overall number of words by claim description: min {df_train['words per description'].min()}, \"\n", - " f\"average {df_train['words per description'].mean():.0f}, max {df_train['words per description'].max()}\")\n", - "fig = px.box(df_train, x=\"labels\", y=\"words per description\", width=640)\n", - "fig.show(config={\"toImageButtonOptions\": {\"format\": \"svg\", \"filename\": \"peril_len\"}})" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "rXOTLyd-EVHB" - }, - "source": [ - "To get an impression of the most frequent words, we generate a simple word cloud form all case descriptions.\n", - "By default, the word cloud excludes so-called stop words (such as articles, prepositions, pronouns, conjunctions, etc.),\n", - "which are the most common words and do not add much information to the text." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 }, - "id": "eq952mq8EVHB", - "outputId": "bfe8432b-e469-447e-8bb7-940294368f42", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "peril_cloud", - "format": "svg" + "cell_type": "markdown", + "metadata": { + "id": "Djm3pEdfEVHC" + }, + "source": [ + "\n", + "\n", + "### 2.1 Train a Classifier on Encoded Claim Descriptions\n", + "\n", + "We follow the approach presented in Part I of this tutorial.\n", + "\n", + "In this single-language case study, we use the `distilbert-base-uncased` model.\n", + "First, we load the model and the tokenizer." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 177, + "referenced_widgets": [ + "5de761bf4ce54fff891723d5f98c30c0", + "b366a73190a04eca91fd9e178afbd079", + "e7e87b9254b3409d8fbce91e18cc4e67", + "3b96837862ae49b383cdb217b9e7678b", + "38d82167e54d434db8b4773fccdc6964", + "0b1a03946ab44964ac6edb92aa6db81d", + "0c77cb11648542ae996d05d71def2d0a", + "4a750fab548b4f2cb426ebd59b6daf67", + "5cbe432ada394f689eb626e6ac6ee1e9", + "7d75e25536874831970c370271156295", + "50a7e6c371bf4bbc8fea6a6bdc1e5675", + "936a3987f942462693f82b88a4dc7d87", + "70db356388aa47bb94b9bd9d44886579", + "39e2f380a4c54f518a0f4fb0208f6cf0", + "75657aaf52794cfaa2fd69e9740e9257", + "783f18beb4d94dfaa6b450de189842e5", + "5f86aeb0f83e4206800af67b306a0c0f", + "46d258d710524bef9f8ce4317b3ffdad", + "5014ff2443284a57950aceb5475e9a19", + "f9deae3c7ae346e9b8f1e41c94201957", + "04295d910be446d593fbfebe0a07b625", + "fee0d7272c2645aab945ca5c098d1f84", + "8d2b1667e8b542eda14174a9c3e6f208", + "74adbc967e914123bc2bfc5dacb7630f", + "b7fa2473bfc744b091190c0d64735e20", + "41c26bf23c614163b597e52761facd86", + "55f6187d766a46248f5c56ec666dccb5", + "f64187684eee4c33a1bcc8e17ae98301", + "8435b1c0cd864e8f9f67247c59d8e06f", + "7d8a93c13e8243efbb8df5b8bbf4a9fc", + "99077d65096e4a738cb2f7b6c2aaa7d6", + "c03367c15d71470999dbb00e2429a5f0", + "4cf9b9fbd0334a9b8d6c65850109b41b", + "77b6e23d10f24ae986e796459dd47faf", + "dd5f78d31d85485d89c609a4c1c560b0", + "4954d8ffa3f34b1489a0a548655368ba", + "dd2abf3d137847a0b061bc32e25bf4f5", + "f0f164f0ae99419aaf92f625cb2987e3", + "e2101e95402f4b76a654f2fd06d9cb82", + "ed69ce527b2f480abb6fead6089aa870", + "befc3d34e6924c2d8c5cbfd994c6360e", + "1c82763c43f541a182de5692fc7a1ca2", + "973c00d9934e491b89eb23083f3deeed", + "736f08c910874fafb4a496de8517e53a", + "f667052649984f7295359e00c7dfe491", + "2712323f94c746c3871e424f0c0bc928", + "dacbe9b563e5468ab9d9f0bbf6d47d8c", + "4fcfbef91ffa4dc48eaf062ed2fea45f", + "cb8f544c88c34580947daae0b390779b", + "2f043d8319c4447399ab62735cf6761f", + "d5924691f4164f549756bfd57d83b04f", + "392811b52dc141099d755a7392023722", + "f2f7dcbf838e4938a4f959bbc4b70e12", + "952a86292e0043e89e0adae2df4efc3c", + "3251f229b9a24114b5b1f01d6107b537" + ] + }, + "id": "o7MG5LsCEVHC", + "outputId": "262bba62-45d5-4135-99c7-4fef059adc0c", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "hovertemplate": "x: %{x}
y: %{y}
color: [%{z[0]}, %{z[1]}, %{z[2]}]", - "name": "0", - "source": "", - "type": "image", - "xaxis": "x", - "yaxis": "y" - } - ], - "layout": { - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading (…)okenizer_config.json: 0%| | 0.00/28.0 [00:00
" + "source": [ + "Then we define a function that applies the tokenizer to the column `Description` of an input batch..." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "text = df_train[\"Description\"].str.cat(sep=\" \")\n", - "\n", - "# Create and generate a word cloud image:\n", - "word_cloud = WordCloud(scale=5, background_color=\"white\").generate(text)\n", - "\n", - "# Display the generated image:\n", - "fig = px.imshow(word_cloud, width=1440)\n", - "fig.update_layout(xaxis_showticklabels=False, yaxis_showticklabels=False)\n", - "fig.show(config={\"toImageButtonOptions\": {\"format\": \"svg\", \"filename\": \"peril_cloud\"}})" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7I4oINQQEVHB" - }, - "source": [ - "\n", - "\n", - "## 2. Classify by Peril Type in a Supervised Setting\n", - "\n", - "In this section, we will train classifiers to predict the peril type (labels).\n", - "\n", - "We will follow two approaches:\n", - "\n", - "1. We use a transformer encoder to encode the claim descriptions,\n", - " and then train a logistic regression classifier to predict the peril type from the encoded descriptions.\n", - "\n", - "2. We train a transformer encoder with a classifier head directly.\n", - "\n", - "Let's get started." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Djm3pEdfEVHC" - }, - "source": [ - "\n", - "\n", - "### 2.1 Train a Classifier on Encoded Claim Descriptions\n", - "\n", - "We follow the approach presented in Part I of this tutorial.\n", - "\n", - "In this single-language case study, we use the `distilbert-base-uncased` model.\n", - "First, we load the model and the tokenizer." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 249, - "referenced_widgets": [ - "8db5f342b5384702b5151f3b322c440d", - "fb6db763317e4bbda9cba708c654d63b", - "998eda4a96db48e3812e5abc99efaabe", - "c8a74725ae254744b8a186455e829510", - "8373feff24314cb694208947a8738fe5", - "506e50b472fc48718c2e43b843ca56f7", - "505d2e0776f9413d9e65233a8c7a3ce0", - "5ed062448c2149d1b83d037bd4570aad", - "f0556ff087614accad129c6ca7ee9ed8", - "6dd9fea4b17f4b3ab425bd27dd36fc6e", - "52ec7cde15c54517800202fea56f6f9b", - "5e161921a5b547fbb813dedff389dc31", - "6ef6110defb94222863e8e996095d917", - "69ec9cf67095408a9fa7b90b5d0f1402", - "8ca63df694944110b2e324c1f8bf2664", - "6860a13715bd4749866ce60e6c186ca4", - "cd8230629dc94c56b5eb1260cff145a0", - "0c8d5caa32624d3e950372123ea76085", - "e7283168055b48acb94cf69be4ee57fd", - "f9afd1d342804aca92854daed877309c", - "395756fef94a4599999d43242fb15233", - "7ca61d692c464aa48568b65d63c86e36", - "7859b4f0ccff4091a7d7b28c0ea795fd", - "ad04758f764b4f3dbb71bd7822085f53", - "4cdd9588dc4f493ea45fae1da13d1d31", - "fa7ed39b1e6244ef809f6a8875e66836", - "75eaa88df13247d2a326f1216d68918e", - "823eb9fed415468fb18776f13a899991", - "05d19b34fe2e49b5b2076627e73288f5", - "d030c4d6f5914aa5a437c53b52e01ea9", - "1178f617fe0042c3876a9006de9a1d53", - "44fe5107721a490c8b5139744d00d6b3", - "8c2e4b1aef0643079e6d074c7b3df700", - "7269518d12b24e2c95b5eb45d1aa88af", - "982b01ca4ba14504934ee6e440ad019f", - "f375cf9a3bc343c6958a2a20b9b6b096", - "c663b01bc6c540ffab55a0a0e84fb027", - "e0d677c6cf6c40eeb8e7fd769b8b9020", - "0d1dc7e37a7441079a9955a166d0c46d", - "f4143e675e7543a9af0bd70636306db6", - "1b612c743595417ba3f393056c6a7e7a", - "57d028e4b6204017bf158df49b358d48", - "eebda1a16e4b4a4783a1da98f2d1a2f6", - "10ad0b729d7a403198a35900081f1108", - "6877960084d644908dcd99df7fde80db", - "8a0735f52b9c4f949897b336c80766bc", - "fa0a76c3235948c1a26ae247a37fd02a", - "e23a1b561a4442adb4b7aab8fd862b9c", - "fbc30ecadc1241089bc9928439a8daee", - "61dd26d4ee6a42c5a9f0d5e5f1748633", - "b7e14c0716ec42dd9bc8705202998881", - "fd2100438f864e3b957fab001fc2122b", - "d360844c59b849e1807a0f2b3019fd8a", - "bec6ddd26c264fc1b85869d3f84df41d", - "75e2ce0c1d814f3eb0cbe57cd6caf3b6" - ] }, - "id": "o7MG5LsCEVHC", - "outputId": "802d4610-d903-4ad4-ad76-016a2a095951", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_layer_norm.bias', 'vocab_transform.bias', 'vocab_projector.bias', 'vocab_layer_norm.weight', 'vocab_projector.weight', 'vocab_transform.weight']\n", - "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", - "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" - ] - } - ], - "source": [ - "model_name = \"distilbert-base-uncased\"\n", - "tokenizer = AutoTokenizer.from_pretrained(model_name)\n", - "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", - "model = AutoModel.from_pretrained(model_name).to(device)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "LwjhsMVsEVHC" - }, - "source": [ - "Then we define a function that applies the tokenizer to the column `Description` of an input batch..." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "id": "ubdj3ThPEVHC", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "# define a function to tokenize a batch\n", - "def tokenize(batch):\n", - " return tokenizer(batch[\"Description\"], truncation=True, padding=True, max_length=12)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "R55XqaTHEVHD" - }, - "source": [ - "... and we apply this function to the entire dataset by use of the `map` function:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 81, - "referenced_widgets": [ - "a6556e2718524752b34217ff63a9fc4d", - "64568851a9ce44d1bb791bf2b8a4c4ae", - "74cfe3c0a87d46b6a7254c9fabc0e3a4", - "c60da4ac32f448c886b571de6f37a76b", - "059dc7a7910e447cb50d06979bdbf539", - "9fbf6b3450724f188a4aeccd325f1b4a", - "b044b4d34a2a42ed81212cc5c5e401ea", - "403a646eafea4a1ea95fab6f6e76d023", - "87091c179a7541c6b3584b0b02789a50", - "583071c719374ee996e4c7d254890412", - "ff630cfd369b4f3892eb32d0df84a0db", - "d066e40caa1b4a5590496a2aeb9dcea8", - "d70e851f6f7b43a38559aa4d3a5b6c84", - "615e006f120643e68ed890a78766c9e2", - "6ba1a277d3c74922975166c8578cb552", - "7cfddd8a70ab4ba98dddcc7e42b491a8", - "ec079ac635894ee2a7ebe1315129fc74", - "11ab378d7c254c64a910872ea18d7e27", - "669341ce6b2e4aa3b14d33110b236c9c", - "32b677302bf749f8bb437be83cf1a9d2", - "c883626d4ab54836831f016aee1a3b3a", - "a8e558bade474b4ea205d1fe31519cd6" - ] + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "ubdj3ThPEVHC", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "# define a function to tokenize a batch\n", + "def tokenize(batch):\n", + " return tokenizer(batch[\"Description\"], truncation=True, padding=True, max_length=12)" + ] }, - "id": "Y7GWGmtIEVHD", - "outputId": "8b6aec49-17bf-49ef-ebf5-c357cc1a4398", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c4cff6d2677c4d66992de8cfd8dbf912", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "metadata": { + "id": "R55XqaTHEVHD" }, - "text/plain": [ - " 0%| | 0/5 [00:00y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "xaxis": "x", - "y": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "yaxis": "y", - "z": [ - [ - 310, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - [ - 46, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - [ - 123, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - [ - 107, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - [ - 18, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - [ - 227, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - [ - 67, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - [ - 38, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - [ - 103, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 + "output_type": "stream", + "name": "stdout", + "text": [ + "Dummy classifier\n", + "accuracy score = 29.8%, log loss = 1.977, Brier loss = 0.835\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " Vandalism 0.30 1.00 0.46 310\n", + " Fire 0.00 0.00 0.00 46\n", + " Lightning 0.00 0.00 0.00 123\n", + " Wind 0.00 0.00 0.00 107\n", + " Hail 0.00 0.00 0.00 18\n", + " Vehicle 0.00 0.00 0.00 227\n", + " WaterNW 0.00 0.00 0.00 67\n", + " WaterW 0.00 0.00 0.00 38\n", + " Misc 0.00 0.00 0.00 103\n", + "\n", + " accuracy 0.30 1039\n", + " macro avg 0.03 0.11 0.05 1039\n", + "weighted avg 0.09 0.30 0.14 1039\n", + "\n" ] - ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 14 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } + ], + "source": [ + "x_train, y_train, x_test, y_test = get_xy(ds, \"mean_hidden_state\", \"labels\")\n", + "\n", + "# fit dummy classifier\n", + "clf_dummy = dummy_classifier(x_train, y_train)\n", + "_ = evaluate_classifier(y_test, None, clf_dummy.predict_proba(x_test), labels, \"Dummy classifier\", None)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 872 + }, + "id": "5CxDvvqHEVHE", + "outputId": "0d095cf7-bcdb-4497-dec1-7f5ad07586f8", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Logistic Regression classifier\n", + "accuracy score = 83.9%, log loss = 0.531, Brier loss = 0.243\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " Vandalism 0.85 0.95 0.90 310\n", + " Fire 0.94 0.70 0.80 46\n", + " Lightning 0.90 0.93 0.91 123\n", + " Wind 0.91 0.87 0.89 107\n", + " Hail 0.93 0.78 0.85 18\n", + " Vehicle 0.90 0.92 0.91 227\n", + " WaterNW 0.72 0.34 0.46 67\n", + " WaterW 0.45 0.76 0.57 38\n", + " Misc 0.75 0.60 0.67 103\n", + "\n", + " accuracy 0.84 1039\n", + " macro avg 0.82 0.76 0.77 1039\n", + "weighted avg 0.84 0.84 0.83 1039\n", + "\n" ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Dummy classifier" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "metadata": {} + } + ], + "source": [ + "# fit a logarithmic regression classifier to the encoded texts\n", + "clf = logistic_regression_classifier(x_train, y_train, c=0.2)\n", + "_ = evaluate_classifier(y_test, None, clf.predict_proba(x_test), labels, \"Logistic Regression classifier\", \"cm_peril_lr\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8SonrXfCEVHE", + "pycharm": { + "name": "#%% md\n" } - } }, - "text/html": [ - "
" + "source": [ + "This result is encouraging.\n", + "From the classification report, we see that the perils `WaterNW`, `WaterW` and `Misc` are most difficult to predict." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "x_train, y_train, x_test, y_test = get_xy(ds, \"mean_hidden_state\", \"labels\")\n", - "\n", - "# fit dummy classifier\n", - "clf_dummy = dummy_classifier(x_train, y_train)\n", - "_ = evaluate_classifier(y_test, None, clf_dummy.predict_proba(x_test), labels, \"Dummy classifier\", None)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 872 }, - "id": "5CxDvvqHEVHE", - "outputId": "daaa6970-f646-46a7-c987-6bc10ea7147f", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Logistic Regression classifier\n", - "accuracy score = 83.9%, log loss = 0.531, Brier loss = 0.243\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " Vandalism 0.85 0.95 0.90 310\n", - " Fire 0.94 0.70 0.80 46\n", - " Lightning 0.90 0.93 0.91 123\n", - " Wind 0.91 0.87 0.89 107\n", - " Hail 0.93 0.78 0.85 18\n", - " Vehicle 0.90 0.92 0.91 227\n", - " WaterNW 0.72 0.34 0.46 67\n", - " WaterW 0.45 0.76 0.57 38\n", - " Misc 0.75 0.60 0.67 103\n", - "\n", - " accuracy 0.84 1039\n", - " macro avg 0.82 0.76 0.77 1039\n", - "weighted avg 0.84 0.84 0.83 1039\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "jjCbT3UoEVHF" + }, + "source": [ + "\n", + "\n", + "### 2.2 Task-specific Training of a Transformer-based Classifier\n", + "\n", + "In this section, we train directly a transformer-based sequence classifier,\n", + "using the approach described in Part I of this tutorial.\n", + "\n", + "On an AWS EC2 p2.xlarge instance, the run time is about 2 minutes." + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_peril_lr", - "format": "svg" + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 172 + }, + "id": "eWXNvLgPEVHF", + "outputId": "5035a9de-e79d-4f13-fd89-1eb27a3b4e52", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "xaxis": "x", - "y": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "yaxis": "y", - "z": [ - [ - 296, - 1, - 0, - 1, - 0, - 6, - 0, - 0, - 6 - ], - [ - 3, - 32, - 3, - 0, - 0, - 2, - 0, - 1, - 5 - ], - [ - 1, - 0, - 114, - 1, - 0, - 1, - 0, - 1, - 5 - ], - [ - 5, - 0, - 5, - 93, - 1, - 1, - 0, - 1, - 1 - ], - [ - 1, - 0, - 0, - 2, - 14, - 1, - 0, - 0, - 0 - ], - [ - 12, - 0, - 0, - 2, - 0, - 209, - 3, - 1, - 0 - ], - [ - 10, - 0, - 1, - 0, - 0, - 0, - 23, - 29, - 4 - ], - [ - 1, - 0, - 0, - 2, - 0, - 1, - 5, - 29, - 0 - ], - [ - 20, - 1, - 4, - 1, - 0, - 12, - 1, - 2, - 62 + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.bias', 'classifier.bias', 'pre_classifier.weight', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] - ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [1248/1248 01:07, Epoch 2/2]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTraining Loss
6230.527700
12460.309900

" + ] + }, + "metadata": {} } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 14 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] + ], + "source": [ + "model_name = \"distilbert-base-uncased\"\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "torch.manual_seed(42) # for reproducibility, set random seed before instantiating the model\n", + "model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(labels)).to(device)\n", + "\n", + "def compute_metrics(pred):\n", + " labels = pred.label_ids\n", + " preds = pred.predictions.argmax(-1)\n", + " f1 = f1_score(labels, preds, average=\"weighted\")\n", + " acc = accuracy_score(labels, preds)\n", + " return {\"accuracy\": acc, \"f1\": f1}\n", + "\n", + "# train the model\n", + "batch_size = 8\n", + "logging_steps = len(ds[\"train\"]) // batch_size\n", + "training_args = TrainingArguments(\n", + " output_dir=model_name+\"_peril_epochs\",\n", + " num_train_epochs=2,\n", + " per_device_train_batch_size=batch_size,\n", + " per_device_eval_batch_size=batch_size,\n", + " metric_for_best_model=\"f1\",\n", + " logging_steps=logging_steps,\n", + " save_strategy=trainer_utils.IntervalStrategy.NO,\n", + ")\n", + "trainer = Trainer(model=model, args=training_args,\n", + " compute_metrics=compute_metrics, train_dataset=ds[\"train\"],\n", + " eval_dataset=ds[\"test\"])\n", + "trainer.train();\n", + "trainer.save_model(model_name + \"_peril\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6732WFTuEVHF" + }, + "source": [ + "We evaluate the model on the test set:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 872 + }, + "id": "FkkgHZcaEVHF", + "outputId": "b5c432d4-f9f9-4517-a415-f8d8dd127db2", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 + "text/html": [] }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Transformer-based classifier\n", + "accuracy score = 84.7%, log loss = 0.539, Brier loss = 0.237\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " Vandalism 0.90 0.95 0.93 310\n", + " Fire 0.88 0.80 0.84 46\n", + " Lightning 0.94 0.94 0.94 123\n", + " Wind 0.94 0.90 0.92 107\n", + " Hail 0.94 0.94 0.94 18\n", + " Vehicle 0.93 0.93 0.93 227\n", + " WaterNW 0.00 0.00 0.00 67\n", + " WaterW 0.35 0.89 0.50 38\n", + " Misc 0.71 0.72 0.71 103\n", + "\n", + " accuracy 0.85 1039\n", + " macro avg 0.73 0.79 0.75 1039\n", + "weighted avg 0.82 0.85 0.83 1039\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "

\n", + "
\n", + "\n", + "" ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Logistic Regression classifier" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "metadata": {} } - } + ], + "source": [ + "predictions = trainer.predict(ds[\"test\"])\n", + "_ = evaluate_classifier(predictions.label_ids, None, softmax(predictions.predictions, axis=1), labels,\"Transformer-based classifier\", \"cm_peril_transformer\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "N68LJA8yEVHG" }, - "text/html": [ - "
" + "source": [ + "The performance is comparable to that of the logistic regression classifier, with an improved Brier loss and accuracy score.\n", + "It appears that the model struggles to tell `WaterNW` apart from `WaterW`.\n" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# fit a logarithmic regression classifier to the encoded texts\n", - "clf = logistic_regression_classifier(x_train, y_train, c=0.2)\n", - "_ = evaluate_classifier(y_test, None, clf.predict_proba(x_test), labels, \"Logistic Regression classifier\", \"cm_peril_lr\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "8SonrXfCEVHE", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "This result is encouraging.\n", - "From the classification report, we see that the perils `WaterNW`, `WaterW` and `Misc` are most difficult to predict." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jjCbT3UoEVHF" - }, - "source": [ - "\n", - "\n", - "### 2.2 Task-specific Training of a Transformer-based Classifier\n", - "\n", - "In this section, we train directly a transformer-based sequence classifier,\n", - "using the approach described in Part I of this tutorial.\n", - "\n", - "On an AWS EC2 p2.xlarge instance, the run time is about 2 minutes." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 522 }, - "id": "eWXNvLgPEVHF", - "outputId": "c6a7f947-8f53-467f-b115-c23eaea70a71", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_layer_norm.bias', 'vocab_transform.bias', 'vocab_projector.bias', 'vocab_layer_norm.weight', 'vocab_projector.weight', 'vocab_transform.weight']\n", - "- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", - "- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", - "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.weight', 'classifier.weight', 'classifier.bias', 'pre_classifier.bias']\n", - "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", - "The following columns in the training set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: Lightning, WaterW, Wind, cls_hidden_state, WaterNW, Vandalism, Fire, mean_hidden_state, Hail, Vehicle, Misc, Description, Loss. If Lightning, WaterW, Wind, cls_hidden_state, WaterNW, Vandalism, Fire, mean_hidden_state, Hail, Vehicle, Misc, Description, Loss are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n", - "***** Running training *****\n", - " Num examples = 4991\n", - " Num Epochs = 2\n", - " Instantaneous batch size per device = 8\n", - " Total train batch size (w. parallel, distributed & accumulation) = 8\n", - " Gradient Accumulation steps = 1\n", - " Total optimization steps = 1248\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "CoYTxK22EVHG" + }, + "source": [ + "\n", + "\n", + "## 3. Zero-shot Classification\n", + "\n", + "There are situations with no or only few labeled data.\n", + "\n", + "Zero-shot classification is an approach that is suited in this case.\n", + "Zero-shot classification is about classifying text sequences in an unsupervised way\n", + "(without having training data in advance and building a model).\n", + "\n", + "The model is presented with a text sequence and a list of expressions, and assigns a probability to each expression." + ] }, { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " [1248/1248 00:51, Epoch 2/2]\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
StepTraining Loss
6230.530700
12460.304900

" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "VLx2AElsEVHG" + }, + "source": [ + "\n", + "\n", + "### 3.1 Demonstration of the approach\n", + "\n", + "In this section you will learn how to apply zero-shot classification to perform the classification by peril type on\n", + "the claims data described above.\n", + "\n", + "First, we create a dictionary mapping certain verbal expression to peril types:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Training completed. Do not forget to share your model on huggingface.co/models =)\n", - "\n", - "\n", - "Saving model checkpoint to distilbert-base-uncased_peril\n", - "Configuration saved in distilbert-base-uncased_peril/config.json\n", - "Model weights saved in distilbert-base-uncased_peril/pytorch_model.bin\n" - ] - } - ], - "source": [ - "model_name = \"distilbert-base-uncased\"\n", - "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", - "torch.manual_seed(42) # for reproducibility, set random seed before instantiating the model\n", - "model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(labels)).to(device)\n", - "\n", - "def compute_metrics(pred):\n", - " labels = pred.label_ids\n", - " preds = pred.predictions.argmax(-1)\n", - " f1 = f1_score(labels, preds, average=\"weighted\")\n", - " acc = accuracy_score(labels, preds)\n", - " return {\"accuracy\": acc, \"f1\": f1}\n", - "\n", - "# train the model\n", - "batch_size = 8\n", - "logging_steps = len(ds[\"train\"]) // batch_size\n", - "training_args = TrainingArguments(\n", - " output_dir=model_name+\"_peril_epochs\",\n", - " num_train_epochs=2,\n", - " per_device_train_batch_size=batch_size,\n", - " per_device_eval_batch_size=batch_size,\n", - " metric_for_best_model=\"f1\",\n", - " logging_steps=logging_steps,\n", - " save_strategy=trainer_utils.IntervalStrategy.NO,\n", - ")\n", - "trainer = Trainer(model=model, args=training_args,\n", - " compute_metrics=compute_metrics, train_dataset=ds[\"train\"],\n", - " eval_dataset=ds[\"test\"])\n", - "trainer.train();\n", - "trainer.save_model(model_name + \"_peril\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "6732WFTuEVHF" - }, - "source": [ - "We evaluate the model on the test set:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 961 + "cell_type": "code", + "execution_count": 22, + "metadata": { + "id": "JmrKLlMKEVHG", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "choices = OrderedDict({\n", + " \"Vandalism\": 0,\n", + " \"Theft\": 0,\n", + " \"Fire\": 1,\n", + " \"Lightning\": 2,\n", + " \"Wind\": 3,\n", + " \"Hail\": 4,\n", + " \"Vehicle\": 5,\n", + " \"Water\": 6,\n", + " \"Weather\": 7,\n", + " \"Misc\": 8})" + ] }, - "id": "FkkgHZcaEVHF", - "outputId": "981b7946-b71b-45e0-c1a6-40ac534ae614", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "The following columns in the test set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: Lightning, WaterW, Wind, cls_hidden_state, WaterNW, Vandalism, Fire, mean_hidden_state, Hail, Vehicle, Misc, Description, Loss. If Lightning, WaterW, Wind, cls_hidden_state, WaterNW, Vandalism, Fire, mean_hidden_state, Hail, Vehicle, Misc, Description, Loss are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n", - "***** Running Prediction *****\n", - " Num examples = 1039\n", - " Batch size = 8\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "IpkNFlZ8EVHG", + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "We set up the zero-shot classifier using the `pipeline` abstraction.\n", + "By default, the `facebook/bart-large-mnli` model is used.\n", + "By specifying `device=0`, we use GPU support if available." + ] }, { - "data": { - "text/html": [ - "\n", - "

\n", - " \n", - " \n", - " [130/130 00:01]\n", - "
\n", - " " + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "referenced_widgets": [ + "2200519804e141398ad3b7ec1a1651d7", + "58536efab4a94045af79a642549cb28f", + "f07aa0b876924898b8e66b35ed36e7cf", + "8e2925bd03e649ea939aeb8dc061c0a3", + "cd5917f3d0624092b32c4d9bfed69a98", + "c8d4274188bf464d8686f83280ffa9e1", + "9d3d3feb9b25419a876586ec51da8ee0", + "f9379789ea434bca9e3a040f774b9a31", + "a10b60b5ec8b4668a6f12474e6f944ce", + "30fe641c399544e3b1111fd1043802e9", + "b829f2bd5c53486a9339df054a5b090a", + "1cc54f2db67b43299c32ac3d80a14a05", + "a838ad30c8214f70825456bdbe8040bc", + "714784cacd254171ae4c654a6df16aac", + "257651054ee64b0b86426ea8867abf34", + "979e96beb1cf47d7a7cbe26597cc1b97", + "6b09cf6fa47b44209bf41d1d82f0eddd", + "ff5f70c5ba78479e9600101bd61a9762", + "02eaa5b14ccb4420b54a63c06289a9c6", + "ea26895dcf48415392b883b65349b063", + "961a9f04da1342d08899144b0392d3a0", + "3cfab93db69a4da4a23a8852950430e3", + "545125171280483eb39001760dbe64b8", + "d9668e4d305e49808115050d94abbf10", + "c0d4c7a7053d419cbb0bb6e1dc86d218", + "43223ffb2f3947198fa57c73af2dea9c", + "15e421344c8341d1a8011702d4dc07c3", + "2577d0d7013f4fb7b500916137bed1b0", + "541d2d7200b44dfab80178e1c68806ec", + "9499be411d9d42bfbcd5477b53fe8d74", + "feb9bad9b33943729dcc67a7ffd8c8ef", + "cfaa75849a064d66b18893963f1413a4", + "cc93da4a48374a95bfaf600b321b5464", + "bde596f909cf4f4c8ec7166f6d6ff5da", + "3757acbc0aa943cd9a2a22fa0336805c", + "67495b76189f4489bc4ec4b3cbe8b2aa", + "6fd8d362aa5049e087e6210660c8aac7", + "4ca172d25bc2489a90bef50b6ab671e1", + "410a5a0a52ee46f19413833ea0c9ffa9", + "2150f647187d4df5805ed69fe91456e9", + "c263ee996b7e476e96fd77456922635d", + "2352fe8e75fa460b8859823270b054e3", + "19503938c7c9427ab9368718f113d0dc", + "3575328060fc48c39207ac7ed254108d", + "b7343b6eba3a4c6fbfb41de9a2f1c2a5", + "146686cbbb514f95892dc87061565fb2", + "1e98e49f489543e78e3384b66c048cc6", + "a106da5cb7314f03b075ee7c0e4e9ec7", + "7db3a1b06b714d7ab26338bdb4062b4c", + "cedf88473f774984a22f65e06f7608bb", + "5c9474ce8e3a45658f68e823d74f1995", + "e390d3472da24d7286239e9b852dad6c", + "7e73588e6d82482fa7398bc4d4e0e913", + "5af9d65c8ac242f0972d93f48c9fc4bb", + "e5a9124fe6044842a27a9c30883d5869", + "489233bb8c044988a3e08102f8aadbf8", + "7f0fd2b6ae724ebe93b39e15d0b18ffa", + "bcb392fa900e4f78ab0f5d985ccb0c5e", + "07dfbcc8771f48d6b3426dc82ef74617", + "60eb749393b2460c92b6af9d8632b73e", + "319fbe6f513644b9bd98d76589a70b1f", + "5add45e0435b4f16b94b59d969ece2f6", + "b83f6ddd989d4f67957622f1c5932d87", + "2c27bf385c1c4e2892044acfd233b326", + "118bb1212469463d87ef9762316cf9cd", + "5790a88fec1141ae8813301962eae01d" + ], + "height": 244 + }, + "id": "kmmi1hs8EVHG", + "outputId": "bd4f77a4-d6ce-45d9-8511-59639b02eb33", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "No model was supplied, defaulted to facebook/bart-large-mnli and revision c626438 (https://huggingface.co/facebook/bart-large-mnli).\n", + "Using a pipeline without specifying a model name and revision in production is not recommended.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading (…)lve/main/config.json: 0%| | 0.00/1.15k [00:00" + "source": [ + "classifier = pipeline(\"zero-shot-classification\", device=0)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Transformer-based classifier\n", - "accuracy score = 85.2%, log loss = 0.520, Brier loss = 0.219\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " Vandalism 0.90 0.94 0.92 310\n", - " Fire 0.86 0.83 0.84 46\n", - " Lightning 0.94 0.94 0.94 123\n", - " Wind 0.96 0.91 0.93 107\n", - " Hail 1.00 0.94 0.97 18\n", - " Vehicle 0.92 0.93 0.93 227\n", - " WaterNW 0.81 0.19 0.31 67\n", - " WaterW 0.39 0.87 0.54 38\n", - " Misc 0.70 0.66 0.68 103\n", - "\n", - " accuracy 0.85 1039\n", - " macro avg 0.83 0.80 0.78 1039\n", - "weighted avg 0.87 0.85 0.84 1039\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "VR7Qe56REVHH", + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "Then, we feed the claim descriptions of the entire test set,\n", + "presenting the classifier with the list of possible choices as the second argument.\n", + "\n", + "We use the test set directly, because zero shot classification requires no training!\n", + "\n", + "On an AWS EC2 p2.xlarge instance, the run time is about 5 minutes." + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_peril_transformer", - "format": "svg" + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "JLTEy0G8EVHH", + "pycharm": { + "name": "#%%\n" } - }, - "data": [ - { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "xaxis": "x", - "y": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "yaxis": "y", - "z": [ - [ - 291, - 4, - 1, - 0, - 0, - 6, - 0, - 0, - 8 - ], - [ - 0, - 38, - 3, - 0, - 0, - 1, - 0, - 0, - 4 - ], - [ - 0, - 0, - 116, - 1, - 0, - 0, - 0, - 0, - 6 - ], - [ - 4, - 0, - 3, - 97, - 0, - 2, - 0, - 0, - 1 - ], - [ - 0, - 0, - 0, - 1, - 17, - 0, - 0, - 0, - 0 - ], - [ - 8, - 1, - 0, - 0, - 0, - 212, - 0, - 3, - 3 - ], - [ - 4, - 0, - 0, - 0, - 0, - 0, - 13, - 45, - 5 - ], - [ - 0, - 0, - 0, - 1, - 0, - 0, - 2, - 33, - 2 - ], - [ - 18, - 1, - 1, - 1, - 0, - 9, - 1, - 4, - 68 + }, + "outputs": [], + "source": [ + "res = classifier(ds[\"test\"][\"Description\"], list(choices.keys()))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "amIfcKCREVHH" + }, + "source": [ + "This returns a list of `dict` with the following keys:\n", + "* **sequence** (`str`) — The sequence for which this is the output.\n", + "* **labels** (`List[str]`) — The labels sorted by order of likelihood.\n", + "* **scores** (`List[float]`) — The probabilities for each of the labels.\n", + "\n", + "We store the predictions in a Pandas DataFrame and evaluate the performance." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 872 + }, + "id": "rrOMsvGHRPHR", + "outputId": "e58fc511-c36d-4b4b-b1f8-9a0487132b60" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Zero-shot-classification\n", + "accuracy score = 65.5%, log loss = 1.043, Brier loss = 0.463\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " Vandalism 0.93 0.44 0.59 310\n", + " Fire 0.68 0.70 0.69 46\n", + " Lightning 0.94 0.93 0.94 123\n", + " Wind 1.00 0.84 0.91 107\n", + " Hail 0.75 1.00 0.86 18\n", + " Vehicle 0.89 0.69 0.77 227\n", + " WaterNW 0.56 0.75 0.64 67\n", + " WaterW 0.00 0.00 0.00 38\n", + " Misc 0.25 0.83 0.38 103\n", + "\n", + " accuracy 0.66 1039\n", + " macro avg 0.67 0.69 0.64 1039\n", + "weighted avg 0.79 0.66 0.68 1039\n", + "\n" ] - ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 14 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } + ], + "source": [ + "proba = np.zeros((df_valid.shape[0], len(labels)))\n", + "for i, sample in enumerate(res):\n", + " for label, score in zip(sample[\"labels\"], sample[\"scores\"]):\n", + " proba[i, choices[label]] += score\n", + " proba[i, :] = proba[i, :] / np.sum(proba[i, :])\n", + "_ = evaluate_classifier(np.array(df_valid[\"labels\"]), None, proba, labels, \"Zero-shot-classification\", \"cm_peril_zero_a\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Biym_RIDEVHH", + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "On the test set, we achieve an accuracy of 65.5% (compared to 29.8% of the dummy classifier).\n", + "Apparently, the classifier struggles to correctly identify the `WaterW` cases based on the expression “Weather”.\n", + "Also, it seems that the expression “Misc” may not be the optimal choice, as it produces many false positives." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "4EG2NJ_FEVHH", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "pred = [{\n", + " **{\"pred\"+str(i): choices[item[\"labels\"][i]] for i in range(10)},\n", + " **{\"score\"+str(i): item[\"scores\"][i] for i in range(10)}\n", + "} for item in res]\n", + "df_pred = pd.DataFrame(pred)\n", + "df_pred[[\"labels\", \"Description\"]] = df_valid[[\"labels\", \"Description\"]]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3z9s2Z7zEVHH" + }, + "source": [ + "\n", + "\n", + "### 3.2 Refinement\n", + "\n", + "To improve the performance on \"Misc\", we introduce the following heuristic:\n", + "If the probability assigned to the expression “Misc” is highest\n", + "but with a margin of less than 50 percentage points to the second-most likely expression, we select the latter." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 872 + }, + "id": "GbSjWVZtEVHH", + "outputId": "21346bc0-ba8c-43ff-8886-feeb542f59aa", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Zero-shot classification, refined\n", + "accuracy score = 69.7%, log loss = nan, Brier loss = nan\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " Vandalism 0.77 0.62 0.69 310\n", + " Fire 0.69 0.78 0.73 46\n", + " Lightning 0.92 0.94 0.93 123\n", + " Wind 0.91 0.85 0.88 107\n", + " Hail 0.58 1.00 0.73 18\n", + " Vehicle 0.62 0.77 0.69 227\n", + " WaterNW 0.54 0.78 0.63 67\n", + " WaterW 0.29 0.11 0.15 38\n", + " Misc 0.45 0.40 0.42 103\n", + "\n", + " accuracy 0.70 1039\n", + " macro avg 0.64 0.69 0.65 1039\n", + "weighted avg 0.70 0.70 0.69 1039\n", + "\n" ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } + "metadata": {} + } + ], + "source": [ + "def select_misc(row, threshold):\n", + " return row[\"pred1\"] if row[\"pred0\"] == 8 and row[\"score0\"] - row[\"score1\"] < threshold else row[\"pred0\"]\n", + "df_pred[\"pred*\"] = df_pred.apply(lambda x: select_misc(x, 0.5), axis=1)\n", + "_ = evaluate_classifier(np.array(df_pred[\"labels\"]), np.array(df_pred[\"pred*\"]), None, labels, \"Zero-shot classification, refined\", \"cm_peril_zero_b\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VeEvTc2yEVHI" + }, + "source": [ + "We export the output to Excel to analyze the prediction errors." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "id": "fVV5op92EVHI" + }, + "outputs": [], + "source": [ + "if not os.path.exists(\"./results\"):\n", + " os.mkdir(\"./results\")\n", + "df_pred.to_excel(\"results/peril_pred_zero_shot.xlsx\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uucd4ButEVHI" + }, + "source": [ + "Looking at false predictions in the training set, we observe the following:\n", + "\n", + "* True label “Vandalism”, predicted label “Vehicle” or “Misc”: Quite many descriptions contain the word “glass”. For these claims, “Vandalism” appears to be a natural classification.\n", + " \n", + "* True label “Vehicle”, predicted label “Vandalism”: This group contains many descriptions like “light pole damaged”, “fence damaged”. Apparently, the zero-shot classifier does not realize that for these items, damage caused by a vehicle is more likely than damage caused by vandalism.\n", + "* True label “WaterW”, predicted label “WaterNW”: Some of the descriptions like “frozen pipe caused water damage to indoor pool”, “gutter pulled from roof ice dam”, “Water damage and mold growth from storms” suggest that the candidate word “Weather” is not optimal to attract all weather-related water claims.\n", + "\n", + "Based on these and similar observations, one could refine the approach by adding more candidate expressions, e.g., adding “glass” to hazard type 0 (“Vandalism”), “light pole” and “fence” to hazard type 5 (“Vehicle”), “storm” and “ice” to hazard type 7 (“WaterW”), etc.\n", + "\n", + "However, the computational effort of zero-shot classification scales with the number of candidate expressions times number of samples, so that we don't want to supply too many candidate expressions.\n", + "Ideally, we would have an approach to extract candidate expressions from the data....\n", + "\n", + "We will look at such an approach in [Section 5](#topic_modeling).\n", + "Before going there, the next section offers an alternative approach with less computational effort than zero-shot classification." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "csG9Uh15maLE" + }, + "source": [ + "\n", + "\n", + "## 4. Unsupervised Classification Using Similarity\n", + "\n", + "This approach is similar to the previous one. It is also suitable in situations with no or only few labeled data.\n", + "\n", + "The model is presented with a text sequence and a list of expressions, and selects the expression which is most \"similar\" to the text sequence.\n", + "Here, we use cosine-similarity, which is defined as the dot product of two embedding vectors, each normalized to unit length." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vkqpIohSob7s" + }, + "source": [ + "\n", + "\n", + "### 4.1 Demonstration of the approach\n", + "\n", + "In this section you will learn how to perform unsupervised classification using similarity.\n", + "\n", + "Again, we will try to predict the peril type from the claim descriptions.\n", + "\n", + "First, we create a dictionary that maps certain verbal expression to peril types:" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "id": "A-MB8vWeo9Qa" + }, + "outputs": [], + "source": [ + "candidates = OrderedDict({\n", + " \"Vandalism\": 0,\n", + " \"Glass\": 0,\n", + " \"Theft\": 0,\n", + " \"Fire damage\": 1,\n", + " \"Lightning damage\": 2,\n", + " \"Wind damage\": 3,\n", + " \"Hail damage\": 4,\n", + " \"Damage caused by a vehicle\": 5,\n", + " \"Water damage\": 6,\n", + " \"Weather damage\": 7,\n", + " \"Ice\": 7,\n", + " \"Electricity\": 8,\n", + " \"power surge\": 8})" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5JhbMQjepls9" + }, + "source": [ + "As you can see, we have applied some of the lessons learned from the previous experiments with the zero-shot classifier. For instance, we have added \"Glass\" to the list of candidate expressions mapped to \"Vandalism\"." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Coa6gM93qNZv" + }, + "source": [ + "We use the model ``sentence-transformers/all-MiniLM-L12-v2``, which is a BERT model that produces a sequence of real-valued vectors of length 384. During its pre-training on sentence similarity tasks, mean pooling was applied to convert this sequence into a single vector." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 209, + "referenced_widgets": [ + "5f74275afa1d46da8085b979edd7d4de", + "627058aa0f314f1eb21388e8a327a429", + "0d27a80e51674bc4ab93817c47e22d34", + "94a41b1e2e0a4ea79b1031aa5828ecb6", + "3a6a1f92769f4bfa924920c8c003a02f", + "c1ae57b61c9b4b949e0fa0581611aa80", + "9a10cedca8a44948840681975df987a7", + "1c3ae5a90e564510aac2ce4a61b9c56d", + "9096ce54dea847bc9d398ae31f086c16", + "66e0472ab90e4c6c94d18e374f8cf9c7", + "05fbe6032b7f421fa897992621795b33", + "4595744bea1843c79d6c8b11027c1db8", + "320c7ca65249451a824d2df8c430a3a4", + "a279e42a1701404bbcb2732ed248a334", + "0998c7ff46e74d49b9fb991a337bad0e", + "7f15dfe1fa454a1e8faa2c764e437ba7", + "a7c671a21dee45829a450e40de873384", + "45d00478792d44cfa033feb875b84a7b", + "3fb4ac16169c4bdab40cf7189de202d9", + "800b4b1478b94daa9045c8d183de2bdd", + "b027b9effe2b44d895b3f5babedaf6e7", + "8c49c80da8b84575ae24724c345fcb06", + "1c9d63e6919242a193aafd755220497d", + "6c08750a5b304550b784400b5cd48846", + "47bb8f56b89549ae8a72b8976a3664eb", + "c927c1d243364d1c88534038402d3629", + "8c34114e5cbb479eb8b8fc691a3e65da", + "f3c04685c6af44bd9bf88d404d1f8c9d", + "4124b1638d2c4ca1ae0c9fc7a92c2884", + "62abd2484e5444d6859d3bbd639fa4d7", + "1245ab4237cc4ee9b6c851301607b301", + "47622165b2ae457d8578e141318e95d5", + "6f3f15dd4f0f4e7bafd6c29414269465", + "ccf3d21d1e394e79a736bb5ae51e1a1c", + "ebc5ae4cf440454a945580961ea23bb1", + "0202fb280ebb4149b1f3a85545fe5cd3", + "362c20f6821747b1a9854c094f00f672", + "1fcdb6ee7a894d32b11901032dce5f92", + "d6704ca6a7a24c1d9489f662a65921bf", + "716aeb463e49482ca7fbf7c4af312138", + "69eb91d460e24f29b479b64bdc270847", + "9914a5f63edd444db1e7bc0992fb2770", + "5b4ed5562c0242d9a69788aeebe0f9af", + "325c8a22307c4b77a84f549627db0d5a", + "448a40829fdf408cac3af81ef9c03df4", + "32b565d94b2f405693f5eba1bc16f53d", + "78ad4e18627b4131aca129f38652ccba", + "e89c8fe1562b45b7818ff20c4ef58f8e", + "39cbad4a6bd944b4bd18ea9b14debac2", + "6859fef3694e4c49b0ab633200756934", + "b51d592bfbf34b24b16544f42dcad5e8", + "b9711b3014f0476d8cccb1642cf28681", + "5a331fc31a1546f093494ee2404cfbe1", + "739340399a6c4c4fb50143e3587423ad", + "8c183b90a3dd45c2a7fe797ea079e319", + "f51acf459e944e7cb86ec7e57c47496f", + "221e6c077d39456f839d859fbd67e9cc", + "9d814a3f4ba5482199f7c5f91bf7e39d", + "e7f354b860fb45cfa7368eb01f2e5c01", + "2067761d355d4de3ab734ecd38d85702", + "d96a4c788fa140e2ac5977582e2a2ff1", + "ea0f1a6513ce4d73b9362a9839999312", + "71ed5aad90ba4794b7242efa2f66e82a", + "423662a69bcb4312ae86d9f23290a447", + "3bae1d2fbd2449af80e6c0a6ff3cadb0", + "2866aaeac9af4b35a0b9a76c33d8dece" + ] + }, + "id": "65gL10u6q0_F", + "outputId": "7789a627-0a56-44dd-d93a-fbd1e2fb1bf4" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading (…)okenizer_config.json: 0%| | 0.00/352 [00:00predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "metadata": {} } - } + ], + "source": [ + "ds_candidates = Dataset.from_dict({\"Description\": candidates.keys()})\n", + "ds_candidates = ds_candidates.map(tokenize, batched=True)\n", + "ds_candidates = ds_candidates.map(extract_sequence_encoding, fn_kwargs={\"model\": model, \"normalize\": True}, batched=True)\n", + "y = np.array(ds_candidates[\"mean_hidden_state\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1DLkEGHiVwsJ" }, - "text/html": [ - "
" + "source": [ + "Finally, we calculate the pairwise cosine similarity scores by the dot product of the two arrays, and greedily select the peril type with the highest score." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "predictions = trainer.predict(ds[\"test\"])\n", - "_ = evaluate_classifier(predictions.label_ids, None, softmax(predictions.predictions, axis=1), labels,\"Transformer-based classifier\", \"cm_peril_transformer\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "N68LJA8yEVHG" - }, - "source": [ - "The performance is comparable to that of the logistic regression classifier, with an improved Brier loss and accuracy score.\n", - "It appears that the model struggles to tell `WaterNW` apart from `WaterW`.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CoYTxK22EVHG" - }, - "source": [ - "\n", - "\n", - "## 3. Zero-shot Classification\n", - "\n", - "There are situations with no or only few labeled data.\n", - "\n", - "Zero-shot classification is an approach that is suited in this case.\n", - "Zero-shot classification is about classifying text sequences in an unsupervised way\n", - "(without having training data in advance and building a model).\n", - "\n", - "The model is presented with a text sequence and a list of expressions, and assigns a probability to each expression." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VLx2AElsEVHG" - }, - "source": [ - "\n", - "\n", - "### 3.1 Demonstration of the approach\n", - "\n", - "In this section you will learn how to apply zero-shot classification to perform the classification by peril type on\n", - "the claims data described above.\n", - "\n", - "First, we create a dictionary mapping certain verbal expression to peril types:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "id": "JmrKLlMKEVHG", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "choices = OrderedDict({\n", - " \"Vandalism\": 0,\n", - " \"Theft\": 0,\n", - " \"Fire\": 1,\n", - " \"Lightning\": 2,\n", - " \"Wind\": 3,\n", - " \"Hail\": 4,\n", - " \"Vehicle\": 5,\n", - " \"Water\": 6,\n", - " \"Weather\": 7,\n", - " \"Misc\": 8})" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "IpkNFlZ8EVHG", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "We set up the zero-shot classifier using the `pipeline` abstraction.\n", - "By default, the `facebook/bart-large-mnli` model is used.\n", - "By specifying `device=0`, we use GPU support if available." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0, - "referenced_widgets": [ - "0427a43036264a3683b9ccc05ae4d263", - "fe358f54827f476d98557365e873d898", - "5f70a433d78f4d7494af38d6cb103845", - "a8983ba16a794aad8271b7d69a81b3ad", - "e6fa423db2cd4a628ce17ffd90d3d254", - "fd90644c12544a3d8444543cf97dbeab", - "b361bfc331fb42a7ab25522003c63f06", - "c53fd5527ead4008b3f00a323a391b41", - "00b59754edd24f61a38ea1ed4f1aa077", - "d7d032ad620448f2b18e6c4c06c7154f", - "fefec331bdc5456498084257b45a03b6", - "70d5e293d0a343ee813f8a5d57dcfd2d", - "7b7f296ea45d40aba5537caa21c47bf3", - "ff61a61119094626a738050955793c39", - "701c8174d1ea43cfa251c81708f1fc77", - "064dca1b1b824a908647633e4f72f71b", - "4188c72c71db4ecb82e754385003bcf4", - "b0d7fc82ccb34ed5b45448d581bf2727", - "ab70f467b69a47349a1c5d3839b884b9", - "4fc06fe12e514785a121c7ae1b9e0c97", - "c458935ca1564885b1195ad72beed0f6", - "7351dbf107194d1f9ed9d263dfe62f2c", - "c75799c0da57418fb2beceede73ba46b", - "f4e15b7446214c6f86cb0095711fe9f2", - "9ba3ea34fde448a2a478524403cc8038", - "c9ec17636a764edab3bb01eda508dca3", - "a5544445e9a04406bfe2185f53bfa799", - "a388d930425f462d831235f5f1f01d5a", - "3cb8f213216b4db4b17b6159ff8af1b2", - "7b26397bea754aaeb2e7c60852f182e4", - "ba0e140e43614be3a776cb929ed8d5bb", - "1ec9d7b1c71a440db6089c6539f680a3", - "fbef18bdfa234ff8b17413b096029fb8", - "e4c457574310465bbe2175c04874e996", - "c42d01f933044313b2860cabae5ce5ee", - "bcad04bb62194a10a94f1317a1292ead", - "40c801e68caf4b678ab85afae0ef4423", - "d98808d12cdc4bfc8f5423f8cdbba476", - "cbd8a118b2904c4a88c0c93abea26d44", - "38a5ae14a1ed4f248790e722ef07c632", - "4262b30ff3384960ada0f7042955027b", - "589d76442a81446f81ff107f0449ef35", - "86f9a8016dd741fe84808a5babf042a6", - "6df44ef8a0a142cca7d6af2bfc067cb6", - "a1910eeb981144dca95cf8e6dda49eb4", - "4a12f613fa4f4fc0881791941e1c8e0d", - "72d1f3de89dc45b3ad3dbfa93184f757", - "e91cb5eb1a894209b3599ba5eb3f215d", - "8e7db1dd82b5406e9c1b1699dc43b6dd", - "bd9ba4aaae6745dcb6b78effa1c8e937", - "c4a7299fdc564d09b5c662b2eeec51d1", - "bfeace42248941eaad5251bcee579dde", - "465a869777814955a2eff4f206bb3c91", - "f3e128dab6a24396b8deb3526a90040a", - "a623fa5f4e16419f99f40f8837228e7e", - "65c2905bddb9483cbe58b3711dfb400e", - "ccdd150660704acaa0e5bae0e44d8566", - "091fcb8d2a714647a2ece136d3ffeb07", - "e5221be381054945a6e4c507799f88a7", - "fef3a407898f44798e08baf4a27f5fcb", - "9637b86b7807491a84098c2114e691df", - "28c6d8a464d4483eb8abae01f4cf14db", - "a04fbcff413a4775b5e0476618069995", - "cfe231dfa61e4d2fb55d28535bde9dc4", - "0af9681c674541f5874c3eb7f1798ac4", - "c315d91e15f34eeaa4ee955f88e86285" - ] }, - "id": "kmmi1hs8EVHG", - "outputId": "21aa6b34-289c-4f42-e617-298c042a8391", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "No model was supplied, defaulted to facebook/bart-large-mnli (https://huggingface.co/facebook/bart-large-mnli)\n", - "loading configuration file https://huggingface.co/facebook/bart-large-mnli/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/980f2be6bd282c5079e99199d7554cfd13000433ed0fdc527e7def799e5738fe.4fdc7ce6768977d347b32986aff152e26fcebbda34ef89ac9b114971d0342e09\n", - "Model config BartConfig {\n", - " \"_name_or_path\": \"facebook/bart-large-mnli\",\n", - " \"_num_labels\": 3,\n", - " \"activation_dropout\": 0.0,\n", - " \"activation_function\": \"gelu\",\n", - " \"add_final_layer_norm\": false,\n", - " \"architectures\": [\n", - " \"BartForSequenceClassification\"\n", - " ],\n", - " \"attention_dropout\": 0.0,\n", - " \"bos_token_id\": 0,\n", - " \"classif_dropout\": 0.0,\n", - " \"classifier_dropout\": 0.0,\n", - " \"d_model\": 1024,\n", - " \"decoder_attention_heads\": 16,\n", - " \"decoder_ffn_dim\": 4096,\n", - " \"decoder_layerdrop\": 0.0,\n", - " \"decoder_layers\": 12,\n", - " \"decoder_start_token_id\": 2,\n", - " \"dropout\": 0.1,\n", - " \"encoder_attention_heads\": 16,\n", - " \"encoder_ffn_dim\": 4096,\n", - " \"encoder_layerdrop\": 0.0,\n", - " \"encoder_layers\": 12,\n", - " \"eos_token_id\": 2,\n", - " \"forced_eos_token_id\": 2,\n", - " \"gradient_checkpointing\": false,\n", - " \"id2label\": {\n", - " \"0\": \"contradiction\",\n", - " \"1\": \"neutral\",\n", - " \"2\": \"entailment\"\n", - " },\n", - " \"init_std\": 0.02,\n", - " \"is_encoder_decoder\": true,\n", - " \"label2id\": {\n", - " \"contradiction\": 0,\n", - " \"entailment\": 2,\n", - " \"neutral\": 1\n", - " },\n", - " \"max_position_embeddings\": 1024,\n", - " \"model_type\": \"bart\",\n", - " \"normalize_before\": false,\n", - " \"num_hidden_layers\": 12,\n", - " \"output_past\": false,\n", - " \"pad_token_id\": 1,\n", - " \"scale_embedding\": false,\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"use_cache\": true,\n", - " \"vocab_size\": 50265\n", - "}\n", - "\n", - "loading configuration file https://huggingface.co/facebook/bart-large-mnli/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/980f2be6bd282c5079e99199d7554cfd13000433ed0fdc527e7def799e5738fe.4fdc7ce6768977d347b32986aff152e26fcebbda34ef89ac9b114971d0342e09\n", - "Model config BartConfig {\n", - " \"_name_or_path\": \"facebook/bart-large-mnli\",\n", - " \"_num_labels\": 3,\n", - " \"activation_dropout\": 0.0,\n", - " \"activation_function\": \"gelu\",\n", - " \"add_final_layer_norm\": false,\n", - " \"architectures\": [\n", - " \"BartForSequenceClassification\"\n", - " ],\n", - " \"attention_dropout\": 0.0,\n", - " \"bos_token_id\": 0,\n", - " \"classif_dropout\": 0.0,\n", - " \"classifier_dropout\": 0.0,\n", - " \"d_model\": 1024,\n", - " \"decoder_attention_heads\": 16,\n", - " \"decoder_ffn_dim\": 4096,\n", - " \"decoder_layerdrop\": 0.0,\n", - " \"decoder_layers\": 12,\n", - " \"decoder_start_token_id\": 2,\n", - " \"dropout\": 0.1,\n", - " \"encoder_attention_heads\": 16,\n", - " \"encoder_ffn_dim\": 4096,\n", - " \"encoder_layerdrop\": 0.0,\n", - " \"encoder_layers\": 12,\n", - " \"eos_token_id\": 2,\n", - " \"forced_eos_token_id\": 2,\n", - " \"gradient_checkpointing\": false,\n", - " \"id2label\": {\n", - " \"0\": \"contradiction\",\n", - " \"1\": \"neutral\",\n", - " \"2\": \"entailment\"\n", - " },\n", - " \"init_std\": 0.02,\n", - " \"is_encoder_decoder\": true,\n", - " \"label2id\": {\n", - " \"contradiction\": 0,\n", - " \"entailment\": 2,\n", - " \"neutral\": 1\n", - " },\n", - " \"max_position_embeddings\": 1024,\n", - " \"model_type\": \"bart\",\n", - " \"normalize_before\": false,\n", - " \"num_hidden_layers\": 12,\n", - " \"output_past\": false,\n", - " \"pad_token_id\": 1,\n", - " \"scale_embedding\": false,\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"use_cache\": true,\n", - " \"vocab_size\": 50265\n", - "}\n", - "\n", - "loading weights file https://huggingface.co/facebook/bart-large-mnli/resolve/main/pytorch_model.bin from cache at /home/ubuntu/.cache/huggingface/transformers/35014754ae1fcb956d44903df02e4f69d0917cab0901ace5ac7f4a4a998346fe.a30bb5d685bb3c6e9376ab4480f1b252d9796d438d1c84a9b2deb0275c5b2151\n", - "All model checkpoint weights were used when initializing BartForSequenceClassification.\n", - "\n", - "All the weights of BartForSequenceClassification were initialized from the model checkpoint at facebook/bart-large-mnli.\n", - "If your task is similar to the task the model of the checkpoint was trained on, you can already use BartForSequenceClassification for predictions without further training.\n", - "loading configuration file https://huggingface.co/facebook/bart-large-mnli/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/980f2be6bd282c5079e99199d7554cfd13000433ed0fdc527e7def799e5738fe.4fdc7ce6768977d347b32986aff152e26fcebbda34ef89ac9b114971d0342e09\n", - "Model config BartConfig {\n", - " \"_name_or_path\": \"facebook/bart-large-mnli\",\n", - " \"_num_labels\": 3,\n", - " \"activation_dropout\": 0.0,\n", - " \"activation_function\": \"gelu\",\n", - " \"add_final_layer_norm\": false,\n", - " \"architectures\": [\n", - " \"BartForSequenceClassification\"\n", - " ],\n", - " \"attention_dropout\": 0.0,\n", - " \"bos_token_id\": 0,\n", - " \"classif_dropout\": 0.0,\n", - " \"classifier_dropout\": 0.0,\n", - " \"d_model\": 1024,\n", - " \"decoder_attention_heads\": 16,\n", - " \"decoder_ffn_dim\": 4096,\n", - " \"decoder_layerdrop\": 0.0,\n", - " \"decoder_layers\": 12,\n", - " \"decoder_start_token_id\": 2,\n", - " \"dropout\": 0.1,\n", - " \"encoder_attention_heads\": 16,\n", - " \"encoder_ffn_dim\": 4096,\n", - " \"encoder_layerdrop\": 0.0,\n", - " \"encoder_layers\": 12,\n", - " \"eos_token_id\": 2,\n", - " \"forced_eos_token_id\": 2,\n", - " \"gradient_checkpointing\": false,\n", - " \"id2label\": {\n", - " \"0\": \"contradiction\",\n", - " \"1\": \"neutral\",\n", - " \"2\": \"entailment\"\n", - " },\n", - " \"init_std\": 0.02,\n", - " \"is_encoder_decoder\": true,\n", - " \"label2id\": {\n", - " \"contradiction\": 0,\n", - " \"entailment\": 2,\n", - " \"neutral\": 1\n", - " },\n", - " \"max_position_embeddings\": 1024,\n", - " \"model_type\": \"bart\",\n", - " \"normalize_before\": false,\n", - " \"num_hidden_layers\": 12,\n", - " \"output_past\": false,\n", - " \"pad_token_id\": 1,\n", - " \"scale_embedding\": false,\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"use_cache\": true,\n", - " \"vocab_size\": 50265\n", - "}\n", - "\n", - "loading file https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json from cache at /home/ubuntu/.cache/huggingface/transformers/b4f8395edd321fd7cd8a87bca767b1135680a41d8931516dd1a447294633b9db.647b4548b6d9ea817e82e7a9231a320231a1c9ea24053cc9e758f3fe68216f05\n", - "loading file https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt from cache at /home/ubuntu/.cache/huggingface/transformers/19c09c9654551e163f858f3c99c226a8d0026acc4935528df3b09179204efe4c.5d12962c5ee615a4c803841266e9c3be9a691a924f72d395d3a6c6c81157788b\n", - "loading file https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json from cache at /home/ubuntu/.cache/huggingface/transformers/540455855ce0a3c13893c5d090d142de9481365bd32dc5457c957e5d13444d23.fc9576039592f026ad76a1c231b89aee8668488c671dfbe6616bab2ed298d730\n", - "loading file https://huggingface.co/facebook/bart-large-mnli/resolve/main/added_tokens.json from cache at None\n", - "loading file https://huggingface.co/facebook/bart-large-mnli/resolve/main/special_tokens_map.json from cache at None\n", - "loading file https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer_config.json from cache at /home/ubuntu/.cache/huggingface/transformers/569800088d6f014777e6d5d8cb61b2b8bb3d18a508a1d8af041aae6bbc6f3dfe.67d01b18f2079bd75eac0b2f2e7235768c7f26bd728e7a855a1c5acae01a91a8\n", - "loading configuration file https://huggingface.co/facebook/bart-large-mnli/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/980f2be6bd282c5079e99199d7554cfd13000433ed0fdc527e7def799e5738fe.4fdc7ce6768977d347b32986aff152e26fcebbda34ef89ac9b114971d0342e09\n", - "Model config BartConfig {\n", - " \"_name_or_path\": \"facebook/bart-large-mnli\",\n", - " \"_num_labels\": 3,\n", - " \"activation_dropout\": 0.0,\n", - " \"activation_function\": \"gelu\",\n", - " \"add_final_layer_norm\": false,\n", - " \"architectures\": [\n", - " \"BartForSequenceClassification\"\n", - " ],\n", - " \"attention_dropout\": 0.0,\n", - " \"bos_token_id\": 0,\n", - " \"classif_dropout\": 0.0,\n", - " \"classifier_dropout\": 0.0,\n", - " \"d_model\": 1024,\n", - " \"decoder_attention_heads\": 16,\n", - " \"decoder_ffn_dim\": 4096,\n", - " \"decoder_layerdrop\": 0.0,\n", - " \"decoder_layers\": 12,\n", - " \"decoder_start_token_id\": 2,\n", - " \"dropout\": 0.1,\n", - " \"encoder_attention_heads\": 16,\n", - " \"encoder_ffn_dim\": 4096,\n", - " \"encoder_layerdrop\": 0.0,\n", - " \"encoder_layers\": 12,\n", - " \"eos_token_id\": 2,\n", - " \"forced_eos_token_id\": 2,\n", - " \"gradient_checkpointing\": false,\n", - " \"id2label\": {\n", - " \"0\": \"contradiction\",\n", - " \"1\": \"neutral\",\n", - " \"2\": \"entailment\"\n", - " },\n", - " \"init_std\": 0.02,\n", - " \"is_encoder_decoder\": true,\n", - " \"label2id\": {\n", - " \"contradiction\": 0,\n", - " \"entailment\": 2,\n", - " \"neutral\": 1\n", - " },\n", - " \"max_position_embeddings\": 1024,\n", - " \"model_type\": \"bart\",\n", - " \"normalize_before\": false,\n", - " \"num_hidden_layers\": 12,\n", - " \"output_past\": false,\n", - " \"pad_token_id\": 1,\n", - " \"scale_embedding\": false,\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"use_cache\": true,\n", - " \"vocab_size\": 50265\n", - "}\n", - "\n" - ] - } - ], - "source": [ - "classifier = pipeline(\"zero-shot-classification\", device=0)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VR7Qe56REVHH", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "Then, we feed the claim descriptions of the entire test set,\n", - "presenting the classifier with the list of possible choices as the second argument.\n", - "\n", - "We use the test set directly, because zero shot classification requires no training!\n", - "\n", - "On an AWS EC2 p2.xlarge instance, the run time is about 5 minutes." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": 33, + "metadata": { + "id": "lfYLThd3scHW" + }, + "outputs": [], + "source": [ + "scores = np.dot(x, y.T)\n", + "selected = np.argmax(scores, axis=1)\n", + "pred = np.array([list(candidates.values())[i] for i in selected])" + ] }, - "id": "JLTEy0G8EVHH", - "outputId": "b237faa9-fa45-427c-a2fc-ba5bb249a878", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "Disabling tokenizer parallelism, we're using DataLoader multithreading already\n" - ] - } - ], - "source": [ - "res = classifier(ds[\"test\"][\"Description\"], list(choices.keys()))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "amIfcKCREVHH" - }, - "source": [ - "This returns a list of `dict` with the following keys:\n", - "* **sequence** (`str`) — The sequence for which this is the output.\n", - "* **labels** (`List[str]`) — The labels sorted by order of likelihood.\n", - "* **scores** (`List[float]`) — The probabilities for each of the labels.\n", - "\n", - "We store the predictions in a Pandas DataFrame and evaluate the performance." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 + "cell_type": "markdown", + "metadata": { + "id": "vpE6-FbaVvUT" + }, + "source": [ + "For inspection, we generate a Pandas DataFrame and export it to an Excel file." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "id": "N6vJhe_oyfxU" + }, + "outputs": [], + "source": [ + "df_scores = pd.DataFrame(columns=candidates.keys(), data=scores)\n", + "df_selected = pd.DataFrame(columns=[\"selected\"], data=selected)\n", + "df_pred = pd.DataFrame(columns=[\"pred\"], data=pred)\n", + "if not os.path.exists(\"./results\"):\n", + " os.mkdir(\"./results\")\n", + "pd.concat([df_valid, df_scores, df_pred], axis=1).to_excel(\"./results/zero_similarity_test.xlsx\")" + ] }, - "id": "rrOMsvGHRPHR", - "outputId": "4a8171ab-4fe2-461a-9c5a-3b2f2cee4dae" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Zero-shot-classification\n", - "accuracy score = 65.5%, log loss = 1.043, Brier loss = 0.463\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " Vandalism 0.93 0.44 0.59 310\n", - " Fire 0.68 0.70 0.69 46\n", - " Lightning 0.94 0.93 0.94 123\n", - " Wind 1.00 0.84 0.91 107\n", - " Hail 0.75 1.00 0.86 18\n", - " Vehicle 0.89 0.69 0.77 227\n", - " WaterNW 0.56 0.75 0.64 67\n", - " WaterW 0.00 0.00 0.00 38\n", - " Misc 0.25 0.83 0.38 103\n", - "\n", - " accuracy 0.66 1039\n", - " macro avg 0.67 0.69 0.64 1039\n", - "weighted avg 0.79 0.66 0.68 1039\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "ZKfBreSXhx98" + }, + "source": [ + "The performance is as follows:" + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_peril_zero_a", - "format": "svg" - } - }, - "data": [ + "cell_type": "code", + "execution_count": 35, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 872 + }, + "id": "lEOYl-skt6by", + "outputId": "700a0c6f-b772-4c96-ba08-23621cf78d38" + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "xaxis": "x", - "y": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "yaxis": "y", - "z": [ - [ - 135, - 7, - 1, - 0, - 4, - 12, - 1, - 1, - 149 - ], - [ - 0, - 32, - 3, - 0, - 0, - 2, - 1, - 0, - 8 - ], - [ - 0, - 0, - 115, - 0, - 0, - 0, - 0, - 0, - 8 - ], - [ - 1, - 0, - 2, - 90, - 1, - 1, - 1, - 1, - 10 - ], - [ - 0, - 0, - 0, - 0, - 18, - 0, - 0, - 0, - 0 - ], - [ - 3, - 5, - 0, - 0, - 0, - 156, - 4, - 1, - 58 - ], - [ - 1, - 0, - 0, - 0, - 0, - 0, - 50, - 0, - 16 - ], - [ - 0, - 1, - 0, - 0, - 0, - 0, - 28, - 0, - 9 - ], - [ - 5, - 2, - 1, - 0, - 1, - 5, - 4, - 0, - 85 + "output_type": "stream", + "name": "stdout", + "text": [ + "Similarity\n", + "accuracy score = 74.5%, log loss = nan, Brier loss = nan\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " Vandalism 0.90 0.80 0.85 310\n", + " Fire 0.64 0.83 0.72 46\n", + " Lightning 0.80 0.95 0.87 123\n", + " Wind 0.91 0.84 0.87 107\n", + " Hail 0.67 1.00 0.80 18\n", + " Vehicle 0.88 0.71 0.79 227\n", + " WaterNW 0.48 0.88 0.62 67\n", + " WaterW 0.12 0.26 0.17 38\n", + " Misc 0.76 0.30 0.43 103\n", + "\n", + " accuracy 0.74 1039\n", + " macro avg 0.68 0.73 0.68 1039\n", + "weighted avg 0.80 0.74 0.75 1039\n", + "\n" ] - ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 14 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Zero-shot-classification" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } - } - } + ], + "source": [ + "_ = evaluate_classifier(np.array(df_valid[\"labels\"]), pred, None, labels, \"Similarity\", \"cm_peril_sim_a\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rBb2NUiVh71w" }, - "text/html": [ - "
" + "source": [ + "This is not bad! We have already improved on the accuracy score obtained by the zero-shot classifier (using a different set of candidate expressions though).\n", + "\n", + "Let’s see how we can improve the results further." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "proba = np.zeros((df_valid.shape[0], len(labels)))\n", - "for i, sample in enumerate(res):\n", - " for label, score in zip(sample[\"labels\"], sample[\"scores\"]):\n", - " proba[i, choices[label]] += score\n", - " proba[i, :] = proba[i, :] / np.sum(proba[i, :])\n", - "_ = evaluate_classifier(np.array(df_valid[\"labels\"]), None, proba, labels, \"Zero-shot-classification\", \"cm_peril_zero_a\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Biym_RIDEVHH", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "On the test set, we achieve an accuracy of 65.5% (compared to 29.8% of the dummy classifier).\n", - "Apparently, the classifier struggles to correctly identify the `WaterW` cases based on the expression “Weather”.\n", - "Also, it seems that the expression “Misc” may not be the optimal choice, as it produces many false positives." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "id": "4EG2NJ_FEVHH", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "pred = [{\n", - " **{\"pred\"+str(i): choices[item[\"labels\"][i]] for i in range(10)},\n", - " **{\"score\"+str(i): item[\"scores\"][i] for i in range(10)}\n", - "} for item in res]\n", - "df_pred = pd.DataFrame(pred)\n", - "df_pred[[\"labels\", \"Description\"]] = df_valid[[\"labels\", \"Description\"]]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "3z9s2Z7zEVHH" - }, - "source": [ - "\n", - "\n", - "### 3.2 Refinement\n", - "\n", - "To improve the performance on \"Misc\", we introduce the following heuristic:\n", - "If the probability assigned to the expression “Misc” is highest\n", - "but with a margin of less than 50 percentage points to the second-most likely expression, we select the latter." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 }, - "id": "GbSjWVZtEVHH", - "outputId": "70e5bf18-7280-4380-ccc7-3b37877ebd45", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Zero-shot classification, refined\n", - "accuracy score = 69.7%, log loss = nan, Brier loss = nan\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " Vandalism 0.77 0.62 0.69 310\n", - " Fire 0.69 0.78 0.73 46\n", - " Lightning 0.92 0.94 0.93 123\n", - " Wind 0.91 0.85 0.88 107\n", - " Hail 0.58 1.00 0.73 18\n", - " Vehicle 0.62 0.77 0.69 227\n", - " WaterNW 0.54 0.78 0.63 67\n", - " WaterW 0.29 0.11 0.15 38\n", - " Misc 0.45 0.40 0.42 103\n", - "\n", - " accuracy 0.70 1039\n", - " macro avg 0.64 0.69 0.65 1039\n", - "weighted avg 0.70 0.70 0.69 1039\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "CEEIA6IT3lZE" + }, + "source": [ + "\n", + "\n", + "### 4.2. Refinement\n", + "\n", + "A possible way to improve the performance is to train a classifier using the predicted labels of the previous section. Although this is a supervised learning step, we are not using the original labels, therefore the overall approach is still unsupervised." + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_peril_zero_b", - "format": "svg" - } - }, - "data": [ - { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "xaxis": "x", - "y": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "yaxis": "y", - "z": [ - [ - 191, - 7, - 2, - 8, - 8, - 70, - 3, - 2, - 19 - ], - [ - 0, - 36, - 3, - 0, - 1, - 3, - 1, - 0, - 2 - ], - [ - 1, - 0, - 116, - 0, - 0, - 2, - 0, - 2, - 2 - ], - [ - 3, - 0, - 2, - 91, - 1, - 2, - 1, - 4, - 3 - ], - [ - 0, - 0, - 0, - 0, - 18, - 0, - 0, - 0, - 0 - ], - [ - 19, - 6, - 2, - 1, - 0, - 175, - 6, - 2, - 16 - ], - [ - 5, - 0, - 0, - 0, - 1, - 1, - 52, - 0, - 8 - ], - [ - 3, - 1, - 0, - 0, - 0, - 0, - 29, - 4, - 1 - ], - [ - 25, - 2, - 1, - 0, - 2, - 27, - 5, - 0, - 41 - ] - ] - } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 14 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Zero-shot classification, refined" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } - } - } + "cell_type": "markdown", + "metadata": { + "id": "M4rgq9pLiJku" }, - "text/html": [ - "
" + "source": [ + "First, we predict the labels on the training set, the same way as before, and store them in the DataFrame `df_train_copy`:" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "def select_misc(row, threshold):\n", - " return row[\"pred1\"] if row[\"pred0\"] == 8 and row[\"score0\"] - row[\"score1\"] < threshold else row[\"pred0\"]\n", - "df_pred[\"pred*\"] = df_pred.apply(lambda x: select_misc(x, 0.5), axis=1)\n", - "_ = evaluate_classifier(np.array(df_pred[\"labels\"]), np.array(df_pred[\"pred*\"]), None, labels, \"Zero-shot classification, refined\", \"cm_peril_zero_b\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VeEvTc2yEVHI" - }, - "source": [ - "We export the output to Excel to analyze the prediction errors." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "id": "fVV5op92EVHI" - }, - "outputs": [], - "source": [ - "if not os.path.exists(\"./results\"):\n", - " os.mkdir(\"./results\")\n", - "df_pred.to_excel(\"results/peril_pred_zero_shot.xlsx\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "uucd4ButEVHI" - }, - "source": [ - "Looking at false predictions in the training set, we observe the following:\n", - "\n", - "* True label “Vandalism”, predicted label “Vehicle” or “Misc”: Quite many descriptions contain the word “glass”. For these claims, “Vandalism” appears to be a natural classification.\n", - " \n", - "* True label “Vehicle”, predicted label “Vandalism”: This group contains many descriptions like “light pole damaged”, “fence damaged”. Apparently, the zero-shot classifier does not realize that for these items, damage caused by a vehicle is more likely than damage caused by vandalism.\n", - "* True label “WaterW”, predicted label “WaterNW”: Some of the descriptions like “frozen pipe caused water damage to indoor pool”, “gutter pulled from roof ice dam”, “Water damage and mold growth from storms” suggest that the candidate word “Weather” is not optimal to attract all weather-related water claims.\n", - "\n", - "Based on these and similar observations, one could refine the approach by adding more candidate expressions, e.g., adding “glass” to hazard type 0 (“Vandalism”), “light pole” and “fence” to hazard type 5 (“Vehicle”), “storm” and “ice” to hazard type 7 (“WaterW”), etc.\n", - "\n", - "However, the computational effort of zero-shot classification scales with the number of candidate expressions times number of samples, so that we don't want to supply too many candidate expressions.\n", - "Ideally, we would have an approach to extract candidate expressions from the data.... \n", - "\n", - "We will look at such an approach in [Section 5](#topic_modeling).\n", - "Before going there, the next section offers an alternative approach with less computational effort than zero-shot classification." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "csG9Uh15maLE" - }, - "source": [ - "\n", - "\n", - "## 4. Unsupervised Classification Using Similarity\n", - "\n", - "This approach is similar to the previous one. It is also suitable in situations with no or only few labeled data.\n", - "\n", - "The model is presented with a text sequence and a list of expressions, and selects the expression which is most \"similar\" to the text sequence. \n", - "Here, we use cosine-similarity, which is defined as the dot product of two embedding vectors, each normalized to unit length." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vkqpIohSob7s" - }, - "source": [ - "\n", - "\n", - "### 4.1 Demonstration of the approach\n", - "\n", - "In this section you will learn how to perform unsupervised classification using similarity.\n", - "\n", - "Again, we will try to predict the peril type from the claim descriptions.\n", - "\n", - "First, we create a dictionary that maps certain verbal expression to peril types:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "id": "A-MB8vWeo9Qa" - }, - "outputs": [], - "source": [ - "candidates = OrderedDict({\n", - " \"Vandalism\": 0,\n", - " \"Glass\": 0,\n", - " \"Theft\": 0,\n", - " \"Fire damage\": 1,\n", - " \"Lightning damage\": 2,\n", - " \"Wind damage\": 3,\n", - " \"Hail damage\": 4,\n", - " \"Damage caused by a vehicle\": 5,\n", - " \"Water damage\": 6,\n", - " \"Weather damage\": 7,\n", - " \"Ice\": 7,\n", - " \"Electricity\": 8,\n", - " \"power surge\": 8})" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5JhbMQjepls9" - }, - "source": [ - "As you can see, we have applied some of the lessons learned from the previous experiments with the zero-shot classifier. For instance, we have added \"Glass\" to the list of candidate expressions mapped to \"Vandalism\"." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Coa6gM93qNZv" - }, - "source": [ - "We use the model ``sentence-transformers/all-MiniLM-L12-v2``, which is a BERT model that produces a sequence of real-valued vectors of length 384. During its pre-training on sentence similarity tasks, mean pooling was applied to convert this sequence into a single vector." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "65gL10u6q0_F", - "outputId": "39e9484a-666e-467e-cf92-43d3456ab522" - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "loading file https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2/resolve/main/vocab.txt from cache at /home/ubuntu/.cache/huggingface/transformers/8453639ef9bce7fd3334f2ffcc63f19ffa3ff3b8b0aec5ee8741d0d59ab5eb31.d789d64ebfe299b0e416afc4a169632f903f693095b4629a7ea271d5a0cf2c99\n", - "loading file https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2/resolve/main/tokenizer.json from cache at /home/ubuntu/.cache/huggingface/transformers/c0d6cf2687a28e7fdc2d77fc4b172632b15debbafe3f381b3d800782b3bb28fc.b1d3b19ab013240a348484166f1a44749cad6f108156f07e3784cbf6c2a27772\n", - "loading file https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2/resolve/main/added_tokens.json from cache at None\n", - "loading file https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2/resolve/main/special_tokens_map.json from cache at /home/ubuntu/.cache/huggingface/transformers/759b5b75ca69b02d11c5dc31d4e00cbcb38ad91929ab3ca2f0c6bf6dc9459b1e.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d\n", - "loading file https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2/resolve/main/tokenizer_config.json from cache at /home/ubuntu/.cache/huggingface/transformers/3a7676bf5f7cb02094e1801ae25a698f8a4a6866ba2460a42461b62dac7b1334.5b23e166abf4f8000a0354959c4020a8884f59070a6d651fea41ed5c12d74910\n", - "loading configuration file https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/a46191c34f15e96c8728222b3df77a916eb326096e81d5197b2ce8b95ab23a2a.58abd84a9ec36b7a88d68f5a4f944253c7454868833676e579e2b47196f2d068\n", - "Model config BertConfig {\n", - " \"_name_or_path\": \"sentence-transformers/all-MiniLM-L12-v2\",\n", - " \"attention_probs_dropout_prob\": 0.1,\n", - " \"classifier_dropout\": null,\n", - " \"gradient_checkpointing\": false,\n", - " \"hidden_act\": \"gelu\",\n", - " \"hidden_dropout_prob\": 0.1,\n", - " \"hidden_size\": 384,\n", - " \"initializer_range\": 0.02,\n", - " \"intermediate_size\": 1536,\n", - " \"layer_norm_eps\": 1e-12,\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"bert\",\n", - " \"num_attention_heads\": 12,\n", - " \"num_hidden_layers\": 12,\n", - " \"pad_token_id\": 0,\n", - " \"position_embedding_type\": \"absolute\",\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"type_vocab_size\": 2,\n", - " \"use_cache\": true,\n", - " \"vocab_size\": 30522\n", - "}\n", - "\n", - "loading weights file https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2/resolve/main/pytorch_model.bin from cache at /home/ubuntu/.cache/huggingface/transformers/d44255b116c329ad3895f8436d9a62d72aac4ddff7017b906d59a3f00e9e27c5.89e6bd2185b4194bc0170670472dca8e5818c9c1e9f6cea8b8650d3fa2f1262b\n", - "All model checkpoint weights were used when initializing BertModel.\n", - "\n", - "All the weights of BertModel were initialized from the model checkpoint at sentence-transformers/all-MiniLM-L12-v2.\n", - "If your task is similar to the task the model of the checkpoint was trained on, you can already use BertModel for predictions without further training.\n" - ] - } - ], - "source": [ - "model_name = \"sentence-transformers/all-MiniLM-L12-v2\"\n", - "tokenizer = AutoTokenizer.from_pretrained(model_name)\n", - "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", - "model = AutoModel.from_pretrained(model_name).to(device)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "p7ojKresUJIY" - }, - "source": [ - "Next, we generate the sentence embeddings of the claim descriptions. To this end, we tokenize them and then pass them into the helper function `extract_sequence_encoding`, which applies the transformer encoder and extracts the last hidden state. Mean pooling is applied, in line with the way the model was pre-trained. The value `True` is passed with key word argument `normalize` to enforce normalization of the output vector to unit length in the Euclidean norm. " - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0, - "referenced_widgets": [ - "b560f1a23b664f19b3025e200ee52ba2", - "8f3f3bc6709340cb8256a29186d167ca", - "33a0207a4af444c0a62de263d5772590", - "60099a13723c4e1c97b4eeb6909faf64", - "1369dd9f01474e18ad1d1f0cec6cb77a", - "3e3f7f53c2d949ebbc9b41d2eec97a4b", - "61482c60ad804e2fb3e195b9c3daf54e", - "abf058cbf4d0482eb0b7d3c5cb2dac0c", - "bd085d626c39431c87272f1775c31725", - "44585c198e864e9f86c6c69d466d3031", - "af16e2ef100240498a1cec6c85719307", - "2ac2219e56074d8a9c6a276a0742c618", - "dd49d64d85e24fa8b1b6bc33804fc597", - "993d9d6c6c3942cea4abd0852253257f", - "6dc91b7ebdf041bab30eb87fb25d80cf", - "92640e149e0640efbf76f5d1c0a69012", - "bfd22ee5ae88497cb077f75071249dde", - "27d41f8299cb473180149d8504862c09", - "099e5c754c404468a90fb9247cc0bbdc", - "962e5812ab924251b94c65ed1d6689db", - "fee2373861754a5aa57deca0fe0a549f", - "62cfc810ac124d2e801c0166c4cc49a8", - "a0bddffbbc794534bd008fb8bbc31153", - "dcee270b34da412fa65ebeffdfa75f66", - "844ba52e1f6947f790fe4add513e398a", - "a5ffca33779d4dfca4e7aa8c6780c88a", - "225b0156f4354ab0a5df66a2d58017d6", - "8e092557c85b4112b493f0abbcd00835", - "b5709e8c44fa41da92ce6553466c4781", - "80f9504c61574e52ab1d4adcc62d62a6", - "5671ca67fe5347dc9ce8d78bdc84f147", - "cb9672f222594a2ca19b89b286da2bed", - "7b10b5954a0f45fa8435e4255a208d49", - "fd0b9cfbcbe043508af4da14b2c3b5d3", - "724e61cdd8074ae99517fae53bc06854", - "2eaea0dc84ed4ebfba680f2fcfa04637", - "0d6060ee7aec42d492f9bb1e4b8f2ce4", - "4d6ec2b0c2bc435e9d3fcbdff951b29b", - "0edf2e575f3347f287a964f4e1f3fc49", - "0d15af1100e1498bbcc991f5b78adc59", - "2d1a52b80c5a4213a6dc911524663467", - "bd967c22dcca4384b1f2ef93792eec5b", - "ecb380ec3dc849c983440cb1b73bfa30", - "1de320a9241847a894efd02932b989b7" - ] + "cell_type": "code", + "execution_count": 36, + "metadata": { + "id": "NjT3zaHM3sNv" + }, + "outputs": [], + "source": [ + "x_train = np.array(ds_sim[\"train\"][\"mean_hidden_state\"])\n", + "scores = np.dot(x_train, y.T)\n", + "selected = np.argmax(scores, axis=1)\n", + "pred = np.array([list(candidates.values())[i] for i in selected])\n", + "\n", + "df_train_copy = df_train.copy()\n", + "df_train_copy[\"labels\"] = pred" + ] }, - "id": "EV0qy1wNrHuJ", - "outputId": "d10b40ff-8731-4b71-c4f4-10145e593c37" - }, - "outputs": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "bd1193f498234674bc75278377c704ec", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "metadata": { + "id": "uNcUCbopiSMA" }, - "text/plain": [ - " 0%| | 0/5 [00:00" + ], + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [624/624 00:30, Epoch 1/1]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTraining Loss
6230.437100

" + ] + }, + "metadata": {} + } + ], + "source": [ + "torch.manual_seed(42) # for reproducibility, set random seed before instantiating the model\n", + "model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(labels)).to(device)\n", + "\n", + "# train the model\n", + "batch_size = 8\n", + "logging_steps = len(ds_train_copy) // batch_size\n", + "training_args = TrainingArguments(\n", + " output_dir=model_name+\"_peril_s_epochs\",\n", + " num_train_epochs=1,\n", + " per_device_train_batch_size=batch_size,\n", + " per_device_eval_batch_size=batch_size,\n", + " metric_for_best_model=\"f1\",\n", + " logging_steps=logging_steps,\n", + " save_strategy=trainer_utils.IntervalStrategy.NO,\n", + ")\n", + "trainer = Trainer(model=model, args=training_args,\n", + " compute_metrics=compute_metrics, train_dataset=ds_train_copy,\n", + " eval_dataset=ds_train_copy)\n", + "trainer.train();\n", + "trainer.save_model(model_name + \"_peril_s\")" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ds_candidates = Dataset.from_dict({\"Description\": candidates.keys()})\n", - "ds_candidates = ds_candidates.map(tokenize, batched=True)\n", - "ds_candidates = ds_candidates.map(extract_sequence_encoding, fn_kwargs={\"model\": model, \"normalize\": True}, batched=True)\n", - "y = np.array(ds_candidates[\"mean_hidden_state\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "1DLkEGHiVwsJ" - }, - "source": [ - "Finally, we calculate the pairwise cosine similarity scores by the dot product of the two arrays, and greedily select the peril type with the highest score." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "id": "lfYLThd3scHW" - }, - "outputs": [], - "source": [ - "scores = np.dot(x, y.T)\n", - "selected = np.argmax(scores, axis=1)\n", - "pred = np.array([list(candidates.values())[i] for i in selected])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vpE6-FbaVvUT" - }, - "source": [ - "For inspection, we generate a Pandas DataFrame and export it to an Excel file." - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "id": "N6vJhe_oyfxU" - }, - "outputs": [], - "source": [ - "df_scores = pd.DataFrame(columns=candidates.keys(), data=scores)\n", - "df_selected = pd.DataFrame(columns=[\"selected\"], data=selected)\n", - "df_pred = pd.DataFrame(columns=[\"pred\"], data=pred)\n", - "if not os.path.exists(\"./results\"):\n", - " os.mkdir(\"./results\")\n", - "pd.concat([df_valid, df_scores, df_pred], axis=1).to_excel(\"./results/zero_similarity_test.xlsx\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ZKfBreSXhx98" - }, - "source": [ - "The performance is as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 }, - "id": "lEOYl-skt6by", - "outputId": "e80f76a5-837d-4b3d-c87a-9ef56477b93d" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Similarity\n", - "accuracy score = 74.5%, log loss = nan, Brier loss = nan\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " Vandalism 0.90 0.80 0.85 310\n", - " Fire 0.64 0.83 0.72 46\n", - " Lightning 0.80 0.95 0.87 123\n", - " Wind 0.91 0.84 0.87 107\n", - " Hail 0.67 1.00 0.80 18\n", - " Vehicle 0.88 0.71 0.79 227\n", - " WaterNW 0.48 0.88 0.62 67\n", - " WaterW 0.12 0.26 0.17 38\n", - " Misc 0.76 0.30 0.43 103\n", - "\n", - " accuracy 0.74 1039\n", - " macro avg 0.68 0.73 0.68 1039\n", - "weighted avg 0.80 0.74 0.75 1039\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "Zb40jPS-iulN" + }, + "source": [ + "… and evaluate the performance on the test set:" + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_peril_sim_a", - "format": "svg" - } - }, - "data": [ + "cell_type": "code", + "execution_count": 40, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 872 + }, + "id": "cU3f6uVc9gjU", + "outputId": "85fe8509-4a30-482d-9323-1b240b6f37ee" + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "xaxis": "x", - "y": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "yaxis": "y", - "z": [ - [ - 249, - 8, - 4, - 3, - 3, - 6, - 7, - 26, - 4 - ], - [ - 1, - 38, - 3, - 1, - 0, - 0, - 1, - 1, - 1 - ], - [ - 0, - 0, - 117, - 0, - 0, - 1, - 1, - 1, - 3 - ], - [ - 3, - 0, - 2, - 90, - 2, - 0, - 0, - 10, - 0 - ], - [ - 0, - 0, - 0, - 0, - 18, - 0, - 0, - 0, - 0 - ], - [ - 5, - 9, - 17, - 3, - 3, - 162, - 13, - 14, - 1 - ], - [ - 3, - 0, - 1, - 0, - 0, - 0, - 59, - 3, - 1 - ], - [ - 0, - 0, - 0, - 0, - 0, - 0, - 28, - 10, - 0 - ], - [ - 17, - 4, - 3, - 2, - 1, - 15, - 15, - 15, - 31 + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Simularity, refined\n", + "accuracy score = 75.9%, log loss = 1.156, Brier loss = 0.410\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " Vandalism 0.90 0.86 0.88 310\n", + " Fire 0.56 0.76 0.64 46\n", + " Lightning 0.80 0.94 0.87 123\n", + " Wind 0.97 0.80 0.88 107\n", + " Hail 0.90 1.00 0.95 18\n", + " Vehicle 0.89 0.73 0.80 227\n", + " WaterNW 0.44 0.90 0.59 67\n", + " WaterW 0.11 0.18 0.14 38\n", + " Misc 0.87 0.32 0.47 103\n", + "\n", + " accuracy 0.76 1039\n", + " macro avg 0.71 0.72 0.69 1039\n", + "weighted avg 0.82 0.76 0.77 1039\n", + "\n" ] - ] - } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 14 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "

\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "predictions = trainer.predict(ds[\"test\"])\n", + "_ = evaluate_classifier(predictions.label_ids, None, softmax(predictions.predictions, axis=1), labels, \"Simularity, refined\", \"cm_peril_sim_b\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jbpNYDeKi1MT" + }, + "source": [ + "The accuracy score has improved by about 2 percentage points.\n", + "\n", + "Compared to the results obtained by zero-shot classification, we observe that the confusion between “Vandalism” and “Vehicle” has strongly reduced. This might be at least partially due to the fact that we have used different candidate expressions.\n", + "\n", + "For a fair comparison, you might want to go back and re-run the zero-shot classification using the new candidate expressions. However, you will have noticed that the sentence similarity approach is much faster to execute. The computational effort for both approaches is dominated by running the respective transformer model. For the zero-shot classification, the model is run behind the scenes for each combination of sample and candidate expression, so that the effort scales with the number of samples times the number of candidate expressions. In contrast, as we have seen above, the similarity approach runs the transformer model once for each input sample and once for each candidate expression, so that the effort scales with the number of samples plus the number of candidate expressions. This allows experimenting with different candidate expressions." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QO_xTyOKEVHI" + }, + "source": [ + "\n", + "\n", + "## 5. Unsupervised Topic Modeling by Clustering of Document Embeddings\n", + "\n", + "In the previous section we have seen the strength of zero-shot classification:\n", + "No prior training of the language model is required to produce a classification of reasonable quality.\n", + "However, it may be difficult to provide suitable candidate expressions.\n", + "\n", + "In this section, we present an alternative approach.\n", + "\n", + "The idea is to encode all text samples, to create clusters of \"similar\" documents and to extract meaningful\n", + "verbal representations of the clusters.\n", + "\n", + "Several packages are available to perform this task, e.g.,\n", + "[BERTopic](https://maartengr.github.io/BERTopic/index.html),\n", + "[Top2Vec](https://github.com/ddangelov/Top2Vec) and\n", + "[chat-intents](https://github.com/dborrelli/chat-intents).\n", + "These packages use similar concepts but provide different APIs, hyper-parameters, diagnostics tools, etc.\n", + "\n", + "Here, we use BERTopic.\n", + "\n", + "The algorithm consists of the following steps:\n", + "\n", + "1. **Embed documents:**\n", + " * Encode each text sample (document) into a vector - the embedding.\n", + " This can be based on a BERT model or any other document embedding technique.\n", + " By default, BERTopic uses `all-MiniLM-L6-v2`, which is trained in English.\n", + " In the multi-lingual case it uses `paraphrase-multilingual-MiniLM-L12-v2`.

\n", + "\n", + "2. **Cluster documents:**\n", + " * Reduce the dimensionality of the embeddings.\n", + " This is required because the documents embeddings are high-dimensional,\n", + " and typically, clustering algorithms have difficulty clustering data in high dimensional space.\n", + " By default, BERTopic uses\n", + " [UMAP (Uniform Manifold Approximation and Projection for Dimension Reduction)](https://umap-learn.readthedocs.io/en/latest/)\n", + " as it preserves both the local and global structure of embeddings quite well.
\n", + "\n", + " * Create clusters of semantically similar documents.\n", + " By default, BERTopic uses\n", + " [HDBSCAN](https://hdbscan.readthedocs.io/en/latest/)\n", + " as it allows to identify outliers.

\n", + "\n", + "3. **Create topic representation:**\n", + " * Extract and reduce topics with c-TF-IDF.\n", + " This is a modification of TF-IDF, which applies TD-IDF to the concatenation of all documents within each document cluster,\n", + " to obtain importance scores for the words within the cluster.\n", + " \n", + " * Improve coherence and diversity of words with Maximal Marginal Relevance, to find the most coherent words without having too much overlap between the words themselves. This results in the removal of words that do not contribute to a topic.\n", + " \n", + "Let's apply the algorithm to our dataset and examine the results." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wds9A1oIEVHI" + }, + "source": [ + "\n", + "\n", + "### 5.1. Basic topic modeling\n", + "\n", + "Normally, BERTopic instantiates UMAP and HDBSCAN automatically.\n", + "Here, we instantiate them manually and pass them to BERTopic, for the following reasons:\n", + "\n", + "* For UMAP, we specify `random_state=42`, to improve reproducibility across runs. Please note that reproducibility across platforms is not guaranteed.\n", + "\n", + "* For HDBSCAN, we specify `min_cluster_size=30` and `min_samples=1` in order to control the number of clusters and the percentage of samples classified as outliers.\n", + "\n", + "Otherwise, we use the default parameters used by BERTopic." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "0a93b0ad407449ffb60629889468f722", + "545539439faa4dd68428ba67c8497efb", + "78dd7d0bb9a94aaea598d1154da76314", + "605cab64c1454b16ae4fa738fe749222", + "293771f688a5487caa6852958c93c1e2", + "8dcd26bbf7084ce599d4f793e50f0433", + "a0c16d99783740469f83a1451561e2a3", + "b029308c7f2741e2be2d41bed714424b", + "b4517d2b1bf7483995ab260bf21376c8", + "ad89c7a7393644e69e462b04f912079d", + "c98ceb9a76224a2e9d379e2e3f2b1643", + "d8e09e61568a467c928f1a810d5dacf7", + "0f5f6a7b0f944dd9be63047ecbd1052f", + "7855b8efab284ad58f64fc35ffc130ce", + "ad2bc40eec7344a0bd4cab0461952fbb", + "8256b776f57246ad9763b1560395d4b5", + "758e8f60f8f2407abd27e9ba6c27caa1", + "6d86c1e2d4b54e998e63516991747611", + "54b3fd81ee77419d8d3969aac3b75c1c", + "908c7f7f09624aaca95553aed79af6a1", + "9c41b1d1ad84442688442fdcb61479fd", + "7edf0149002045e9b48eb4d50c9f5943", + "a57fb66bfbdd427881a9e3825e3c477b", + "1f83e073333f4280b3265842151588e3", + "39e27c577a994959afd7cf01d5ae58ec", + "5a125462ef474964a68f5d1ca863d48a", + "3c4ee169ef1744dab58d4299047efe3b", + "cf72fda1a65c4a73bf422998fb8100a4", + "de764140bba446afb6faa7cf4b64130b", + "ec2f29cfa86a4d60bd9c0b97a4e4eaa0", + "061c896648b241d9b6844cce5cbe9384", + "47338744bb804702a918aa01c15dac3c", + "a380b4c20a0f48e3ab60f64815aa6371", + "3adb7f184b394e1f9c0e1d972dd74824", + "2feb0dea2733457eb4fe564c4c6c3638", + "cc653b9583c64e7296a5a7aee00f4d71", + "af558c5ada404484ac68934e8ec72874", + "c79a60b8fa4b45d7acc70c4ea6fda415", + "7fa300386dd240798331bcbdc7beb04e", + "04922f056ede4cc28e16aca5ef771120", + "045ddc78143b445494f8c78672f081af", + "28647e49f768427094f2de4689711c6a", + "e143aef52827432e84ccd648d25e79da", + "8689afc30539442d88d6add9acc43ced", + "da9f459e78334daeaf85d15efce5cabb", + "ef9e43f56cee405cb88e7111886be517", + "bd56d5bf6f3e45e99c746c4414f24f79", + "e5f97293ce03488398ee7eff2b7acb65", + "00b4a55efa1f440cb9427fc3261d1e12", + "bcac9643e7d846b4a1b03a5605042976", + "fd7f741ef4054ab7b8bc692e4b71e04b", + "72800938513345898591b1fe44810aaf", + "14fe74db8e4c4977803b462bc941af24", + "bb7a6e56d5e84db78fa525aeb533e546", + "7557209fd8784f3d9c614f230b3a4547", + "241075466ab6455eb52ac3072766046b", + "905a4aae088846319dd660c39971be1b", + "1c85bfbd56864c538fb33fbb066c437d", + "fdda33f9ab734b4c88b9c6c1facae84b", + "0db9b2f2ee2446859095a082c35d3111", + "17e12f0e81274ace8e6741644d57516a", + "c8162a3c0ecb4849b8715026656174cc", + "1853a24008f54bd18d730d8d3f70a7a7", + "0d2d84b74bba49269851798b8e75191a", + "a78062463dd94f4c8ad4453684017d5d", + "ebd5f31cbe5c4694ae21ed3de5a558cb", + "3763bc3b756e443aa83bbcfcbe56ea9b", + "403eff6c9efe48da858f22802297a625", + "780e4d663a4f45e087650776fb5fd4bd", + "ed796dd3445c40cd9bdbe5dd8115f0b9", + "e39c3c4eb2db4d8b80cbf86157cfdcf3", + "2b4e8ed72673494bb9531d22f37aa37f", + "fc0504f969c34a5999c2f046a17b9e58", + "2e60b7e5121b4f4cbe02c5e70d2436c4", + "831417d971094b00b38d000e105556e1", + "207b5bde178c48b6983ae98bd90372b9", + "bfe0555f0672497485e69bc7d156111e", + "96250a8028524757a432ec794b438d0e", + "81a571f6382b45eabf40398b549b674d", + "b5e18c4c4f3a4a3e9a5d8aa89b3c7222", + "8ccd518744fa427fbd7466a192204f2d", + "3205286f337a482abe1999891a56db15", + "2fd85852c8a446b794bef0414a5d1b42", + "cd2a8dd704e44787ae3e280451d36f39", + "33c9c9474d94430da4d8b1176c71b184", + "3040da57fc3a491ca95c3ef746bd813c", + "44bb15aeab564ca6a5b34a9c2941e298", + "529b6d913e8a4f2eb7caae1219e95d38", + "681b5052bf724cdca9d6a2d73114c1d1", + "e53e9a1c02094db29f15099da40103cd", + "6200267d273b48b3a35ac140de49630b", + "1433d12e4c874c79bbbb0286d4eacde4", + "21f44d8a27be4f1aa0b0203ddc3527b1", + "da7e7b42d0c2431e93a0189229cbbc5b", + "151f9c76297b4ca3bf6b71b08345e0dd", + "25099eccf4e84cb49fd9ed8b0ed3184f", + "a1b8a7e0639c4170b826da2775ddc5df", + "02c1215b364e4c7b9383b86c6daa4472", + "568133b1fa894d4288cc0cd302b851ef", + "6faba8ae0c8b40b69543f3e91a67d225", + "d4816bb72f82473ca29bbcb0b37ffb68", + "ddd9638742da46c4a3a82881dbe79846", + "59f257cf1c6d44b090426525857c140a", + "40fe1b409e494a88b33cd34dc2aa6616", + "d66ed2383e71446daa92c192ffb68ce5", + "0d8c13840d9b46b1895563aa41fcbd72", + "62e674c59ad84a2fa3f6f3f4e333db61", + "4ca5212c96054392871b75a0ef5c6875", + "494979dd889744de9314ede61e10d2c1", + "a18dfa4b3fc14f278e1c875d54cb6341", + "37ffffeff297428da5b29b512360f939", + "f98261d50e2d400a84eaad5f4bc3a757", + "0390606e1b964339a9a2802f0461a380", + "21499c4a84784d8a80cfff923ec4f593", + "284f5506aa834873955e5b8e3539a60a", + "9f99f1b0afed481b8efc1a04788cdac8", + "6af24361f81243fca3cf416c487d08c7", + "3f72b06f37bb457caffe815207c6af7c", + "7ce328cb515342929c3e9bc538e90763", + "100bd06a11b14becb016ec629683188e", + "d5f600e9d25b46e3a8acc6e66e69de36", + "cea3f981bbce4ab094b9b7d3cd1e3426", + "9fe070e4921c4aad95cfccb370ba14e5", + "fc84582f240d4c208f10e37a4a8c8454", + "573eb6654161424d89404c222301a17f", + "12ae0b0ee8f34ccea5289edfb174e387", + "ec1d511a8d874500902a03a05dbc728a", + "3e41a4ad2a13400595ac057fe4d6f54e", + "cf2f0bb859254cd1bbcd489e8b7de593", + "962d3c30407a4a97b75c5c44e7dfc468", + "5802642641a34552aeb8952350032e24", + "0df6988eac6d4dedbdc732a41d4330f9", + "c6c975acadf940c0b04c2eaaf06aa60a", + "b1128267ec774682ba6c8237b746c96e", + "c914b15925f7492a9201b63cf6912e5c", + "9abfa4ffcf2547ab8b297c694f4a35a2", + "26e5d6f0d5094bada101e7077c942e80", + "ad90886ea329457fae3bc83d3499872f", + "af63497d6ccd4e36abf8757b54199ef6", + "bad55ae359834077b82d5d9379313c22", + "ddc1de26de03472ea8e1fb05fcb1cb6b", + "fd3ea26946c84b50aac2082bcd5ebcc3", + "c88407178fbb4612b1b8222c3164b6d5", + "7069d66194ea4426be8dc0d7ed47b6d3", + "0bf3bcdf23354ea1847360045d26d9a1", + "92c107fc11ec477b92401c97cb4b3338", + "59792503e5d4455599186d5ff902821b", + "922a567fcc724b59b9d6f63adb843459", + "1e0ab24cf65b4c03a6e3becdfbb21387", + "26431386aa6d4cc0aa49dd3edc03f950", + "5e48399e1c9e42339da52ebfc09b8dcb", + "7775e97259be4f928888070a7c43fcb1", + "e8a81f5b13e04735ba62bdbe90174e76", + "2fdb513e2bab417bb86ce04500531f92" ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 + }, + "id": "ILamlptxEVHI", + "outputId": "76d51c44-c736-4735-f6ce-72618516e07c" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading (…)e9125/.gitattributes: 0%| | 0.00/1.18k [00:00\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TopicCountNameRepresentationRepresentative_Docs
0-1662-1_lightning_water_damage_wwtp[lightning, water, damage, wwtp, ms, siren, at...[theft of laptop Washington MS ...
107000_vandalism_park_dmg_shelter[vandalism, park, dmg, shelter, at, pavilion, ...[a/c vandalism ...
212371_glass_vandalism_west_es[glass, vandalism, west, es, ms, at, lincoln, ...[glass vandalism at HS ...
322032_fire_smoke_damage_equipment[fire, smoke, damage, equipment, station, park...[fire & smoke damage at Fire Station #7 ...
431803_phone_lightning_system_to[phone, lightning, system, to, compressor, com...[lightning damaged phone system ...
541784_power_surge_generator_spoilage[power, surge, generator, spoilage, food, outa...[power surge damage ...
651775_froze_pipe_sewer_pipes[froze, pipe, sewer, pipes, library, ice, up, ...[pipe froze and water damage ...
761646_theft_of_stolen_break[theft, of, stolen, break, from, in, wire, cam...[theft of equipment from vehicle ...
871467_graffiti_on_kennedy_hoyt[graffiti, on, kennedy, hoyt, llm, wall, doors...[graffiti at West ...
981218_lightning_damage_scale_dpw[lightning, damage, scale, dpw, museum, nasonv...[lightning damage ...
1091049_signal_traffic_damaged_box[signal, traffic, damaged, box, paradise, knoc...[traffic signal damaged ...
111010310_broken_door_glass_breakage[broken, door, glass, breakage, entrance, brok...[broken door/glass at LaFollette HS ...
121110111_fence_plow_gate_by[fence, plow, gate, by, damaged, vehicle, snow...[fence gate damaged by vehicle ...
13129312_roof_wind_shingles_blew[roof, wind, shingles, blew, collapsed, off, w...[wind damage to roof ...
14138313_hydrant_fire_hit_damaged[hydrant, fire, hit, damaged, run, plow, vehic...[fire hydrant damaged ...
15148114_wind_storage_damage_tower[wind, storage, damage, tower, antenna, to, te...[wind damage ...
16158115_llm_glass_mendota_hawk[llm, glass, mendota, hawk, black, whitehorse,...[LaFollette - llm-12118 - glass door ...
17167816_building_truck_vehicle_by[building, truck, vehicle, by, damaged, bldg, ...[HS building damaged by truck ...
18177617_water_damage_goodman_pool[water, damage, goodman, pool, at, field, toki...[water damage ...
19187518_garage_door_truck_hwy[garage, door, truck, hwy, damaged, shop, over...[garage door damaged ...
20197419_window_windows_broken_thrown[window, windows, broken, thrown, screens, scr...[broken window ...
21207220_hail_buildings_roof_multiple[hail, buildings, roof, multiple, to, windhail...[hail damage ...
22216721_light_pole_damaged_lightpole[light, pole, damaged, lightpole, rawson, pole...[light pole damaged ...
23226322_pole_vehicle_hit_struck[pole, vehicle, hit, struck, light, utility, a...[vehicle damaged light pole ...
24235823_laptop_theft_of_from[laptop, theft, of, from, stolen, ita, compute...[theft of laptop ...
25245424_hwy_lightning_st_highway[hwy, lightning, st, highway, dept, main, shop...[lightning damage at hwy dept. ...
26255225_laptop_bradford_computer_damaged[laptop, bradford, computer, damaged, mckinley...[laptop #6 damaged ...
27265126_airport_lightning_lights_runway[airport, lightning, lights, runway, damage, b...[lightning damage at airport ...
28274827_equipment_playground_instrument_gps[equipment, playground, instrument, gps, gear,...[playground equipment damaged ...
29284528_overhead_door_damaged_loader[overhead, door, damaged, loader, hangar, fram...[overhead door damaged ...
30294529_wind_trees_fence_park[wind, trees, fence, park, fencing, shed, stor...[wind damage at O'Donnell Park ...
31304530_street_light_damaged_accident[street, light, damaged, accident, vehicle, kn...[street light damaged ...
32314431_gym_floor_leak_roof[gym, floor, leak, roof, k9, injured, training...[water damage to gym floor ...
33324432_sign_vehicle_signal_traffic[sign, vehicle, signal, traffic, struck, hit, ...[vehicle struck and damaged traffic signal ...
34334333_hs_lightning_hhs_lec[hs, lightning, hhs, lec, damage, at, lighning...[lightning damage at HS ...
35344134_school_elementary_water_high[school, elementary, water, high, damage, elem...[water damage at school ...
36353935_storm_bldgs_locations_multiple[storm, bldgs, locations, multiple, damage, fa...[storm damage ...
37363736_hs_water_tremper_reuther[hs, water, tremper, reuther, hcc, mats, damag...[water damage at HS ...
38373737_radio_antenna_lightning_radios[radio, antenna, lightning, radios, to, freque...[lightning damage to radio ...
39383638_water_carpet_equipment_computers[water, carpet, equipment, computers, to, copi...[water damage to equipment ...
40393539_toki_courthouse_ms_damagecourthouse[toki, courthouse, ms, damagecourthouse, glass...[glass vandalism at Toki MS ...
41403440_center_water_bldg_main[center, water, bldg, main, sinkhole, health, ...[water damage at Comm Center ...
42413441_ms_es_lightning_damage[ms, es, lightning, damage, micrologix, mms, w...[lightning damage at MS ...
43423442_street_pole_light_streetlight[street, pole, light, streetlight, damaged, du...[street light pole damaged ...
44433343_well_10_lightning_wells[well, 10, lightning, wells, house, monitoring...[lightning damage to well 5 ...
45443144_hydrant_vehicle_struck_hit[hydrant, vehicle, struck, hit, over, by, car,...[hydrant damaged ...
46453145_plant_reservoir_tower_lightning[plant, reservoir, tower, lightning, wastewate...[lightning damage to sewer plant ...
47463146_falk_follette_la_glass[falk, follette, la, glass, es, vandalism, sta...[glass vandalism at Falk ES ...
48473047_radio_dropped_radios_lost[radio, dropped, radios, lost, portable, when,...[radio damaged ...
49483048_lift_station_elevator_lightning[lift, station, elevator, lightning, stations,...[lightning damage at lift station ...
50493049_buildings_building_water_basement[buildings, building, water, basement, to, abo...[water damage to building ...
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + " \n" + ] }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 + "metadata": {}, + "execution_count": 41 + } + ], + "source": [ + "np.random.seed(42)\n", + "import random\n", + "random.seed(42)\n", + "umap_model = UMAP(n_neighbors=15, n_components=10, metric='cosine', low_memory=False, random_state=42)\n", + "hdbscan_model = HDBSCAN(min_cluster_size=30, metric='euclidean', prediction_data=True, min_samples=1)\n", + "topic_model = BERTopic(umap_model=umap_model, hdbscan_model=hdbscan_model)\n", + "topics, probs = topic_model.fit_transform(df_train[\"Description\"])\n", + "topic_model.get_topic_info()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LcmIftTnEVHJ" + }, + "source": [ + "The first output of `fit_transform` holds the topic ID for each sample. The second output is the probability of the sample belonging to that topic.\n", + "\n", + "In our case, we have obtained ca. 50 clusters. due to randomness of UMAP, the results may differ between runs. Unfortunately, we have not found a way to fix this.\n", + "\n", + "The cluster with ID `-1` contains all samples which are considered \"noise\" because they were not attributed to any cluster.\n", + "\n", + "The function `get_topic_info` returns the topic ID, the sample count, and a concatenation of the words representing the cluster.\n", + "\n", + "To get a visual impression of the clusters, BERTopic provides the function `visualize_topics` which embeds the c-TF-IDF representation of the topics in 2D using UMAP and then visualizes the two dimensions using plotly in an interactive view." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 667 + }, + "id": "q5WOiwszEVHJ", + "outputId": "6f005b1b-5531-4fab-c886-a41662004f95" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Similarity" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "metadata": {} } - } + ], + "source": [ + "topic_model.visualize_topics()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IrKzZcJgEVHJ" }, - "text/html": [ - "
" + "source": [ + "We can visualize the selected terms for a few topics by creating bar charts out of the c-TF-IDF scores for each topic representation.\n", + "Insights can be gained from the relative c-TF-IDF scores between and within topics. Moreover, you can easily compare topic representations to each other. To visualize this hierarchy, simply call the function `visualize_barchart`:" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "_ = evaluate_classifier(np.array(df_valid[\"labels\"]), pred, None, labels, \"Similarity\", \"cm_peril_sim_a\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "rBb2NUiVh71w" - }, - "source": [ - "This is not bad! We have already improved on the accuracy score obtained by the zero-shot classifier (using a different set of candidate expressions though).\n", - "\n", - "Let’s see how we can improve the results further." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CEEIA6IT3lZE" - }, - "source": [ - "\n", - "\n", - "### 4.2. Refinement\n", - "\n", - "A possible way to improve the performance is to train a classifier using the predicted labels of the previous section. Although this is a supervised learning step, we are not using the original labels, therefore the overall approach is still unsupervised." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "M4rgq9pLiJku" - }, - "source": [ - "First, we predict the labels on the training set, the same way as before, and store them in the DataFrame `df_train_copy`:" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "id": "NjT3zaHM3sNv" - }, - "outputs": [], - "source": [ - "x_train = np.array(ds_sim[\"train\"][\"mean_hidden_state\"])\n", - "scores = np.dot(x_train, y.T)\n", - "selected = np.argmax(scores, axis=1)\n", - "pred = np.array([list(candidates.values())[i] for i in selected])\n", - "\n", - "df_train_copy = df_train.copy()\n", - "df_train_copy[\"labels\"] = pred" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "uNcUCbopiSMA" - }, - "source": [ - "From here, we follow the approach of [Section 2](#supervised). Again, we use ` distilbert-base-uncased`." - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "AKStE1hD8s8g", - "outputId": "0a3d9d81-74ff-4e3a-c6ab-f8cdeacd32a0" - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "loading configuration file https://huggingface.co/distilbert-base-uncased/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/23454919702d26495337f3da04d1655c7ee010d5ec9d77bdb9e399e00302c0a1.91b885ab15d631bf9cee9dc9d25ece0afd932f2f5130eba28f2055b2220c0333\n", - "Model config DistilBertConfig {\n", - " \"_name_or_path\": \"distilbert-base-uncased\",\n", - " \"activation\": \"gelu\",\n", - " \"architectures\": [\n", - " \"DistilBertForMaskedLM\"\n", - " ],\n", - " \"attention_dropout\": 0.1,\n", - " \"dim\": 768,\n", - " \"dropout\": 0.1,\n", - " \"hidden_dim\": 3072,\n", - " \"initializer_range\": 0.02,\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"distilbert\",\n", - " \"n_heads\": 12,\n", - " \"n_layers\": 6,\n", - " \"pad_token_id\": 0,\n", - " \"qa_dropout\": 0.1,\n", - " \"seq_classif_dropout\": 0.2,\n", - " \"sinusoidal_pos_embds\": false,\n", - " \"tie_weights_\": true,\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"vocab_size\": 30522\n", - "}\n", - "\n", - "loading file https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt from cache at /home/ubuntu/.cache/huggingface/transformers/0e1bbfda7f63a99bb52e3915dcf10c3c92122b827d92eb2d34ce94ee79ba486c.d789d64ebfe299b0e416afc4a169632f903f693095b4629a7ea271d5a0cf2c99\n", - "loading file https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json from cache at /home/ubuntu/.cache/huggingface/transformers/75abb59d7a06f4f640158a9bfcde005264e59e8d566781ab1415b139d2e4c603.7f2721073f19841be16f41b0a70b600ca6b880c8f3df6f3535cbc704371bdfa4\n", - "loading file https://huggingface.co/distilbert-base-uncased/resolve/main/added_tokens.json from cache at None\n", - "loading file https://huggingface.co/distilbert-base-uncased/resolve/main/special_tokens_map.json from cache at None\n", - "loading file https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer_config.json from cache at /home/ubuntu/.cache/huggingface/transformers/8c8624b8ac8aa99c60c912161f8332de003484428c47906d7ff7eb7f73eecdbb.20430bd8e10ef77a7d2977accefe796051e01bc2fc4aa146bc862997a1a15e79\n", - "loading configuration file https://huggingface.co/distilbert-base-uncased/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/23454919702d26495337f3da04d1655c7ee010d5ec9d77bdb9e399e00302c0a1.91b885ab15d631bf9cee9dc9d25ece0afd932f2f5130eba28f2055b2220c0333\n", - "Model config DistilBertConfig {\n", - " \"_name_or_path\": \"distilbert-base-uncased\",\n", - " \"activation\": \"gelu\",\n", - " \"architectures\": [\n", - " \"DistilBertForMaskedLM\"\n", - " ],\n", - " \"attention_dropout\": 0.1,\n", - " \"dim\": 768,\n", - " \"dropout\": 0.1,\n", - " \"hidden_dim\": 3072,\n", - " \"initializer_range\": 0.02,\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"distilbert\",\n", - " \"n_heads\": 12,\n", - " \"n_layers\": 6,\n", - " \"pad_token_id\": 0,\n", - " \"qa_dropout\": 0.1,\n", - " \"seq_classif_dropout\": 0.2,\n", - " \"sinusoidal_pos_embds\": false,\n", - " \"tie_weights_\": true,\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"vocab_size\": 30522\n", - "}\n", - "\n" - ] - } - ], - "source": [ - "model_name = \"distilbert-base-uncased\"\n", - "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", - "tokenizer = AutoTokenizer.from_pretrained(model_name)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "yzX4H1CrijUf" - }, - "source": [ - "First, we tokenize the claim descriptions:" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0, - "referenced_widgets": [ - "7f74e439781b403089ad377dd50c658e", - "df9a7621df924d88b3c65ba841f1be41", - "feed20df83614d89ad29099b05c32a84", - "23fbeb7bd6a345dcae57aa2807c05fb2", - "411cf8ff337647fd8c1591faf98610c7", - "9b338a9cc78a4c8196e2e0f0e34be824", - "89e36db6c06b42b9891fcd33e5041677", - "38f92f34bc5b4a658dd2f6fbcaec80f1", - "c510dfd747254a1588b761a3fdde091d", - "0a9cd7f035cf4540a15e3d22b74fd5f6", - "46091f4e750c47889eb6a1e852267734" - ] + "cell_type": "code", + "execution_count": 43, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 342 + }, + "id": "Gd0yT5hMEVHJ", + "outputId": "583785e4-2541-42a3-800e-0bd3b1920930" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "topic_model.visualize_barchart(top_n_topics=4)" + ] }, - "id": "xkzmKbyF8Q5J", - "outputId": "4aa5e350-fe27-4cf0-c704-3f16e707de48" - }, - "outputs": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "8c4ec9290c464a5a93aa54bd96e8fec0", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "metadata": { + "id": "vAiy4n1iEVHJ" }, - "text/plain": [ - " 0%| | 0/5 [00:00\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "topic_model.visualize_hierarchy()" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ds_train_copy = Dataset.from_pandas(df_train_copy)\n", - "ds_train_copy = ds_train_copy.map(tokenize, batched=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "p61QHwmpioyo" - }, - "source": [ - "Then, we perform one epoch of training…" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 }, - "id": "sInKXHcx4yy2", - "outputId": "f22ad3fa-de6f-4dbd-bdd0-02893892979b" - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "loading configuration file https://huggingface.co/distilbert-base-uncased/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/23454919702d26495337f3da04d1655c7ee010d5ec9d77bdb9e399e00302c0a1.91b885ab15d631bf9cee9dc9d25ece0afd932f2f5130eba28f2055b2220c0333\n", - "Model config DistilBertConfig {\n", - " \"_name_or_path\": \"distilbert-base-uncased\",\n", - " \"activation\": \"gelu\",\n", - " \"architectures\": [\n", - " \"DistilBertForMaskedLM\"\n", - " ],\n", - " \"attention_dropout\": 0.1,\n", - " \"dim\": 768,\n", - " \"dropout\": 0.1,\n", - " \"hidden_dim\": 3072,\n", - " \"id2label\": {\n", - " \"0\": \"LABEL_0\",\n", - " \"1\": \"LABEL_1\",\n", - " \"2\": \"LABEL_2\",\n", - " \"3\": \"LABEL_3\",\n", - " \"4\": \"LABEL_4\",\n", - " \"5\": \"LABEL_5\",\n", - " \"6\": \"LABEL_6\",\n", - " \"7\": \"LABEL_7\",\n", - " \"8\": \"LABEL_8\"\n", - " },\n", - " \"initializer_range\": 0.02,\n", - " \"label2id\": {\n", - " \"LABEL_0\": 0,\n", - " \"LABEL_1\": 1,\n", - " \"LABEL_2\": 2,\n", - " \"LABEL_3\": 3,\n", - " \"LABEL_4\": 4,\n", - " \"LABEL_5\": 5,\n", - " \"LABEL_6\": 6,\n", - " \"LABEL_7\": 7,\n", - " \"LABEL_8\": 8\n", - " },\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"distilbert\",\n", - " \"n_heads\": 12,\n", - " \"n_layers\": 6,\n", - " \"pad_token_id\": 0,\n", - " \"qa_dropout\": 0.1,\n", - " \"seq_classif_dropout\": 0.2,\n", - " \"sinusoidal_pos_embds\": false,\n", - " \"tie_weights_\": true,\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"vocab_size\": 30522\n", - "}\n", - "\n", - "loading weights file https://huggingface.co/distilbert-base-uncased/resolve/main/pytorch_model.bin from cache at /home/ubuntu/.cache/huggingface/transformers/9c169103d7e5a73936dd2b627e42851bec0831212b677c637033ee4bce9ab5ee.126183e36667471617ae2f0835fab707baa54b731f991507ebbb55ea85adb12a\n", - "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_layer_norm.bias', 'vocab_transform.bias', 'vocab_projector.bias', 'vocab_layer_norm.weight', 'vocab_projector.weight', 'vocab_transform.weight']\n", - "- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", - "- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", - "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.weight', 'classifier.weight', 'classifier.bias', 'pre_classifier.bias']\n", - "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", - "PyTorch: setting up devices\n", - "The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).\n", - "The following columns in the training set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: Lightning, WaterW, Wind, WaterNW, Vandalism, words per description, Fire, Hail, Vehicle, Misc, Description, Loss. If Lightning, WaterW, Wind, WaterNW, Vandalism, words per description, Fire, Hail, Vehicle, Misc, Description, Loss are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n", - "***** Running training *****\n", - " Num examples = 4991\n", - " Num Epochs = 1\n", - " Instantaneous batch size per device = 8\n", - " Total train batch size (w. parallel, distributed & accumulation) = 8\n", - " Gradient Accumulation steps = 1\n", - " Total optimization steps = 624\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "QR332SW6EVHK" + }, + "source": [ + "Next, we want to assign labels to each cluster.\n", + "Compared to manually labeling thousands of samples, this task is much less burdensome!\n", + "\n", + "This is usually a manual task. Assignment of labels is guided by the topic information, the topic word scores and the hierarchical clustering.\n", + "\n", + "In our case, the actual labels are available, so that we can use this information to perform the labeling.\n", + "\n", + "Let's inspect how well the clusters matches the labels. The graph below shows one column per topic.\n", + "The shading indicates the distribution of labels within a given topic.\n", + "The presence of a single dark patch in a column indicates that almost all of the samples of the topic are associated with a single label." + ] }, { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " [624/624 00:27, Epoch 1/1]\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
StepTraining Loss
6230.455400

" + "cell_type": "code", + "execution_count": 45, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 542 + }, + "id": "RDl-OdssEVHK", + "outputId": "1b55717d-9503-4eb4-baca-81f386233389" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "

\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } ], - "text/plain": [ - "" + "source": [ + "df_train[\"Topic\"] = topics\n", + "tb = pd.pivot_table(df_train, index=[\"Topic\"], columns=[\"labels\"], aggfunc='count', fill_value=0)[\"Description\"]\n", + "fig = px.imshow(tb.divide(tb.sum(axis=1), axis=0).T, zmin=-0.05)\n", + "fig.update_layout(xaxis={\"dtick\": 1}, yaxis={\"dtick\": 1, \"range\":[0,8]}, coloraxis={\"colorscale\": \"Greys\"})\n", + "fig.show()" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Training completed. Do not forget to share your model on huggingface.co/models =)\n", - "\n", - "\n", - "Saving model checkpoint to distilbert-base-uncased_peril_s\n", - "Configuration saved in distilbert-base-uncased_peril_s/config.json\n", - "Model weights saved in distilbert-base-uncased_peril_s/pytorch_model.bin\n" - ] - } - ], - "source": [ - "torch.manual_seed(42) # for reproducibility, set random seed before instantiating the model\n", - "model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(labels)).to(device)\n", - "\n", - "# train the model\n", - "batch_size = 8\n", - "logging_steps = len(ds_train_copy) // batch_size\n", - "training_args = TrainingArguments(\n", - " output_dir=model_name+\"_peril_s_epochs\",\n", - " num_train_epochs=1,\n", - " per_device_train_batch_size=batch_size,\n", - " per_device_eval_batch_size=batch_size,\n", - " metric_for_best_model=\"f1\",\n", - " logging_steps=logging_steps,\n", - " save_strategy=trainer_utils.IntervalStrategy.NO,\n", - ")\n", - "trainer = Trainer(model=model, args=training_args,\n", - " compute_metrics=compute_metrics, train_dataset=ds_train_copy,\n", - " eval_dataset=ds_train_copy)\n", - "trainer.train();\n", - "trainer.save_model(model_name + \"_peril_s\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Zb40jPS-iulN" - }, - "source": [ - "… and evaluate the performance on the test set:" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 + "cell_type": "markdown", + "metadata": { + "id": "cLoeG-9tEVHK" + }, + "source": [ + "Obviously, the topic `-1`, which represents the outliers, has a finite frequency for many classes.\n", + "Further, the classes 6 (`WaterNW`) and 7 (`WaterW`) seem to be difficult to tell apart from the clusters; this affects some of the topics.\n", + "For most other topics, the clustering aligns quite well with the labels.\n", + "\n", + "Overall, it appears reasonable to map each topic to the label with the highest frequency. Apart from the exceptions mentioned above, this aligns with a mapping that a human would define manually, in absence of the actual labels.\n", + "\n", + "Therefore, let's define the mapping from topics to labels by picking the label with the highest frequency. The table below shows the topic info, enriched with the label counts and the mapping." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "NZ6vPSS-EVHK", + "outputId": "3fbba007-530f-4089-f28a-c5d83f373586" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Topic Count Name \\\n", + "0 -1 662 -1_lightning_water_damage_wwtp \n", + "1 0 700 0_vandalism_park_dmg_shelter \n", + "2 1 237 1_glass_vandalism_west_es \n", + "3 2 203 2_fire_smoke_damage_equipment \n", + "4 3 180 3_phone_lightning_system_to \n", + "5 4 178 4_power_surge_generator_spoilage \n", + "6 5 177 5_froze_pipe_sewer_pipes \n", + "7 6 164 6_theft_of_stolen_break \n", + "8 7 146 7_graffiti_on_kennedy_hoyt \n", + "9 8 121 8_lightning_damage_scale_dpw \n", + "10 9 104 9_signal_traffic_damaged_box \n", + "11 10 103 10_broken_door_glass_breakage \n", + "12 11 101 11_fence_plow_gate_by \n", + "13 12 93 12_roof_wind_shingles_blew \n", + "14 13 83 13_hydrant_fire_hit_damaged \n", + "15 14 81 14_wind_storage_damage_tower \n", + "16 15 81 15_llm_glass_mendota_hawk \n", + "17 16 78 16_building_truck_vehicle_by \n", + "18 17 76 17_water_damage_goodman_pool \n", + "19 18 75 18_garage_door_truck_hwy \n", + "20 19 74 19_window_windows_broken_thrown \n", + "21 20 72 20_hail_buildings_roof_multiple \n", + "22 21 67 21_light_pole_damaged_lightpole \n", + "23 22 63 22_pole_vehicle_hit_struck \n", + "24 23 58 23_laptop_theft_of_from \n", + "25 24 54 24_hwy_lightning_st_highway \n", + "26 25 52 25_laptop_bradford_computer_damaged \n", + "27 26 51 26_airport_lightning_lights_runway \n", + "28 27 48 27_equipment_playground_instrument_gps \n", + "29 28 45 28_overhead_door_damaged_loader \n", + "30 29 45 29_wind_trees_fence_park \n", + "31 30 45 30_street_light_damaged_accident \n", + "32 31 44 31_gym_floor_leak_roof \n", + "33 32 44 32_sign_vehicle_signal_traffic \n", + "34 33 43 33_hs_lightning_hhs_lec \n", + "35 34 41 34_school_elementary_water_high \n", + "36 35 39 35_storm_bldgs_locations_multiple \n", + "37 36 37 36_hs_water_tremper_reuther \n", + "38 37 37 37_radio_antenna_lightning_radios \n", + "39 38 36 38_water_carpet_equipment_computers \n", + "40 39 35 39_toki_courthouse_ms_damagecourthouse \n", + "41 40 34 40_center_water_bldg_main \n", + "42 41 34 41_ms_es_lightning_damage \n", + "43 42 34 42_street_pole_light_streetlight \n", + "44 43 33 43_well_10_lightning_wells \n", + "45 44 31 44_hydrant_vehicle_struck_hit \n", + "46 45 31 45_plant_reservoir_tower_lightning \n", + "47 46 31 46_falk_follette_la_glass \n", + "48 47 30 47_radio_dropped_radios_lost \n", + "49 48 30 48_lift_station_elevator_lightning \n", + "50 49 30 49_buildings_building_water_basement \n", + "\n", + " Representation \\\n", + "0 [lightning, water, damage, wwtp, ms, siren, at... \n", + "1 [vandalism, park, dmg, shelter, at, pavilion, ... \n", + "2 [glass, vandalism, west, es, ms, at, lincoln, ... \n", + "3 [fire, smoke, damage, equipment, station, park... \n", + "4 [phone, lightning, system, to, compressor, com... \n", + "5 [power, surge, generator, spoilage, food, outa... \n", + "6 [froze, pipe, sewer, pipes, library, ice, up, ... \n", + "7 [theft, of, stolen, break, from, in, wire, cam... \n", + "8 [graffiti, on, kennedy, hoyt, llm, wall, doors... \n", + "9 [lightning, damage, scale, dpw, museum, nasonv... \n", + "10 [signal, traffic, damaged, box, paradise, knoc... \n", + "11 [broken, door, glass, breakage, entrance, brok... \n", + "12 [fence, plow, gate, by, damaged, vehicle, snow... \n", + "13 [roof, wind, shingles, blew, collapsed, off, w... \n", + "14 [hydrant, fire, hit, damaged, run, plow, vehic... \n", + "15 [wind, storage, damage, tower, antenna, to, te... \n", + "16 [llm, glass, mendota, hawk, black, whitehorse,... \n", + "17 [building, truck, vehicle, by, damaged, bldg, ... \n", + "18 [water, damage, goodman, pool, at, field, toki... \n", + "19 [garage, door, truck, hwy, damaged, shop, over... \n", + "20 [window, windows, broken, thrown, screens, scr... \n", + "21 [hail, buildings, roof, multiple, to, windhail... \n", + "22 [light, pole, damaged, lightpole, rawson, pole... \n", + "23 [pole, vehicle, hit, struck, light, utility, a... \n", + "24 [laptop, theft, of, from, stolen, ita, compute... \n", + "25 [hwy, lightning, st, highway, dept, main, shop... \n", + "26 [laptop, bradford, computer, damaged, mckinley... \n", + "27 [airport, lightning, lights, runway, damage, b... \n", + "28 [equipment, playground, instrument, gps, gear,... \n", + "29 [overhead, door, damaged, loader, hangar, fram... \n", + "30 [wind, trees, fence, park, fencing, shed, stor... \n", + "31 [street, light, damaged, accident, vehicle, kn... \n", + "32 [gym, floor, leak, roof, k9, injured, training... \n", + "33 [sign, vehicle, signal, traffic, struck, hit, ... \n", + "34 [hs, lightning, hhs, lec, damage, at, lighning... \n", + "35 [school, elementary, water, high, damage, elem... \n", + "36 [storm, bldgs, locations, multiple, damage, fa... \n", + "37 [hs, water, tremper, reuther, hcc, mats, damag... \n", + "38 [radio, antenna, lightning, radios, to, freque... \n", + "39 [water, carpet, equipment, computers, to, copi... \n", + "40 [toki, courthouse, ms, damagecourthouse, glass... \n", + "41 [center, water, bldg, main, sinkhole, health, ... \n", + "42 [ms, es, lightning, damage, micrologix, mms, w... \n", + "43 [street, pole, light, streetlight, damaged, du... \n", + "44 [well, 10, lightning, wells, house, monitoring... \n", + "45 [hydrant, vehicle, struck, hit, over, by, car,... \n", + "46 [plant, reservoir, tower, lightning, wastewate... \n", + "47 [falk, follette, la, glass, es, vandalism, sta... \n", + "48 [radio, dropped, radios, lost, portable, when,... \n", + "49 [lift, station, elevator, lightning, stations,... \n", + "50 [buildings, building, water, basement, to, abo... \n", + "\n", + " Representative_Docs 0 1 2 3 4 \\\n", + "0 [theft of laptop Washington MS ... 117 5 225 59 1 \n", + "1 [a/c vandalism ... 694 1 0 4 0 \n", + "2 [glass vandalism at HS ... 237 0 0 0 0 \n", + "3 [fire & smoke damage at Fire Station #7 ... 23 147 4 0 0 \n", + "4 [lightning damaged phone system ... 4 4 150 1 0 \n", + "5 [power surge damage ... 0 4 23 3 0 \n", + "6 [pipe froze and water damage ... 3 0 1 3 0 \n", + "7 [theft of equipment from vehicle ... 130 2 1 0 0 \n", + "8 [graffiti at West ... 143 0 0 0 0 \n", + "9 [lightning damage ... 0 0 120 0 1 \n", + "10 [traffic signal damaged ... 0 0 0 0 0 \n", + "11 [broken door/glass at LaFollette HS ... 92 0 0 1 0 \n", + "12 [fence gate damaged by vehicle ... 6 0 0 7 0 \n", + "13 [wind damage to roof ... 2 1 0 64 1 \n", + "14 [fire hydrant damaged ... 0 0 0 0 0 \n", + "15 [wind damage ... 0 0 0 78 0 \n", + "16 [LaFollette - llm-12118 - glass door ... 73 0 2 0 0 \n", + "17 [HS building damaged by truck ... 3 0 0 6 0 \n", + "18 [water damage ... 0 0 0 0 0 \n", + "19 [garage door damaged ... 1 0 0 0 0 \n", + "20 [broken window ... 64 1 0 1 1 \n", + "21 [hail damage ... 0 0 0 4 68 \n", + "22 [light pole damaged ... 5 1 1 0 1 \n", + "23 [vehicle damaged light pole ... 0 0 0 0 1 \n", + "24 [theft of laptop ... 51 0 0 0 0 \n", + "25 [lightning damage at hwy dept. ... 0 0 53 0 0 \n", + "26 [laptop #6 damaged ... 38 0 0 0 0 \n", + "27 [lightning damage at airport ... 0 1 46 1 0 \n", + "28 [playground equipment damaged ... 14 0 0 1 0 \n", + "29 [overhead door damaged ... 3 0 0 1 0 \n", + "30 [wind damage at O'Donnell Park ... 2 0 0 41 0 \n", + "31 [street light damaged ... 4 0 0 2 0 \n", + "32 [water damage to gym floor ... 4 0 0 0 0 \n", + "33 [vehicle struck and damaged traffic signal ... 4 0 0 0 0 \n", + "34 [lightning damage at HS ... 0 0 43 0 0 \n", + "35 [water damage at school ... 1 0 0 0 0 \n", + "36 [storm damage ... 0 0 6 17 2 \n", + "37 [water damage at HS ... 0 0 0 0 0 \n", + "38 [lightning damage to radio ... 0 1 36 0 0 \n", + "39 [water damage to equipment ... 0 0 1 0 0 \n", + "40 [glass vandalism at Toki MS ... 19 0 0 0 0 \n", + "41 [water damage at Comm Center ... 0 0 0 0 0 \n", + "42 [lightning damage at MS ... 0 1 33 0 0 \n", + "43 [street light pole damaged ... 0 0 0 0 0 \n", + "44 [lightning damage to well 5 ... 0 0 31 0 0 \n", + "45 [hydrant damaged ... 2 0 0 0 0 \n", + "46 [lightning damage to sewer plant ... 0 0 31 0 0 \n", + "47 [glass vandalism at Falk ES ... 30 0 0 0 0 \n", + "48 [radio damaged ... 3 2 0 1 0 \n", + "49 [lightning damage at lift station ... 1 0 25 0 0 \n", + "50 [water damage to building ... 1 0 0 1 0 \n", + "\n", + " 5 6 7 8 mapping label \n", + "0 83 59 86 27 2 Lightning \n", + "1 1 0 0 0 0 Vandalism \n", + "2 0 0 0 0 0 Vandalism \n", + "3 10 5 5 9 1 Fire \n", + "4 2 1 5 13 2 Lightning \n", + "5 1 1 2 144 8 Misc \n", + "6 10 32 98 30 7 WaterW \n", + "7 6 1 0 24 0 Vandalism \n", + "8 2 0 1 0 0 Vandalism \n", + "9 0 0 0 0 2 Lightning \n", + "10 101 0 0 3 5 Vehicle \n", + "11 4 0 0 6 0 Vandalism \n", + "12 85 0 0 3 5 Vehicle \n", + "13 0 1 10 14 3 Wind \n", + "14 81 1 0 1 5 Vehicle \n", + "15 0 0 1 2 3 Wind \n", + "16 2 0 1 3 0 Vandalism \n", + "17 60 0 2 7 5 Vehicle \n", + "18 0 25 50 1 7 WaterW \n", + "19 71 0 0 3 5 Vehicle \n", + "20 2 0 2 3 0 Vandalism \n", + "21 0 0 0 0 4 Hail \n", + "22 57 0 0 2 5 Vehicle \n", + "23 60 0 0 2 5 Vehicle \n", + "24 1 0 0 6 0 Vandalism \n", + "25 0 0 0 1 2 Lightning \n", + "26 5 0 0 9 0 Vandalism \n", + "27 2 0 1 0 2 Lightning \n", + "28 13 0 0 20 8 Misc \n", + "29 39 0 0 2 5 Vehicle \n", + "30 1 0 1 0 3 Wind \n", + "31 39 0 0 0 5 Vehicle \n", + "32 0 9 23 8 7 WaterW \n", + "33 40 0 0 0 5 Vehicle \n", + "34 0 0 0 0 2 Lightning \n", + "35 0 9 30 1 7 WaterW \n", + "36 0 0 13 1 3 Wind \n", + "37 0 11 25 1 7 WaterW \n", + "38 0 0 0 0 2 Lightning \n", + "39 0 10 24 1 7 WaterW \n", + "40 0 6 9 1 0 Vandalism \n", + "41 1 13 19 1 7 WaterW \n", + "42 0 0 0 0 2 Lightning \n", + "43 33 0 0 1 5 Vehicle \n", + "44 2 0 0 0 2 Lightning \n", + "45 28 1 0 0 5 Vehicle \n", + "46 0 0 0 0 2 Lightning \n", + "47 0 0 0 1 0 Vandalism \n", + "48 8 5 1 10 8 Misc \n", + "49 1 1 1 1 2 Lightning \n", + "50 1 11 16 0 7 WaterW " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TopicCountNameRepresentationRepresentative_Docs012345678mappinglabel
0-1662-1_lightning_water_damage_wwtp[lightning, water, damage, wwtp, ms, siren, at...[theft of laptop Washington MS ...1175225591835986272Lightning
107000_vandalism_park_dmg_shelter[vandalism, park, dmg, shelter, at, pavilion, ...[a/c vandalism ...694104010000Vandalism
212371_glass_vandalism_west_es[glass, vandalism, west, es, ms, at, lincoln, ...[glass vandalism at HS ...237000000000Vandalism
322032_fire_smoke_damage_equipment[fire, smoke, damage, equipment, station, park...[fire & smoke damage at Fire Station #7 ...23147400105591Fire
431803_phone_lightning_system_to[phone, lightning, system, to, compressor, com...[lightning damaged phone system ...4415010215132Lightning
541784_power_surge_generator_spoilage[power, surge, generator, spoilage, food, outa...[power surge damage ...0423301121448Misc
651775_froze_pipe_sewer_pipes[froze, pipe, sewer, pipes, library, ice, up, ...[pipe froze and water damage ...30130103298307WaterW
761646_theft_of_stolen_break[theft, of, stolen, break, from, in, wire, cam...[theft of equipment from vehicle ...1302100610240Vandalism
871467_graffiti_on_kennedy_hoyt[graffiti, on, kennedy, hoyt, llm, wall, doors...[graffiti at West ...143000020100Vandalism
981218_lightning_damage_scale_dpw[lightning, damage, scale, dpw, museum, nasonv...[lightning damage ...001200100002Lightning
1091049_signal_traffic_damaged_box[signal, traffic, damaged, box, paradise, knoc...[traffic signal damaged ...000001010035Vehicle
111010310_broken_door_glass_breakage[broken, door, glass, breakage, entrance, brok...[broken door/glass at LaFollette HS ...92001040060Vandalism
121110111_fence_plow_gate_by[fence, plow, gate, by, damaged, vehicle, snow...[fence gate damaged by vehicle ...60070850035Vehicle
13129312_roof_wind_shingles_blew[roof, wind, shingles, blew, collapsed, off, w...[wind damage to roof ...2106410110143Wind
14138313_hydrant_fire_hit_damaged[hydrant, fire, hit, damaged, run, plow, vehic...[fire hydrant damaged ...00000811015Vehicle
15148114_wind_storage_damage_tower[wind, storage, damage, tower, antenna, to, te...[wind damage ...00078000123Wind
16158115_llm_glass_mendota_hawk[llm, glass, mendota, hawk, black, whitehorse,...[LaFollette - llm-12118 - glass door ...73020020130Vandalism
17167816_building_truck_vehicle_by[building, truck, vehicle, by, damaged, bldg, ...[HS building damaged by truck ...30060600275Vehicle
18177617_water_damage_goodman_pool[water, damage, goodman, pool, at, field, toki...[water damage ...000000255017WaterW
19187518_garage_door_truck_hwy[garage, door, truck, hwy, damaged, shop, over...[garage door damaged ...10000710035Vehicle
20197419_window_windows_broken_thrown[window, windows, broken, thrown, screens, scr...[broken window ...64101120230Vandalism
21207220_hail_buildings_roof_multiple[hail, buildings, roof, multiple, to, windhail...[hail damage ...00046800004Hail
22216721_light_pole_damaged_lightpole[light, pole, damaged, lightpole, rawson, pole...[light pole damaged ...51101570025Vehicle
23226322_pole_vehicle_hit_struck[pole, vehicle, hit, struck, light, utility, a...[vehicle damaged light pole ...00001600025Vehicle
24235823_laptop_theft_of_from[laptop, theft, of, from, stolen, ita, compute...[theft of laptop ...51000010060Vandalism
25245424_hwy_lightning_st_highway[hwy, lightning, st, highway, dept, main, shop...[lightning damage at hwy dept. ...00530000012Lightning
26255225_laptop_bradford_computer_damaged[laptop, bradford, computer, damaged, mckinley...[laptop #6 damaged ...38000050090Vandalism
27265126_airport_lightning_lights_runway[airport, lightning, lights, runway, damage, b...[lightning damage at airport ...01461020102Lightning
28274827_equipment_playground_instrument_gps[equipment, playground, instrument, gps, gear,...[playground equipment damaged ...1400101300208Misc
29284528_overhead_door_damaged_loader[overhead, door, damaged, loader, hangar, fram...[overhead door damaged ...30010390025Vehicle
30294529_wind_trees_fence_park[wind, trees, fence, park, fencing, shed, stor...[wind damage at O'Donnell Park ...20041010103Wind
31304530_street_light_damaged_accident[street, light, damaged, accident, vehicle, kn...[street light damaged ...40020390005Vehicle
32314431_gym_floor_leak_roof[gym, floor, leak, roof, k9, injured, training...[water damage to gym floor ...40000092387WaterW
33324432_sign_vehicle_signal_traffic[sign, vehicle, signal, traffic, struck, hit, ...[vehicle struck and damaged traffic signal ...40000400005Vehicle
34334333_hs_lightning_hhs_lec[hs, lightning, hhs, lec, damage, at, lighning...[lightning damage at HS ...00430000002Lightning
35344134_school_elementary_water_high[school, elementary, water, high, damage, elem...[water damage at school ...10000093017WaterW
36353935_storm_bldgs_locations_multiple[storm, bldgs, locations, multiple, damage, fa...[storm damage ...006172001313Wind
37363736_hs_water_tremper_reuther[hs, water, tremper, reuther, hcc, mats, damag...[water damage at HS ...000000112517WaterW
38373737_radio_antenna_lightning_radios[radio, antenna, lightning, radios, to, freque...[lightning damage to radio ...01360000002Lightning
39383638_water_carpet_equipment_computers[water, carpet, equipment, computers, to, copi...[water damage to equipment ...001000102417WaterW
40393539_toki_courthouse_ms_damagecourthouse[toki, courthouse, ms, damagecourthouse, glass...[glass vandalism at Toki MS ...19000006910Vandalism
41403440_center_water_bldg_main[center, water, bldg, main, sinkhole, health, ...[water damage at Comm Center ...000001131917WaterW
42413441_ms_es_lightning_damage[ms, es, lightning, damage, micrologix, mms, w...[lightning damage at MS ...01330000002Lightning
43423442_street_pole_light_streetlight[street, pole, light, streetlight, damaged, du...[street light pole damaged ...00000330015Vehicle
44433343_well_10_lightning_wells[well, 10, lightning, wells, house, monitoring...[lightning damage to well 5 ...00310020002Lightning
45443144_hydrant_vehicle_struck_hit[hydrant, vehicle, struck, hit, over, by, car,...[hydrant damaged ...20000281005Vehicle
46453145_plant_reservoir_tower_lightning[plant, reservoir, tower, lightning, wastewate...[lightning damage to sewer plant ...00310000002Lightning
47463146_falk_follette_la_glass[falk, follette, la, glass, es, vandalism, sta...[glass vandalism at Falk ES ...30000000010Vandalism
48473047_radio_dropped_radios_lost[radio, dropped, radios, lost, portable, when,...[radio damaged ...32010851108Misc
49483048_lift_station_elevator_lightning[lift, station, elevator, lightning, stations,...[lightning damage at lift station ...10250011112Lightning
50493049_buildings_building_water_basement[buildings, building, water, basement, to, abo...[water damage to building ...100101111607WaterW
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 46 + } + ], + "source": [ + "tb[\"mapping\"] = tb.values.argmax(axis=1)\n", + "tb[\"label\"] = [labels[i] for i in tb[\"mapping\"]]\n", + "mapping = {i: tb.loc[i, \"mapping\"] for i in tb.index}\n", + "topic_model.get_topic_info().merge(tb, on=\"Topic\")" + ] }, - "id": "cU3f6uVc9gjU", - "outputId": "be8e6700-743e-460d-b01c-7ab8ecb929b8" - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "The following columns in the test set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: Lightning, WaterW, Wind, cls_hidden_state, WaterNW, Vandalism, Fire, mean_hidden_state, Hail, Vehicle, Misc, Description, Loss. If Lightning, WaterW, Wind, cls_hidden_state, WaterNW, Vandalism, Fire, mean_hidden_state, Hail, Vehicle, Misc, Description, Loss are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n", - "***** Running Prediction *****\n", - " Num examples = 1039\n", - " Batch size = 8\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "YkF2EY-hEVHK" + }, + "source": [ + "Now, let's apply this model to the validation set. First, we assign each sample to a cluster, based on the clustering model." + ] }, { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " [130/130 00:01]\n", - "
\n", - " " + "cell_type": "code", + "execution_count": 47, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xeE03QWFEVHK", + "outputId": "a86f0d7f-c056-4b44-f37b-80d2828200f1" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/scipy/sparse/_index.py:146: SparseEfficiencyWarning:\n", + "\n", + "Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient.\n", + "\n" + ] + } ], - "text/plain": [ - "" + "source": [ + "topics_test, probs_test = topic_model.transform(df_valid[\"Description\"])" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Simularity, refined\n", - "accuracy score = 76.6%, log loss = 1.172, Brier loss = 0.403\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " Vandalism 0.90 0.88 0.89 310\n", - " Fire 0.62 0.74 0.67 46\n", - " Lightning 0.80 0.94 0.87 123\n", - " Wind 0.97 0.82 0.89 107\n", - " Hail 0.90 1.00 0.95 18\n", - " Vehicle 0.89 0.75 0.82 227\n", - " WaterNW 0.46 0.93 0.61 67\n", - " WaterW 0.11 0.18 0.14 38\n", - " Misc 0.80 0.27 0.41 103\n", - "\n", - " accuracy 0.77 1039\n", - " macro avg 0.72 0.72 0.69 1039\n", - "weighted avg 0.81 0.77 0.77 1039\n", - "\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "gKz-IvZEEVHL" + }, + "source": [ + "Then, we apply the mapping from topics to labels, which we have defined above based on the training set. The table below shows for each topic the frequency by label, and the mapping." + ] }, { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_peril_sim_b", - "format": "svg" + "cell_type": "code", + "execution_count": 48, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "WRLhMAZhEVHL", + "outputId": "9c2430ae-c65a-48b5-bf67-cf3d409754e7" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "labels 0 1 2 3 4 5 6 7 8 mapping\n", + "Topic \n", + "-1 21 6 28 28 0 23 10 8 17 2\n", + " 0 49 0 0 0 0 0 0 0 0 0\n", + " 1 1 0 0 0 0 0 0 0 0 0\n", + " 2 5 37 0 0 0 3 3 1 2 1\n", + " 3 0 1 42 1 0 1 0 0 3 2\n", + " 4 0 0 5 0 0 1 0 0 30 8\n", + " 5 3 1 1 0 0 6 21 9 10 7\n", + " 6 18 0 1 0 0 1 0 0 8 0\n", + " 7 59 0 0 0 0 1 0 0 0 0\n", + " 8 0 0 11 0 0 0 0 0 0 2\n", + " 9 1 0 0 3 0 9 0 0 1 5\n", + " 10 19 0 0 0 0 0 0 0 1 0\n", + " 11 1 0 0 0 0 13 0 0 0 5\n", + " 12 0 0 0 27 0 0 0 0 3 3\n", + " 13 0 0 0 0 0 13 0 0 0 5\n", + " 14 0 0 0 29 0 0 0 1 0 3\n", + " 15 106 0 0 1 0 4 2 0 1 0\n", + " 16 1 0 0 0 0 17 0 0 2 5\n", + " 17 0 0 0 0 0 1 7 6 0 7\n", + " 18 0 0 0 0 0 13 0 0 0 5\n", + " 19 16 0 0 0 0 2 0 0 4 0\n", + " 20 0 0 0 2 18 0 0 0 0 4\n", + " 21 0 0 0 1 0 5 0 0 1 5\n", + " 22 0 0 0 1 0 46 0 0 1 5\n", + " 23 4 0 0 0 0 0 0 0 2 0\n", + " 24 0 0 3 1 0 0 0 0 0 2\n", + " 25 0 0 0 0 0 0 0 0 5 0\n", + " 26 0 0 8 1 0 0 0 0 0 2\n", + " 27 1 0 0 0 0 2 0 0 1 8\n", + " 28 3 0 1 2 0 15 0 0 1 5\n", + " 29 0 0 0 6 0 0 0 0 0 3\n", + " 30 1 0 0 0 0 19 0 0 0 5\n", + " 31 0 0 0 0 0 1 7 4 2 7\n", + " 32 0 0 0 0 0 21 0 0 2 5\n", + " 33 0 0 1 0 0 0 0 0 0 2\n", + " 34 0 1 0 0 0 0 3 1 0 7\n", + " 35 0 0 1 4 0 0 0 2 0 3\n", + " 36 0 0 0 0 0 0 1 1 0 7\n", + " 37 0 0 12 0 0 0 0 0 0 2\n", + " 38 0 0 0 0 0 0 5 0 0 7\n", + " 39 1 0 0 0 0 0 1 0 0 0\n", + " 40 0 0 0 0 0 0 2 1 0 7\n", + " 42 0 0 0 0 0 2 0 0 1 5\n", + " 44 0 0 0 0 0 7 0 0 0 5\n", + " 45 0 0 4 0 0 0 1 0 1 2\n", + " 47 0 0 0 0 0 1 0 0 2 8\n", + " 48 0 0 5 0 0 0 0 0 0 2\n", + " 49 0 0 0 0 0 0 4 4 2 7" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
labels012345678mapping
Topic
-12162828023108172
049000000000
11000000000
253700033121
301421010032
400500100308
5311006219107
618010010080
759000010000
800110000002
91003090015
1019000000010
1110000130005
1200027000033
1300000130005
1400029000103
15106001042010
1610000170025
170000017607
1800000130005
1916000020040
2000021800004
210001050015
2200010460015
234000000020
240031000002
250000000050
260081000002
271000020018
2830120150015
290006000003
3010000190005
310000017427
3200000210025
330010000002
340100003107
350014000203
360000001107
3700120000002
380000005007
391000001000
400000002107
420000020015
440000070005
450040001012
470000010028
480050000002
490000004427
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 48 } - }, - "data": [ + ], + "source": [ + "df_valid[\"Topic\"] = topics_test\n", + "df_valid[\"prob\"] = probs_test\n", + "df_valid[\"pred\"] = [mapping[t] for t in topics_test]\n", + "df_valid.to_excel(\"results/peril_topics.xlsx\")\n", + "tb_valid = pd.pivot_table(df_valid, index=[\"Topic\"], columns=[\"labels\"], aggfunc='count', fill_value=0)[\"Description\"]\n", + "tb_valid[\"mapping\"] = [mapping[t] for t in tb_valid.index]\n", + "tb_valid" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m7epfnhsEVHL" + }, + "source": [ + "This classifier achieves an accuracy score of ca. 70%, compared to 30% obtained with the dummy classifier." + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 872 + }, + "id": "ZF9x0l1xEVHL", + "outputId": "71a91dab-9ae3-4db3-df72-c441dc63007d" + }, + "outputs": [ { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "xaxis": "x", - "y": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "yaxis": "y", - "z": [ - [ - 273, - 10, - 4, - 0, - 0, - 6, - 7, - 8, - 2 - ], - [ - 1, - 34, - 3, - 0, - 0, - 2, - 4, - 1, - 1 - ], - [ - 0, - 0, - 116, - 0, - 0, - 0, - 2, - 2, - 3 - ], - [ - 3, - 0, - 3, - 88, - 2, - 1, - 0, - 10, - 0 - ], - [ - 0, - 0, - 0, - 0, - 18, - 0, - 0, - 0, - 0 - ], - [ - 5, - 7, - 17, - 1, - 0, - 170, - 11, - 16, - 0 - ], - [ - 3, - 0, - 0, - 0, - 0, - 0, - 62, - 1, - 1 - ], - [ - 0, - 0, - 0, - 1, - 0, - 0, - 30, - 7, - 0 - ], - [ - 20, - 4, - 2, - 1, - 0, - 11, - 20, - 17, - 28 + "output_type": "stream", + "name": "stdout", + "text": [ + "Topic modeling by clustering\n", + "accuracy score = 71.9%, log loss = nan, Brier loss = nan\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " Vandalism 0.89 0.88 0.88 310\n", + " Fire 0.73 0.80 0.76 46\n", + " Lightning 0.48 0.93 0.63 123\n", + " Wind 0.90 0.62 0.73 107\n", + " Hail 0.90 1.00 0.95 18\n", + " Vehicle 0.88 0.79 0.84 227\n", + " WaterNW 0.00 0.00 0.00 67\n", + " WaterW 0.25 0.68 0.37 38\n", + " Misc 0.77 0.32 0.45 103\n", + "\n", + " accuracy 0.72 1039\n", + " macro avg 0.64 0.67 0.62 1039\n", + "weighted avg 0.74 0.72 0.71 1039\n", + "\n" ] - ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" + ], + "source": [ + "_ = evaluate_classifier(df_valid[\"labels\"], df_valid[\"pred\"], None, labels, \"Topic modeling by clustering\", \"cm_peril_topic_a\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Kq6ygqVhEVHL" + }, + "source": [ + "BERTopic provides the function `find_topics` which returns a list of IDs and similarity scores of topics that best match a given search term.\n", + "\n", + "This is useful to validate the mapping. Let's use the search term \"Fire\" and retrieve the three most similar topics.\n", + "For each of these topics, we print the similarity score and the label it was mapped to. We also show the word scores for each topic." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 394 + }, + "id": "8lXgN3eBEVHL", + "outputId": "085695eb-af23-4564-96db-bb5f8e8b56b2" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "topic 2: similarity score 63.5%, mapped to peril 1 (Fire)\n", + "topic 13: similarity score 39.1%, mapped to peril 5 (Vehicle)\n", + "topic 8: similarity score 35.9%, mapped to peril 2 (Lightning)\n" ] - ], - "showscale": false - }, - "font": { - "size": 14 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Simularity, refined" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } + "metadata": {} } - } + ], + "source": [ + "similar_topics, similarity = topic_model.find_topics(\"Fire\", top_n=3)\n", + "for t, s in zip(similar_topics, similarity):\n", + " print(f\"topic {t:2d}: similarity score {s:.1%}, mapped to peril {mapping[t]:d} ({labels[mapping[t]]})\")\n", + "topic_model.visualize_barchart(similar_topics)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zP9N-QnoEVHM" }, - "text/html": [ - "
" + "source": [ + "As expected, the topics which have been mapped to \"Fire\" appear first in the list, with similarity scores of more than 80%.\n", + "\n", + "The first topic that was not mapped to \"Fire\" has a similarity score of less than 70%. It was mapped to the label \"Vehicle\".\n", + "Indeed: Although the word \"Fire\" ranks second in the word score, this is in combination with hydrant. This is about vehicles hitting fire hydrants." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "predictions = trainer.predict(ds[\"test\"])\n", - "_ = evaluate_classifier(predictions.label_ids, None, softmax(predictions.predictions, axis=1), labels, \"Simularity, refined\", \"cm_peril_sim_b\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jbpNYDeKi1MT" - }, - "source": [ - "The accuracy score has improved by about 2 percentage points.\n", - "\n", - "Compared to the results obtained by zero-shot classification, we observe that the confusion between “Vandalism” and “Vehicle” has strongly reduced. This might be at least partially due to the fact that we have used different candidate expressions. \n", - "\n", - "For a fair comparison, you might want to go back and re-run the zero-shot classification using the new candidate expressions. However, you will have noticed that the sentence similarity approach is much faster to execute. The computational effort for both approaches is dominated by running the respective transformer model. For the zero-shot classification, the model is run behind the scenes for each combination of sample and candidate expression, so that the effort scales with the number of samples times the number of candidate expressions. In contrast, as we have seen above, the similarity approach runs the transformer model once for each input sample and once for each candidate expression, so that the effort scales with the number of samples plus the number of candidate expressions. This allows experimenting with different candidate expressions." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "QO_xTyOKEVHI" - }, - "source": [ - "\n", - "\n", - "## 5. Unsupervised Topic Modeling by Clustering of Document Embeddings\n", - "\n", - "In the previous section we have seen the strength of zero-shot classification:\n", - "No prior training of the language model is required to produce a classification of reasonable quality.\n", - "However, it may be difficult to provide suitable candidate expressions.\n", - "\n", - "In this section, we present an alternative approach.\n", - "\n", - "The idea is to encode all text samples, to create clusters of \"similar\" documents and to extract meaningful\n", - "verbal representations of the clusters.\n", - "\n", - "Several packages are available to perform this task, e.g.,\n", - "[BERTopic](https://maartengr.github.io/BERTopic/index.html),\n", - "[Top2Vec](https://github.com/ddangelov/Top2Vec) and\n", - "[chat-intents](https://github.com/dborrelli/chat-intents).\n", - "These packages use similar concepts but provide different APIs, hyper-parameters, diagnostics tools, etc.\n", - "\n", - "Here, we use BERTopic.\n", - "\n", - "The algorithm consists of the following steps:\n", - "\n", - "1. **Embed documents:**\n", - " * Encode each text sample (document) into a vector - the embedding.\n", - " This can be based on a BERT model or any other document embedding technique.\n", - " By default, BERTopic uses `all-MiniLM-L6-v2`, which is trained in English.\n", - " In the multi-lingual case it uses `paraphrase-multilingual-MiniLM-L12-v2`.

\n", - "\n", - "2. **Cluster documents:**\n", - " * Reduce the dimensionality of the embeddings.\n", - " This is required because the documents embeddings are high-dimensional,\n", - " and typically, clustering algorithms have difficulty clustering data in high dimensional space.\n", - " By default, BERTopic uses\n", - " [UMAP (Uniform Manifold Approximation and Projection for Dimension Reduction)](https://umap-learn.readthedocs.io/en/latest/)\n", - " as it preserves both the local and global structure of embeddings quite well.
\n", - "\n", - " * Create clusters of semantically similar documents. \n", - " By default, BERTopic uses\n", - " [HDBSCAN](https://hdbscan.readthedocs.io/en/latest/)\n", - " as it allows to identify outliers.

\n", - "\n", - "3. **Create topic representation:**\n", - " * Extract and reduce topics with c-TF-IDF.\n", - " This is a modification of TF-IDF, which applies TD-IDF to the concatenation of all documents within each document cluster,\n", - " to obtain importance scores for the words within the cluster.\n", - " \n", - " * Improve coherence and diversity of words with Maximal Marginal Relevance, to find the most coherent words without having too much overlap between the words themselves. This results in the removal of words that do not contribute to a topic.\n", - " \n", - "Let's apply the algorithm to our dataset and examine the results." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "wds9A1oIEVHI" - }, - "source": [ - "\n", - "\n", - "### 5.1. Basic topic modeling\n", - "\n", - "Normally, BERTopic instantiates UMAP and HDBSCAN automatically.\n", - "Here, we instantiate them manually and pass them to BERTopic, for the following reasons:\n", - "\n", - "* For UMAP, we specify `random_state=42`, to improve reproducibility across runs. Please note that reproducibility across platforms is not guaranteed.\n", - "\n", - "* For HDBSCAN, we specify `min_cluster_size=30` and `min_samples=1` in order to control the number of clusters and the percentage of samples classified as outliers.\n", - "\n", - "Otherwise, we use the default parameters used by BERTopic. " - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000, - "referenced_widgets": [ - "6f75d8f4973b4190971e31114659357f", - "ca23d08401e14f0ea2f26b30474cd851", - "141b59a274af4e12987648aad7c1c0a9", - "0df5ec008faf4097863467f9fa482d92", - "c2edb8c2fa8c4b448bb1c606ec89ec75", - "88b1b4ec2b4845e2a421a88fd4d3f2ca", - "d5d0343c5f044627a9eb7831abb65756", - "2e468409dc97440da727a31629f71d1a", - "593c169dfbf345629433470655a325d1", - "05b5736964ad48e5825672d3ca3cfe69", - "89fa8071833c4955b78bb6f8ddfcd4f3", - "52b1066a90f24f3a89b56702c5d67fd6", - "3b71a74a8cc84a6ab5ba95795030faba", - "cb267211536c4106a41b588fa2213296", - "91118756833249068ba8c266b98fe113", - "86d75ca4676b4db6871a9881611d8c0a", - "696b1b25f9bb4ff6b3ddc764c690c804", - "6ff6ee62693b4ce3af2624122d1a7e88", - "9bcd120e350a415fabd76b387730e2ef", - "50a500aedb6347b9b193bc9d2d544647", - "1906621155644db484bfe4d4fe07ce12", - "61f5ce18c63a428194767ea7a9bc8c6f", - "a145ccc5ad3440309655bdc56ed329d5", - "48e2b645abee40c6b5fcf2586c877f34", - "a930ad54c6d542f4846a38a75ba0dbca", - "68e79e7d3f644a64b1e9a6b965b9873d", - "79fc0fde09ff419bb70cd4fcf60166bd", - "6926a810d0674b67aaef319fc6457132", - "761295306fb94ad6a48a52b3dd4f6c4b", - "e04f5119ee654401942c040b0ede110b", - "9b1a721fdb7e4341b9f4537d009d0abe", - "885205ed837d43ac9dd9685cb0cb1779", - "e489fa3983a54d4aa24fd5fc7c3c0398", - "2c84acd0ade64716a46cc6fa86bc6951", - "d5c6923249b345599fae1f92fbab2681", - "8f35f14c856d4a8994aaca9820e22ec6", - "0d240a2d4bbd40b282dc5a64609672a6", - "3732cedae3eb4ca89fda08e5467715ee", - "60fe343d068a47a7b64090d7c38bdf5a", - "6ad218f38bae4a0db5557c334d03c14b", - "47727eb57d314f00b035238e90681338", - "39586bcb9c1b4fbca93d05a582209753", - "c8ee1ad0025148138522d1f3d35a01cf", - "6b92e4f8e8914c9098eeb35e2daf2882", - "f5b83013d0794a26be03e02f036519cc", - "278142b28f7341209ff853d67c354a10", - "592526530ec44c1886774b8ddbd9306a", - "5d8af77774244f15a0b53a5a5498c61b", - "1bc3df520c024829b8e9379fd4f09cf7", - "90d526066e8c4987a16cbcf7e01c1038", - "c220518979d74b8c9089ffc8fb62ca04", - "45564f8299044b5da17d323762393edb", - "3027db6a4b5f4b34ad69c5c34681fc97", - "203a6cc968e944c6b70c10e574370b92", - "e7be1952f3234c38adc44db5d30684b4", - "9ccad851f5ec43cabe766cd13bfd594f", - "a567b6bc200349a392136a8c544448b5", - "cb1aeeb006bc475e99ba806bf8624566", - "9b8788d6cf47462c8b693a6bbf0de0e3", - "fcb348895f0243958ce39af66638433e", - "3e95e45bdc9147808b25ce2e2b842969", - "223f257b5927425ea2793ff78a60a591", - "841cb44b752d47c2a21e4c663da38048", - "d53e5b8834ec494c998ba9342ae1c6e1", - "6789e4b00123408386fad863dc4ff235", - "5901aeb5d1e24779952c96b8263e62a0", - "3a3ccd73339b465ea43741d1edeadd68", - "c511ddfcffae4ea286eabbddcb07bc5e", - "5b93aeeeffcb48ed85bb027905659782", - "ae7311c2f28749a4a191de0455a5378c", - "3aaa95820770413db9e0e25a53be9d19", - "8eac561ce34a49ab8c55e44d1a7ada05", - "420475421b5043dd96330c4d2005e2db", - "e53e65e6566d41aba1ae11474fd534ba", - "6f380f1159304891bb0e77a369c8f5e9", - "d76596c02a514829b97a4a025e15e0a6", - "7d9ac315f1614932985252e878fd53ef", - "41ea8e1316d340df99aae24bd8c93969", - "dbbb4af430e04eadae3287109ef79f77", - "38b7e0b568c447079ff87f12e6ba21a0", - "78961bf6ea3c445a86de8c0a9fa60301", - "c013bf903fbd4af5bfc99bc0abf78996", - "b85ea9918cea4475a7dcf968114a5537", - "47e1eb19e96a481cb5cf3cdab90d87c3", - "18cac2a5cc9a48bdab2a64891fb1f66f", - "77cd1035f5e94347aa781762a85b6244", - "1f8047295eff40b19f0a976e67f98c3a", - "90202f1772e04b4ead3ff10a6e7ed150", - "352c9cd723a84d698fe110f0056f756b", - "8c59ac47b9ab4b1093a738827bf15261", - "184ac127cfe442a181e9d1135f45d4b9", - "2acd1b83b0364cf0b5be89d058f6277d", - "af8f72598deb46588804ca1689d32bd3", - "f75815ed31734a98aff984b195c71ca5", - "8c04349225674a9691eb9956b383f393", - "8ce831be076d4a0aaeac2dea7f74571c", - "4b9d8d5cbe864468b109aa5abf25d092", - "2081108498f544d8b70330a5cf2b33f3", - "ada3c89be1224ffea01d05a6696977ab", - "8d672c5dd2394accb419b50af6369d8a", - "a9a18ba5036c4957a11bfcccaa2bcbea", - "b6e0555332d04740b5724ced980fb823", - "d692a6ab5155487eb74e0c529e18dace", - "cb4d69702f514e5688aaed4e0cb2d68e", - "e7af31e46e174ea6b2a1a168784269d0", - "6e710b3d2d94441c805bfaf194bd6228", - "22dd156738a64b1d9c36306ade52a9df", - "f9c813702cbd43a8a7756f9925b8e091", - "47149232a2d640ca97e85f58cc8af710", - "2044594efdf34fcf8d1a84ad027885eb", - "f23f28f634ad46668da2af750c51d17d", - "5c475d1892c94592b7398bc028439f7a", - "43346612910e44a6ab4618c90fa27829", - "5821fd6e83244dc69f06caf1c69420df", - "daf1284fcd1c45bc9bb3f430544db154", - "ba73900d058346d49be5dca064b5e663", - "e6efec28608d40d1806a247484911a6d", - "459e68fba5b84cc88db37198e399de63", - "f39dec147f404f0b851468d008fec716", - "717b5278234d44b3acd04dc27a31dfe2", - "509bafaa375041d4b001bacce41a5318", - "f02c6045c6f74123b82c0988a08d2910", - "e2c6f05a6875492b9a958e693629145a", - "38e01a43e0424095b0216725223cacc3", - "4df39113ca2043258a34afe304f3d9d2", - "726446afcb2d42d7b8f806631dfbeb61", - "b187b12607ce49419f849fa1d1fcab8c", - "a7f0da2b16144f4bb8d6eadc63dc8cb6", - "a95f0fe4ce3b424ca87a41b1f678c249", - "f40893f97e914de090030cccd9cd0be0", - "b0202f326ca64676a4b9e2333edf2533", - "b74e13ff83d148f3898ab00cec0ea79e", - "8ec05331ade54131a517c23402fa631b", - "6e6899d861c84ad388b49f3ad6488ed7", - "cd40c48954164c04a1c3ca2f21a0a93a", - "f733c4422f064d8baf9e1d4537185011", - "afdd3ead171c4a1a88b912d5605a8ac3", - "28eab6f7e43848fcae1d568a26083a55", - "4588c062e290463bac0a5f468fd56c0d", - "00bddf74632a484b929d238afc51c81e", - "2c3b2a634ba147de9014180a70dacc1b", - "03f86c9d0b764e36b23e30358346eaf3", - "62fd3930106f4355871cee9397fec8cf", - "96e1dc646e07413cb3d2de813ace9557", - "e59c0e8b62654e89af549065e81c566d", - "09ea5fdae5eb49fd898d7d9f027a5785", - "b3aac4c5435e475aba0d006367212b54", - "fd58814a4c97441d911481a3b810d555", - "cc4705d0575944adbc0987368d3e49ca", - "74762ff37b2a4d828633630af1ed1ecb", - "ead6bc3051794fca93f0269308fd0c0c", - "d413bf53515b4cc5ac81b444f15fd19c", - "2b3c46c4f2914c809ec948a648fb291e", - "1bd452a69f6f408182343235b5f74435" - ] }, - "id": "ILamlptxEVHI", - "outputId": "30f4a11e-ae78-42c8-bbb2-93c2b0f9988e" - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "loading configuration file /home/ubuntu/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/config.json\n", - "Model config BertConfig {\n", - " \"_name_or_path\": \"/home/ubuntu/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/\",\n", - " \"architectures\": [\n", - " \"BertModel\"\n", - " ],\n", - " \"attention_probs_dropout_prob\": 0.1,\n", - " \"classifier_dropout\": null,\n", - " \"gradient_checkpointing\": false,\n", - " \"hidden_act\": \"gelu\",\n", - " \"hidden_dropout_prob\": 0.1,\n", - " \"hidden_size\": 384,\n", - " \"initializer_range\": 0.02,\n", - " \"intermediate_size\": 1536,\n", - " \"layer_norm_eps\": 1e-12,\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"bert\",\n", - " \"num_attention_heads\": 12,\n", - " \"num_hidden_layers\": 6,\n", - " \"pad_token_id\": 0,\n", - " \"position_embedding_type\": \"absolute\",\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"type_vocab_size\": 2,\n", - " \"use_cache\": true,\n", - " \"vocab_size\": 30522\n", - "}\n", - "\n", - "loading weights file /home/ubuntu/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/pytorch_model.bin\n", - "All model checkpoint weights were used when initializing BertModel.\n", - "\n", - "All the weights of BertModel were initialized from the model checkpoint at /home/ubuntu/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/.\n", - "If your task is similar to the task the model of the checkpoint was trained on, you can already use BertModel for predictions without further training.\n", - "Didn't find file /home/ubuntu/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/added_tokens.json. We won't load it.\n", - "loading file /home/ubuntu/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/vocab.txt\n", - "loading file /home/ubuntu/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/tokenizer.json\n", - "loading file None\n", - "loading file /home/ubuntu/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/special_tokens_map.json\n", - "loading file /home/ubuntu/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/tokenizer_config.json\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "67ZBWOL-EVHM" + }, + "source": [ + "\n", + "\n", + "### 5.2. Refinement\n", + "\n", + "Above, a relatively large number of samples was classified as outlier. All outliers were mapped to a single class, but this mapping is questionable, because we have seen that outlier samples belong to different classes.\n", + "\n", + "To mitigate this issue, we could label the outlier samples manually. However, this is quite tedious.\n", + "\n", + "Alternatively, we can train a classifier to the labels obtained from the unsupervised approach. To avoid label noise, we suppress outliers.\n", + "\n", + "First, we create the training dataset. We replace the true labels by the labels obtained from the clustering approach." + ] }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
TopicCountName
0-11077-1_vandalism_at_lightning_es
102080_glass_vandalism_west_es
212011_fire_smoke_damage_equipment
321822_froze_pipe_sewer_pipes
431763_power_surge_generator_spoilage
541614_theft_of_stolen_break
651415_graffiti_on_kennedy_hoyt
761286_lightning_damage_scale_dpw
871127_park_vandalism_pavilion_dmg
981098_broken_door_glass_breakage
1091099_lightning_dept_hall_hwy
111010410_signal_traffic_damaged_paradise
12118411_wind_damage_course_golf
13128312_hydrant_fire_hit_damaged
14137913_llm_glass_mendota_hawk
15147714_garage_door_hwy_shop
16157615_computer_lightning_to_equipment
17167316_fence_gate_vehicle_damaged
18177317_building_truck_vehicle_by
19187218_hail_buildings_roof_multiple
20196819_water_damage_goodman_pool
21206820_shelter_eastman_farlin_seymour
22216721_pole_vehicle_hit_light
23226422_pole_light_damaged_lightpole
24236223_window_broken_windows_screens
25246124_laptop_theft_from_of
26255725_roof_wind_shingles_blew
27265626_water_es_ms_damage
29275527_dmg_humboldt_lafollette_vandalism
28285528_vandalism_damage_odonnell_bandshell
30295429_street_light_run_damaged
31305130_airport_lightning_lights_runway
32315031_center_water_main_dept
33324932_phone_system_phones_telephone
34334933_vandalism_lemonweir_lock_gazebo
35344734_well_meter_flow_lightning
36354735_school_water_elementary_high
37364536_sign_vehicle_signal_traffic
38374437_overhead_door_damaged_loader
39384438_wind_fence_park_trees
40394439_equipment_playground_slide_gps
41404240_storm_multiple_sites_locations
42414241_hs_lightning_hhs_damage
43424142_park_washington_vandalism_jacobus
44433943_hs_water_tremper_pw
45443844_laptop_mckinley_damaged_computer
46453845_water_equipment_carpet_to
47463846_radio_antenna_lightning_radios
48473347_street_pole_light_streetlight
49483348_gym_floor_injured_k9
50493249_ms_es_lightning_damage
51503250_hydrant_vehicle_struck_hit
52513151_radio_lost_dropped_portable
53523052_roof_collapsed_collapse_gutter
54533053_buildings_building_water_basement
55543054_tower_lightning_north_internet
\n", - "
" + "cell_type": "code", + "execution_count": 51, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "4ef1df4f11a6406c8ffe11d3be4af259", + "6454374431404c1ea46899c35c05b063", + "73e34a464d6142d4bee73412fbc91e93", + "c7eed26541f14cb8a92a29b99b569d34", + "9d4bac79b75f4d1b8d7965eb5d5c5bc3", + "41b17d092d6c41f7a4d37d4b454c1825", + "51acf591d4f2434ba35a4665247c815f", + "70adad47fbe848ebb9497f683127adf7", + "a46e3ffffed1435087c74d615ceebe9d", + "db7ee224b00b4d2eb787d24561e83ce4", + "4d51eb40e0a1457e8411536dfe0ddb0a" + ] + }, + "id": "rM4tmo_WEVHM", + "outputId": "7b89b04b-7792-4a5a-ff89-b9bd142c85af" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/4329 [00:00=0].copy()\n", + "df_train_unsupervised[\"labels\"] = [mapping[t] for t in df_train_unsupervised[\"Topic\"]]\n", + "ds_train_unsupervised = Dataset.from_pandas(df_train_unsupervised)\n", + "ds_train_unsupervised = ds_train_unsupervised.map(tokenize, batched=True)" ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.random.seed(42)\n", - "import random\n", - "random.seed(42)\n", - "umap_model = UMAP(n_neighbors=15, n_components=10, metric='cosine', low_memory=False, random_state=42)\n", - "hdbscan_model = HDBSCAN(min_cluster_size=30, metric='euclidean', prediction_data=True, min_samples=1)\n", - "topic_model = BERTopic(umap_model=umap_model, hdbscan_model=hdbscan_model)\n", - "topics, probs = topic_model.fit_transform(df_train[\"Description\"])\n", - "topic_model.get_topic_info()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "LcmIftTnEVHJ" - }, - "source": [ - "The first output of `fit_transform` holds the topic ID for each sample. The second output is the probability of the sample belonging to that topic.\n", - "\n", - "In our case, we have obtained ca. 50 clusters. due to randomness of UMAP, the results may differ between runs. Unfortunately, we have not found a way to fix this.\n", - "\n", - "The cluster with ID `-1` contains all samples which are considered \"noise\" because they were not attributed to any cluster.\n", - "\n", - "The function `get_topic_info` returns the topic ID, the sample count, and a concatenation of the words representing the cluster.\n", - "\n", - "To get a visual impression of the clusters, BERTopic provides the function `visualize_topics` which embeds the c-TF-IDF representation of the topics in 2D using UMAP and then visualizes the two dimensions using plotly in an interactive view." - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 667 }, - "id": "q5WOiwszEVHJ", - "outputId": "81c6a4e0-317c-4abf-fd2c-daf91952a04e" - }, - "outputs": [ { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ + "cell_type": "code", + "execution_count": 52, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 172 + }, + "id": "4Mdi7Y6aEVHN", + "outputId": "abfd0c29-2306-4c80-99b7-ded7518d9774" + }, + "outputs": [ { - "customdata": [ - [ - 1, - "fire | smoke | damage | equipment | station", - 201 - ], - [ - 2, - "froze | pipe | sewer | pipes | library", - 182 - ], - [ - 3, - "power | surge | generator | spoilage | food", - 176 - ], - [ - 4, - "theft | of | stolen | break | from", - 161 - ], - [ - 5, - "graffiti | on | kennedy | hoyt | llm", - 141 - ], - [ - 6, - "lightning | damage | scale | dpw | museum", - 128 - ], - [ - 7, - "park | vandalism | pavilion | dmg | madison", - 112 - ], - [ - 8, - "broken | door | glass | breakage | entrance", - 109 - ], - [ - 9, - "lightning | dept | hall | hwy | st", - 109 - ], - [ - 10, - "signal | traffic | damaged | paradise | box", - 104 - ], - [ - 11, - "wind | damage | course | golf | tower", - 84 - ], - [ - 12, - "hydrant | fire | hit | damaged | run", - 83 - ], - [ - 13, - "llm | glass | mendota | hawk | black", - 79 - ], - [ - 14, - "garage | door | hwy | shop | truck", - 77 - ], - [ - 15, - "computer | lightning | to | equipment | system", - 76 - ], - [ - 16, - "fence | gate | vehicle | damaged | by", - 73 - ], - [ - 17, - "building | truck | vehicle | by | wall", - 73 - ], - [ - 18, - "hail | buildings | roof | multiple | windhail", - 72 - ], - [ - 19, - "water | damage | goodman | pool | toki", - 68 - ], - [ - 20, - "shelter | eastman | farlin | seymour | vandalism", - 68 - ], - [ - 21, - "pole | vehicle | hit | light | struck", - 67 - ], - [ - 22, - "pole | light | damaged | lightpole | rawson", - 64 - ], - [ - 23, - "window | broken | windows | screens | screen", - 62 - ], - [ - 24, - "laptop | theft | from | of | stolen", - 61 - ], - [ - 25, - "roof | wind | shingles | blew | off", - 57 - ], - [ - 26, - "water | es | ms | damage | west", - 56 - ], - [ - 27, - "dmg | humboldt | lafollette | vandalism | park", - 55 - ], - [ - 28, - "vandalism | damage | odonnell | bandshell | clubhouse", - 55 - ], - [ - 29, - "street | light | run | damaged | hit", - 54 - ], - [ - 30, - "airport | lightning | lights | runway | gates", - 51 - ], - [ - 31, - "center | water | main | dept | resch", - 50 - ], - [ - 32, - "phone | system | phones | telephone | lightning", - 49 - ], - [ - 33, - "vandalism | lemonweir | lock | gazebo | window", - 49 - ], - [ - 34, - "well | meter | flow | lightning | 10", - 47 - ], - [ - 35, - "school | water | elementary | high | lincoln", - 47 - ], - [ - 36, - "sign | vehicle | signal | traffic | struck", - 45 - ], - [ - 37, - "overhead | door | damaged | loader | hangar", - 44 - ], - [ - 38, - "wind | fence | park | trees | fencing", - 44 - ], - [ - 39, - "equipment | playground | slide | gps | instrument", - 44 - ], - [ - 40, - "storm | multiple | sites | locations | bldgs", - 42 - ], - [ - 41, - "hs | lightning | hhs | damage | at", - 42 - ], - [ - 42, - "park | washington | vandalism | jacobus | wilson", - 41 - ], - [ - 43, - "hs | water | tremper | pw | reuther", - 39 - ], - [ - 44, - "laptop | mckinley | damaged | computer | wic", - 38 - ], - [ - 45, - "water | equipment | carpet | to | computers", - 38 - ], - [ - 46, - "radio | antenna | lightning | radios | to", - 38 - ], - [ - 47, - "street | pole | light | streetlight | damaged", - 33 - ], - [ - 48, - "gym | floor | injured | k9 | training", - 33 - ], - [ - 49, - "ms | es | lightning | damage | karcher", - 32 - ], - [ - 50, - "hydrant | vehicle | struck | hit | over", - 32 - ], - [ - 51, - "radio | lost | dropped | portable | radios", - 31 - ], - [ - 52, - "roof | collapsed | collapse | gutter | snow", - 30 - ], - [ - 53, - "buildings | building | water | basement | to", - 30 - ], - [ - 54, - "tower | lightning | north | internet | barnes", - 30 + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.bias', 'classifier.bias', 'pre_classifier.weight', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] - ], - "hovertemplate": "Topic %{customdata[0]}
Words: %{customdata[1]}
Size: %{customdata[2]}", - "legendgroup": "", - "marker": { - "color": "#B0BEC5", - "line": { - "color": "DarkSlateGrey", - "width": 2 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [1084/1084 00:55, Epoch 2/2]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTraining Loss
5410.377000
10820.090200

" + ] }, - "size": [ - 201, - 182, - 176, - 161, - 141, - 128, - 112, - 109, - 109, - 104, - 84, - 83, - 79, - 77, - 76, - 73, - 73, - 72, - 68, - 68, - 67, - 64, - 62, - 61, - 57, - 56, - 55, - 55, - 54, - 51, - 50, - 49, - 49, - 47, - 47, - 45, - 44, - 44, - 44, - 42, - 42, - 41, - 39, - 38, - 38, - 38, - 33, - 33, - 32, - 32, - 31, - 30, - 30, - 30 - ], - "sizemode": "area", - "sizeref": 0.125625, - "symbol": "circle" - }, - "mode": "markers", - "name": "", - "orientation": "v", - "showlegend": false, - "type": "scatter", - "x": [ - 4.360762596130371, - 0.7932742238044739, - 0.2752592861652374, - -0.8667153716087341, - -0.289823442697525, - -2.950580358505249, - -0.21415774524211884, - -0.4716852903366089, - 4.518781661987305, - 16.868803024291992, - 5.648620128631592, - 16.180559158325195, - -0.3241567313671112, - 3.491412878036499, - 0.8606080412864685, - 3.875570297241211, - 3.656827926635742, - 4.885891437530518, - -2.6868414878845215, - -1.2351701259613037, - 16.549402236938477, - 16.407291412353516, - -0.22113357484340668, - -1.0431572198867798, - 5.2124786376953125, - -1.0305452346801758, - -0.36974582076072693, - -13.733373641967773, - 25.175086975097656, - 0.8627772927284241, - -13.690558433532715, - 0.4739021360874176, - -0.21453410387039185, - 1.0973047018051147, - -0.9572131037712097, - 16.911088943481445, - 3.3607969284057617, - 5.523925304412842, - 25.11425018310547, - -13.985651016235352, - -2.9206526279449463, - -0.2947523891925812, - -3.371992826461792, - -1.121610403060913, - 0.821208655834198, - 13.629738807678223, - 25.336883544921875, - -3.473048686981201, - -1.1059958934783936, - 16.247385025024414, - 13.630906105041504, - 5.329831123352051, - -13.614521980285645, - -2.9508841037750244 - ], - "xaxis": "x", - "y": [ - 5.099972724914551, - 12.630294799804688, - 13.182474136352539, - 11.931550025939941, - -4.145082950592041, - 7.585357189178467, - -11.443068504333496, - -4.5971832275390625, - 5.205262660980225, - 4.044532299041748, - 4.909511089324951, - 4.027768135070801, - -4.191524982452393, - -5.808047294616699, - 13.14031982421875, - -5.423551082611084, - -5.643819808959961, - 5.298285007476807, - 7.328395366668701, - -4.728237628936768, - 3.637396812438965, - 3.494387626647949, - -5.0907111167907715, - 11.757235527038574, - 5.327895641326904, - -4.541518211364746, - -11.287375450134277, - 9.561244010925293, - -0.17016500234603882, - 13.26408863067627, - 9.604170799255371, - 13.053056716918945, - -5.17617654800415, - 13.463350296020508, - 11.841389656066895, - 3.9184176921844482, - -5.935364723205566, - 4.994048595428467, - -0.10936477780342102, - 9.308842658996582, - 7.54194974899292, - -11.362563133239746, - 7.997793197631836, - 11.677850723266602, - 12.852232933044434, - -7.7953996658325195, - -0.332033634185791, - 8.100335121154785, - -4.636351585388184, - 3.94486665725708, - -7.794538497924805, - 5.423069000244141, - 9.680058479309082, - 7.5858154296875 - ], - "yaxis": "y" + "metadata": {} } - ], - "layout": { - "annotations": [ - { - "showarrow": false, - "text": "D1", - "x": -16.083498668670654, - "y": 1.1616620302200316, - "yshift": 10 - }, - { - "showarrow": false, - "text": "D2", - "x": 6.526958703994751, - "xshift": 10, - "y": 15.482852840423584 - } - ], - "height": 650, - "hoverlabel": { - "bgcolor": "white", - "font": { - "family": "Rockwell", - "size": 16 - } - }, - "legend": { - "itemsizing": "constant", - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "shapes": [ - { - "line": { - "color": "#CFD8DC", - "width": 2 - }, - "type": "line", - "x0": 6.526958703994751, - "x1": 6.526958703994751, - "y0": -13.159528779983521, - "y1": 15.482852840423584 - }, - { - "line": { - "color": "#9E9E9E", - "width": 2 - }, - "type": "line", - "x0": -16.083498668670654, - "x1": 29.137416076660156, - "y0": 1.1616620302200316, - "y1": 1.1616620302200316 - } - ], - "sliders": [ - { - "active": 0, - "pad": { - "t": 50 - }, - "steps": [ - { - "args": [ - { - "marker.color": [ - [ - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 1", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 2", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 3", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 4", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 5", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 6", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 7", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 8", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 9", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 10", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 11", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 12", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 13", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 14", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 15", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 16", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 17", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 18", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 19", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 20", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 21", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 22", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 23", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 24", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 25", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 26", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 27", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 28", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 29", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 30", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 31", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 32", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 33", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 34", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 35", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 36", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 37", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 38", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 39", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 40", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 41", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 42", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 43", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 44", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 45", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 46", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 47", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 48", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 49", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 50", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 51", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 52", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red", - "#B0BEC5" - ] - ] - } - ], - "label": "Topic 53", - "method": "update" - }, - { - "args": [ - { - "marker.color": [ - [ - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "#B0BEC5", - "red" - ] - ] - } - ], - "label": "Topic 54", - "method": "update" - } - ] - } - ], - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "rgb(36,36,36)" - }, - "error_y": { - "color": "rgb(36,36,36)" - }, - "marker": { - "line": { - "color": "white", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "white", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "rgb(36,36,36)", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "rgb(36,36,36)" - }, - "baxis": { - "endlinecolor": "rgb(36,36,36)", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "rgb(36,36,36)" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - }, - "colorscale": [ - [ - 0, - "#440154" - ], - [ - 0.1111111111111111, - "#482878" - ], - [ - 0.2222222222222222, - "#3e4989" - ], - [ - 0.3333333333333333, - "#31688e" - ], - [ - 0.4444444444444444, - "#26828e" - ], - [ - 0.5555555555555556, - "#1f9e89" - ], - [ - 0.6666666666666666, - "#35b779" - ], - [ - 0.7777777777777778, - "#6ece58" - ], - [ - 0.8888888888888888, - "#b5de2b" - ], - [ - 1, - "#fde725" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - }, - "colorscale": [ - [ - 0, - "#440154" - ], - [ - 0.1111111111111111, - "#482878" - ], - [ - 0.2222222222222222, - "#3e4989" - ], - [ - 0.3333333333333333, - "#31688e" - ], - [ - 0.4444444444444444, - "#26828e" - ], - [ - 0.5555555555555556, - "#1f9e89" - ], - [ - 0.6666666666666666, - "#35b779" - ], - [ - 0.7777777777777778, - "#6ece58" - ], - [ - 0.8888888888888888, - "#b5de2b" - ], - [ - 1, - "#fde725" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - }, - "colorscale": [ - [ - 0, - "#440154" - ], - [ - 0.1111111111111111, - "#482878" - ], - [ - 0.2222222222222222, - "#3e4989" - ], - [ - 0.3333333333333333, - "#31688e" - ], - [ - 0.4444444444444444, - "#26828e" - ], - [ - 0.5555555555555556, - "#1f9e89" - ], - [ - 0.6666666666666666, - "#35b779" - ], - [ - 0.7777777777777778, - "#6ece58" - ], - [ - 0.8888888888888888, - "#b5de2b" - ], - [ - 1, - "#fde725" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "line": { - "color": "white", - "width": 0.6 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - }, - "colorscale": [ - [ - 0, - "#440154" - ], - [ - 0.1111111111111111, - "#482878" - ], - [ - 0.2222222222222222, - "#3e4989" - ], - [ - 0.3333333333333333, - "#31688e" - ], - [ - 0.4444444444444444, - "#26828e" - ], - [ - 0.5555555555555556, - "#1f9e89" - ], - [ - 0.6666666666666666, - "#35b779" - ], - [ - 0.7777777777777778, - "#6ece58" - ], - [ - 0.8888888888888888, - "#b5de2b" - ], - [ - 1, - "#fde725" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - }, - "colorscale": [ - [ - 0, - "#440154" - ], - [ - 0.1111111111111111, - "#482878" - ], - [ - 0.2222222222222222, - "#3e4989" - ], - [ - 0.3333333333333333, - "#31688e" - ], - [ - 0.4444444444444444, - "#26828e" - ], - [ - 0.5555555555555556, - "#1f9e89" - ], - [ - 0.6666666666666666, - "#35b779" - ], - [ - 0.7777777777777778, - "#6ece58" - ], - [ - 0.8888888888888888, - "#b5de2b" - ], - [ - 1, - "#fde725" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - }, - "colorscale": [ - [ - 0, - "#440154" - ], - [ - 0.1111111111111111, - "#482878" - ], - [ - 0.2222222222222222, - "#3e4989" - ], - [ - 0.3333333333333333, - "#31688e" - ], - [ - 0.4444444444444444, - "#26828e" - ], - [ - 0.5555555555555556, - "#1f9e89" - ], - [ - 0.6666666666666666, - "#35b779" - ], - [ - 0.7777777777777778, - "#6ece58" - ], - [ - 0.8888888888888888, - "#b5de2b" - ], - [ - 1, - "#fde725" - ] + ], + "source": [ + "model_name = \"distilbert-base-uncased\"\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "torch.manual_seed(42) # for reproducibility, set random seed before instantiating the model\n", + "model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(labels)).to(device)\n", + "\n", + "# train the model\n", + "batch_size = 8\n", + "logging_steps = len(ds_train_unsupervised) // batch_size\n", + "training_args = TrainingArguments(\n", + " output_dir=model_name+\"_peril_u_epochs\",\n", + " num_train_epochs=2,\n", + " per_device_train_batch_size=batch_size,\n", + " per_device_eval_batch_size=batch_size,\n", + " metric_for_best_model=\"f1\",\n", + " logging_steps=logging_steps,\n", + " save_strategy=trainer_utils.IntervalStrategy.NO,\n", + ")\n", + "trainer = Trainer(model=model, args=training_args,\n", + " compute_metrics=compute_metrics, train_dataset=ds_train_unsupervised,\n", + " eval_dataset=ds[\"test\"])\n", + "trainer.train();\n", + "trainer.save_model(model_name + \"_peril_u\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rs65tNt_EVHN" + }, + "source": [ + "Then, we evaluate the classifier on the test set, by comparing the predicted to the true labels." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 872 + }, + "id": "HldJUXwtEVHN", + "outputId": "10ee308d-7c4a-4edd-9315-18c9c2dc4cda" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "rgb(237,237,237)" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "rgb(217,217,217)" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowhead": 0, - "arrowwidth": 1 + "text/html": [] }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 1, - "tickcolor": "rgb(36,36,36)", - "ticks": "outside" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "rgb(103,0,31)" - ], - [ - 0.1, - "rgb(178,24,43)" - ], - [ - 0.2, - "rgb(214,96,77)" - ], - [ - 0.3, - "rgb(244,165,130)" - ], - [ - 0.4, - "rgb(253,219,199)" - ], - [ - 0.5, - "rgb(247,247,247)" - ], - [ - 0.6, - "rgb(209,229,240)" - ], - [ - 0.7, - "rgb(146,197,222)" - ], - [ - 0.8, - "rgb(67,147,195)" - ], - [ - 0.9, - "rgb(33,102,172)" - ], - [ - 1, - "rgb(5,48,97)" - ] - ], - "sequential": [ - [ - 0, - "#440154" - ], - [ - 0.1111111111111111, - "#482878" - ], - [ - 0.2222222222222222, - "#3e4989" - ], - [ - 0.3333333333333333, - "#31688e" - ], - [ - 0.4444444444444444, - "#26828e" - ], - [ - 0.5555555555555556, - "#1f9e89" - ], - [ - 0.6666666666666666, - "#35b779" - ], - [ - 0.7777777777777778, - "#6ece58" - ], - [ - 0.8888888888888888, - "#b5de2b" - ], - [ - 1, - "#fde725" - ] - ], - "sequentialminus": [ - [ - 0, - "#440154" - ], - [ - 0.1111111111111111, - "#482878" - ], - [ - 0.2222222222222222, - "#3e4989" - ], - [ - 0.3333333333333333, - "#31688e" - ], - [ - 0.4444444444444444, - "#26828e" - ], - [ - 0.5555555555555556, - "#1f9e89" - ], - [ - 0.6666666666666666, - "#35b779" - ], - [ - 0.7777777777777778, - "#6ece58" - ], - [ - 0.8888888888888888, - "#b5de2b" - ], - [ - 1, - "#fde725" - ] - ] - }, - "colorway": [ - "#1F77B4", - "#FF7F0E", - "#2CA02C", - "#D62728", - "#9467BD", - "#8C564B", - "#E377C2", - "#7F7F7F", - "#BCBD22", - "#17BECF" - ], - "font": { - "color": "rgb(36,36,36)" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "white", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "white", - "polar": { - "angularaxis": { - "gridcolor": "rgb(232,232,232)", - "linecolor": "rgb(36,36,36)", - "showgrid": false, - "showline": true, - "ticks": "outside" - }, - "bgcolor": "white", - "radialaxis": { - "gridcolor": "rgb(232,232,232)", - "linecolor": "rgb(36,36,36)", - "showgrid": false, - "showline": true, - "ticks": "outside" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "white", - "gridcolor": "rgb(232,232,232)", - "gridwidth": 2, - "linecolor": "rgb(36,36,36)", - "showbackground": true, - "showgrid": false, - "showline": true, - "ticks": "outside", - "zeroline": false, - "zerolinecolor": "rgb(36,36,36)" - }, - "yaxis": { - "backgroundcolor": "white", - "gridcolor": "rgb(232,232,232)", - "gridwidth": 2, - "linecolor": "rgb(36,36,36)", - "showbackground": true, - "showgrid": false, - "showline": true, - "ticks": "outside", - "zeroline": false, - "zerolinecolor": "rgb(36,36,36)" - }, - "zaxis": { - "backgroundcolor": "white", - "gridcolor": "rgb(232,232,232)", - "gridwidth": 2, - "linecolor": "rgb(36,36,36)", - "showbackground": true, - "showgrid": false, - "showline": true, - "ticks": "outside", - "zeroline": false, - "zerolinecolor": "rgb(36,36,36)" - } - }, - "shapedefaults": { - "fillcolor": "black", - "line": { - "width": 0 - }, - "opacity": 0.3 - }, - "ternary": { - "aaxis": { - "gridcolor": "rgb(232,232,232)", - "linecolor": "rgb(36,36,36)", - "showgrid": false, - "showline": true, - "ticks": "outside" - }, - "baxis": { - "gridcolor": "rgb(232,232,232)", - "linecolor": "rgb(36,36,36)", - "showgrid": false, - "showline": true, - "ticks": "outside" - }, - "bgcolor": "white", - "caxis": { - "gridcolor": "rgb(232,232,232)", - "linecolor": "rgb(36,36,36)", - "showgrid": false, - "showline": true, - "ticks": "outside" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "rgb(232,232,232)", - "linecolor": "rgb(36,36,36)", - "showgrid": false, - "showline": true, - "ticks": "outside", - "title": { - "standoff": 15 - }, - "zeroline": false, - "zerolinecolor": "rgb(36,36,36)" - }, - "yaxis": { - "automargin": true, - "gridcolor": "rgb(232,232,232)", - "linecolor": "rgb(36,36,36)", - "showgrid": false, - "showline": true, - "ticks": "outside", - "title": { - "standoff": 15 - }, - "zeroline": false, - "zerolinecolor": "rgb(36,36,36)" - } - } - }, - "title": { - "font": { - "color": "Black", - "size": 22 - }, - "text": "Intertopic Distance Map", - "x": 0.5, - "xanchor": "center", - "y": 0.95, - "yanchor": "top" - }, - "width": 650, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "range": [ - -16.083498668670654, - 29.137416076660156 - ], - "title": { - "text": "" - }, - "visible": false - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "range": [ - -13.159528779983521, - 15.482852840423584 - ], - "title": { - "text": "" - }, - "visible": false - } - } - }, - "text/html": [ - "

" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "topic_model.visualize_topics()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "IrKzZcJgEVHJ" - }, - "source": [ - "We can visualize the selected terms for a few topics by creating bar charts out of the c-TF-IDF scores for each topic representation.\n", - "Insights can be gained from the relative c-TF-IDF scores between and within topics. Moreover, you can easily compare topic representations to each other. To visualize this hierarchy, simply call the function `visualize_barchart`:" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 342 - }, - "id": "Gd0yT5hMEVHJ", - "outputId": "3863a7ba-a769-460f-d003-a4e43717ab2f" - }, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "marker": { - "color": "#D55E00" - }, - "orientation": "h", - "type": "bar", - "x": [ - 0.038128182207882395, - 0.04479394583665111, - 0.05593389088554244, - 0.07275218655635046, - 0.13801910476607823 - ], - "xaxis": "x", - "y": [ - "ms ", - "es ", - "west ", - "vandalism ", - "glass " - ], - "yaxis": "y" - }, - { - "marker": { - "color": "#0072B2" - }, - "orientation": "h", - "type": "bar", - "x": [ - 0.023295897805408042, - 0.023555605798973325, - 0.025803975483149527, - 0.08229676777844862, - 0.15913408180789676 - ], - "xaxis": "x2", - "y": [ - "station ", - "equipment ", - "damage ", - "smoke ", - "fire " - ], - "yaxis": "y2" + "metadata": {} }, { - "marker": { - "color": "#CC79A7" - }, - "orientation": "h", - "type": "bar", - "x": [ - 0.06957795460763112, - 0.07042296993941073, - 0.07393959399336025, - 0.07866108895353201, - 0.07972543102064714 - ], - "xaxis": "x3", - "y": [ - "library ", - "pipes ", - "sewer ", - "pipe ", - "froze " - ], - "yaxis": "y3" + "output_type": "stream", + "name": "stdout", + "text": [ + "Topic modeling by clustering, refined\n", + "accuracy score = 79.8%, log loss = 1.514, Brier loss = 0.383\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " Vandalism 0.84 0.95 0.89 310\n", + " Fire 0.80 0.87 0.83 46\n", + " Lightning 0.93 0.93 0.93 123\n", + " Wind 0.89 0.87 0.88 107\n", + " Hail 0.89 0.94 0.92 18\n", + " Vehicle 0.88 0.87 0.88 227\n", + " WaterNW 0.00 0.00 0.00 67\n", + " WaterW 0.28 0.89 0.43 38\n", + " Misc 0.76 0.38 0.51 103\n", + "\n", + " accuracy 0.80 1039\n", + " macro avg 0.70 0.75 0.70 1039\n", + "weighted avg 0.78 0.80 0.78 1039\n", + "\n" + ] }, { - "marker": { - "color": "#E69F00" - }, - "orientation": "h", - "type": "bar", - "x": [ - 0.04817645074952102, - 0.051298981764011584, - 0.06890171236430481, - 0.2123333962021105, - 0.21986552294095435 - ], - "xaxis": "x4", - "y": [ - "food ", - "spoilage ", - "generator ", - "surge ", - "power " - ], - "yaxis": "y4" - } - ], - "layout": { - "annotations": [ - { - "font": { - "size": 16 - }, - "showarrow": false, - "text": "Topic 0", - "x": 0.0875, - "xanchor": "center", - "xref": "paper", - "y": 1, - "yanchor": "bottom", - "yref": "paper" - }, - { - "font": { - "size": 16 - }, - "showarrow": false, - "text": "Topic 1", - "x": 0.36250000000000004, - "xanchor": "center", - "xref": "paper", - "y": 1, - "yanchor": "bottom", - "yref": "paper" - }, - { - "font": { - "size": 16 - }, - "showarrow": false, - "text": "Topic 2", - "x": 0.6375000000000001, - "xanchor": "center", - "xref": "paper", - "y": 1, - "yanchor": "bottom", - "yref": "paper" - }, - { - "font": { - "size": 16 - }, - "showarrow": false, - "text": "Topic 3", - "x": 0.9125, - "xanchor": "center", - "xref": "paper", - "y": 1, - "yanchor": "bottom", - "yref": "paper" - } - ], - "height": 325, - "hoverlabel": { - "bgcolor": "white", - "font": { - "family": "Rockwell", - "size": 16 - } - }, - "showlegend": false, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "white", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "white", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "#C8D4E3", - "linecolor": "#C8D4E3", - "minorgridcolor": "#C8D4E3", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "#C8D4E3", - "linecolor": "#C8D4E3", - "minorgridcolor": "#C8D4E3", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "white", - "showlakes": true, - "showland": true, - "subunitcolor": "#C8D4E3" }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "white", - "polar": { - "angularaxis": { - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "" - }, - "bgcolor": "white", - "radialaxis": { - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "white", - "gridcolor": "#DFE8F3", - "gridwidth": 2, - "linecolor": "#EBF0F8", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#EBF0F8" - }, - "yaxis": { - "backgroundcolor": "white", - "gridcolor": "#DFE8F3", - "gridwidth": 2, - "linecolor": "#EBF0F8", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#EBF0F8" - }, - "zaxis": { - "backgroundcolor": "white", - "gridcolor": "#DFE8F3", - "gridwidth": 2, - "linecolor": "#EBF0F8", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#EBF0F8" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "#DFE8F3", - "linecolor": "#A2B1C6", - "ticks": "" - }, - "baxis": { - "gridcolor": "#DFE8F3", - "linecolor": "#A2B1C6", - "ticks": "" - }, - "bgcolor": "white", - "caxis": { - "gridcolor": "#DFE8F3", - "linecolor": "#A2B1C6", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "#EBF0F8", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "#EBF0F8", - "zerolinewidth": 2 - } - } - }, - "title": { - "font": { - "color": "Black", - "size": 22 - }, - "text": "Topic Word Scores", - "x": 0.5, - "xanchor": "center", - "yanchor": "top" - }, - "width": 1000, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 0.175 - ], - "showgrid": true - }, - "xaxis2": { - "anchor": "y2", - "domain": [ - 0.275, - 0.45 - ], - "showgrid": true - }, - "xaxis3": { - "anchor": "y3", - "domain": [ - 0.55, - 0.7250000000000001 - ], - "showgrid": true - }, - "xaxis4": { - "anchor": "y4", - "domain": [ - 0.825, - 1 - ], - "showgrid": true - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "showgrid": true - }, - "yaxis2": { - "anchor": "x2", - "domain": [ - 0, - 1 - ], - "showgrid": true - }, - "yaxis3": { - "anchor": "x3", - "domain": [ - 0, - 1 - ], - "showgrid": true - }, - "yaxis4": { - "anchor": "x4", - "domain": [ - 0, - 1 - ], - "showgrid": true + "metadata": {} } - } + ], + "source": [ + "predictions = trainer.predict(ds[\"test\"])\n", + "_ = evaluate_classifier(predictions.label_ids, None, softmax(predictions.predictions, axis=1), labels, \"Topic modeling by clustering, refined\", \"cm_peril_topic_b\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "r_LJQY04EVHN" }, - "text/html": [ - "
" + "source": [ + "The accuracy score has improved significantly." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "topic_model.visualize_barchart(top_n_topics=4)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vAiy4n1iEVHJ" - }, - "source": [ - "BERTopics creates topics in a hierarchical structure. The function `visualize_hierarchy` displays the hierarchy. This information is useful to reduce the number of topics, either by specifying a value for the parameter `nr_topics` upon instantiation of BERTopic, or after the training by calling the function `reduce_topics`." - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 }, - "id": "Azf54Sl6EVHJ", - "outputId": "035907f6-c0a9-4ba4-c6e4-a09e7f1df765" - }, - "outputs": [ { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hoverinfo": "text", - "marker": { - "color": "rgb(61,153,112)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.6023164198318862, - 0.6023164198318862, - 0 - ], - "xaxis": "x", - "y": [ - -5, - -5, - -15, - -15 - ], - "yaxis": "y" + "cell_type": "markdown", + "metadata": { + "id": "0Wet19WmEVHN" + }, + "source": [ + "\n", + "\n", + "## 6. Conclusions\n", + "\n", + "Congratulations!\n", + "\n", + "In this Part II of the tutorial, you have first applied the techniques you have learned in Part I to a dataset with shorter texts.\n", + "\n", + "Then you have learned how to use zero shot classification in a situation with no labels. The beauty of this approach is that it requires no training and produces a reasonable classification by a list of user-defined expressions.\n", + "\n", + "You have also seen that unsupervised classification can be achieved by similarity scoring between the input sequence and a list of user-defined expressions.\n", + "\n", + "Going one step further, you have seen an approach that creates clusters of similar documents and represents each cluster by typical words. This can be used as a starting point to create meaningful labels.\n", + "\n", + "If you have enjoyed this tutorial, feel free to apply any of the approaches - or improved versions, of course - to your own text data, to enrich your structured features available for supervised learning tasks." + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "5de761bf4ce54fff891723d5f98c30c0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b366a73190a04eca91fd9e178afbd079", + "IPY_MODEL_e7e87b9254b3409d8fbce91e18cc4e67", + "IPY_MODEL_3b96837862ae49b383cdb217b9e7678b" + ], + "layout": "IPY_MODEL_38d82167e54d434db8b4773fccdc6964" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(61,153,112)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.6750348120527309, - 0.6750348120527309, - 0 - ], - "xaxis": "x", - "y": [ - -25, - -25, - -35, - -35 - ], - "yaxis": "y" + "b366a73190a04eca91fd9e178afbd079": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0b1a03946ab44964ac6edb92aa6db81d", + "placeholder": "​", + "style": "IPY_MODEL_0c77cb11648542ae996d05d71def2d0a", + "value": "Downloading (…)okenizer_config.json: 100%" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(61,153,112)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.6023164198318862, - 0.8456337969927024, - 0.8456337969927024, - 0.6750348120527309 - ], - "xaxis": "x", - "y": [ - -10, - -10, - -30, - -30 - ], - "yaxis": "y" + "e7e87b9254b3409d8fbce91e18cc4e67": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4a750fab548b4f2cb426ebd59b6daf67", + "max": 28, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5cbe432ada394f689eb626e6ac6ee1e9", + "value": 28 + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(255,65,54)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.23835020611618307, - 0.23835020611618307, - 0 - ], - "xaxis": "x", - "y": [ - -45, - -45, - -55, - -55 - ], - "yaxis": "y" + "3b96837862ae49b383cdb217b9e7678b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7d75e25536874831970c370271156295", + "placeholder": "​", + "style": "IPY_MODEL_50a7e6c371bf4bbc8fea6a6bdc1e5675", + "value": " 28.0/28.0 [00:00<00:00, 846B/s]" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(35,205,205)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.4456516865881315, - 0.4456516865881315, - 0 - ], - "xaxis": "x", - "y": [ - -65, - -65, - -75, - -75 - ], - "yaxis": "y" + "38d82167e54d434db8b4773fccdc6964": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(35,205,205)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.37054621528245557, - 0.37054621528245557, - 0 - ], - "xaxis": "x", - "y": [ - -105, - -105, - -115, - -115 - ], - "yaxis": "y" + "0b1a03946ab44964ac6edb92aa6db81d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(35,205,205)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.40204042021542746, - 0.40204042021542746, - 0.37054621528245557 - ], - "xaxis": "x", - "y": [ - -95, - -95, - -110, - -110 - ], - "yaxis": "y" + "0c77cb11648542ae996d05d71def2d0a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(35,205,205)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.482574709153566, - 0.482574709153566, - 0.40204042021542746 - ], - "xaxis": "x", - "y": [ - -85, - -85, - -102.5, - -102.5 - ], - "yaxis": "y" + "4a750fab548b4f2cb426ebd59b6daf67": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(35,205,205)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.4456516865881315, - 0.5129831716423786, - 0.5129831716423786, - 0.482574709153566 - ], - "xaxis": "x", - "y": [ - -70, - -70, - -93.75, - -93.75 - ], - "yaxis": "y" + "5cbe432ada394f689eb626e6ac6ee1e9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(0,116,217)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.23835020611618307, - 1.1292240591332572, - 1.1292240591332572, - 0.5129831716423786 - ], - "xaxis": "x", - "y": [ - -50, - -50, - -81.875, - -81.875 - ], - "yaxis": "y" + "7d75e25536874831970c370271156295": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(133,20,75)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.4296952641723087, - 0.4296952641723087, - 0 - ], - "xaxis": "x", - "y": [ - -125, - -125, - -135, - -135 - ], - "yaxis": "y" + "50a7e6c371bf4bbc8fea6a6bdc1e5675": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(133,20,75)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.3126402618954365, - 0.3126402618954365, - 0 - ], - "xaxis": "x", - "y": [ - -145, - -145, - -155, - -155 - ], - "yaxis": "y" + "936a3987f942462693f82b88a4dc7d87": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_70db356388aa47bb94b9bd9d44886579", + "IPY_MODEL_39e2f380a4c54f518a0f4fb0208f6cf0", + "IPY_MODEL_75657aaf52794cfaa2fd69e9740e9257" + ], + "layout": "IPY_MODEL_783f18beb4d94dfaa6b450de189842e5" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(133,20,75)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.49418052679699354, - 0.49418052679699354, - 0 - ], - "xaxis": "x", - "y": [ - -165, - -165, - -175, - -175 - ], - "yaxis": "y" + "70db356388aa47bb94b9bd9d44886579": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5f86aeb0f83e4206800af67b306a0c0f", + "placeholder": "​", + "style": "IPY_MODEL_46d258d710524bef9f8ce4317b3ffdad", + "value": "Downloading (…)lve/main/config.json: 100%" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(133,20,75)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.3126402618954365, - 0.6189591183403861, - 0.6189591183403861, - 0.49418052679699354 - ], - "xaxis": "x", - "y": [ - -150, - -150, - -170, - -170 - ], - "yaxis": "y" + "39e2f380a4c54f518a0f4fb0208f6cf0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5014ff2443284a57950aceb5475e9a19", + "max": 483, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f9deae3c7ae346e9b8f1e41c94201957", + "value": 483 + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(133,20,75)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.4296952641723087, - 0.7933887478448209, - 0.7933887478448209, - 0.6189591183403861 - ], - "xaxis": "x", - "y": [ - -130, - -130, - -160, - -160 - ], - "yaxis": "y" + "75657aaf52794cfaa2fd69e9740e9257": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_04295d910be446d593fbfebe0a07b625", + "placeholder": "​", + "style": "IPY_MODEL_fee0d7272c2645aab945ca5c098d1f84", + "value": " 483/483 [00:00<00:00, 39.9kB/s]" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(255,220,0)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.48058033175196757, - 0.48058033175196757, - 0 - ], - "xaxis": "x", - "y": [ - -205, - -205, - -215, - -215 - ], - "yaxis": "y" + "783f18beb4d94dfaa6b450de189842e5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(255,220,0)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.5066912881760213, - 0.5066912881760213, - 0.48058033175196757 - ], - "xaxis": "x", - "y": [ - -195, - -195, - -210, - -210 - ], - "yaxis": "y" + "5f86aeb0f83e4206800af67b306a0c0f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(255,220,0)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.5685772179118984, - 0.5685772179118984, - 0.5066912881760213 - ], - "xaxis": "x", - "y": [ - -185, - -185, - -202.5, - -202.5 - ], - "yaxis": "y" + "46d258d710524bef9f8ce4317b3ffdad": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(255,220,0)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.6516488321797296, - 0.6516488321797296, - 0 - ], - "xaxis": "x", - "y": [ - -225, - -225, - -235, - -235 - ], - "yaxis": "y" + "5014ff2443284a57950aceb5475e9a19": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(255,220,0)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.5608596022515082, - 0.5608596022515082, - 0 - ], - "xaxis": "x", - "y": [ - -245, - -245, - -255, - -255 - ], - "yaxis": "y" + "f9deae3c7ae346e9b8f1e41c94201957": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(255,220,0)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.5850865189888045, - 0.5850865189888045, - 0 - ], - "xaxis": "x", - "y": [ - -265, - -265, - -275, - -275 - ], - "yaxis": "y" + "04295d910be446d593fbfebe0a07b625": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(255,220,0)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.5608596022515082, - 0.7154898260340787, - 0.7154898260340787, - 0.5850865189888045 - ], - "xaxis": "x", - "y": [ - -250, - -250, - -270, - -270 - ], - "yaxis": "y" + "fee0d7272c2645aab945ca5c098d1f84": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(255,220,0)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.6516488321797296, - 0.795806156758281, - 0.795806156758281, - 0.7154898260340787 - ], - "xaxis": "x", - "y": [ - -230, - -230, - -260, - -260 - ], - "yaxis": "y" + "8d2b1667e8b542eda14174a9c3e6f208": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_74adbc967e914123bc2bfc5dacb7630f", + "IPY_MODEL_b7fa2473bfc744b091190c0d64735e20", + "IPY_MODEL_41c26bf23c614163b597e52761facd86" + ], + "layout": "IPY_MODEL_55f6187d766a46248f5c56ec666dccb5" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(255,220,0)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.5685772179118984, - 0.8582152319964806, - 0.8582152319964806, - 0.795806156758281 - ], - "xaxis": "x", - "y": [ - -193.75, - -193.75, - -245, - -245 - ], - "yaxis": "y" + "74adbc967e914123bc2bfc5dacb7630f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f64187684eee4c33a1bcc8e17ae98301", + "placeholder": "​", + "style": "IPY_MODEL_8435b1c0cd864e8f9f67247c59d8e06f", + "value": "Downloading (…)solve/main/vocab.txt: 100%" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(0,116,217)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.7933887478448209, - 1.2133726364083586, - 1.2133726364083586, - 0.8582152319964806 - ], - "xaxis": "x", - "y": [ - -145, - -145, - -219.375, - -219.375 - ], - "yaxis": "y" + "b7fa2473bfc744b091190c0d64735e20": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7d8a93c13e8243efbb8df5b8bbf4a9fc", + "max": 231508, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_99077d65096e4a738cb2f7b6c2aaa7d6", + "value": 231508 + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(0,116,217)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 1.1292240591332572, - 1.441742429005455, - 1.441742429005455, - 1.2133726364083586 - ], - "xaxis": "x", - "y": [ - -65.9375, - -65.9375, - -182.1875, - -182.1875 - ], - "yaxis": "y" + "41c26bf23c614163b597e52761facd86": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c03367c15d71470999dbb00e2429a5f0", + "placeholder": "​", + "style": "IPY_MODEL_4cf9b9fbd0334a9b8d6c65850109b41b", + "value": " 232k/232k [00:00<00:00, 1.73MB/s]" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(40,35,35)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.2822729572596061, - 0.2822729572596061, - 0 - ], - "xaxis": "x", - "y": [ - -295, - -295, - -305, - -305 - ], - "yaxis": "y" + "55f6187d766a46248f5c56ec666dccb5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(40,35,35)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.3876552434301354, - 0.3876552434301354, - 0.2822729572596061 - ], - "xaxis": "x", - "y": [ - -285, - -285, - -300, - -300 - ], - "yaxis": "y" + "f64187684eee4c33a1bcc8e17ae98301": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(40,35,35)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.4460071878809543, - 0.4460071878809543, - 0 - ], - "xaxis": "x", - "y": [ - -315, - -315, - -325, - -325 - ], - "yaxis": "y" + "8435b1c0cd864e8f9f67247c59d8e06f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(40,35,35)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.4794862266852582, - 0.4794862266852582, - 0 - ], - "xaxis": "x", - "y": [ - -335, - -335, - -345, - -345 - ], - "yaxis": "y" + "7d8a93c13e8243efbb8df5b8bbf4a9fc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(40,35,35)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.4460071878809543, - 0.6982942598519148, - 0.6982942598519148, - 0.4794862266852582 - ], - "xaxis": "x", - "y": [ - -320, - -320, - -340, - -340 - ], - "yaxis": "y" + "99077d65096e4a738cb2f7b6c2aaa7d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(40,35,35)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.3876552434301354, - 0.919690067313055, - 0.919690067313055, - 0.6982942598519148 - ], - "xaxis": "x", - "y": [ - -292.5, - -292.5, - -330, - -330 - ], - "yaxis": "y" + "c03367c15d71470999dbb00e2429a5f0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(61,153,112)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.3528000059829244, - 0.3528000059829244, - 0 - ], - "xaxis": "x", - "y": [ - -355, - -355, - -365, - -365 - ], - "yaxis": "y" + "4cf9b9fbd0334a9b8d6c65850109b41b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(61,153,112)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.24817551893157758, - 0.24817551893157758, - 0 - ], - "xaxis": "x", - "y": [ - -385, - -385, - -395, - -395 - ], - "yaxis": "y" + "77b6e23d10f24ae986e796459dd47faf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dd5f78d31d85485d89c609a4c1c560b0", + "IPY_MODEL_4954d8ffa3f34b1489a0a548655368ba", + "IPY_MODEL_dd2abf3d137847a0b061bc32e25bf4f5" + ], + "layout": "IPY_MODEL_f0f164f0ae99419aaf92f625cb2987e3" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(61,153,112)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.5783755534463907, - 0.5783755534463907, - 0.24817551893157758 - ], - "xaxis": "x", - "y": [ - -375, - -375, - -390, - -390 - ], - "yaxis": "y" + "dd5f78d31d85485d89c609a4c1c560b0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e2101e95402f4b76a654f2fd06d9cb82", + "placeholder": "​", + "style": "IPY_MODEL_ed69ce527b2f480abb6fead6089aa870", + "value": "Downloading (…)/main/tokenizer.json: 100%" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(61,153,112)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.3528000059829244, - 0.6825150816307292, - 0.6825150816307292, - 0.5783755534463907 - ], - "xaxis": "x", - "y": [ - -360, - -360, - -382.5, - -382.5 - ], - "yaxis": "y" + "4954d8ffa3f34b1489a0a548655368ba": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_befc3d34e6924c2d8c5cbfd994c6360e", + "max": 466062, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1c82763c43f541a182de5692fc7a1ca2", + "value": 466062 + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(61,153,112)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.5833882086821892, - 0.5833882086821892, - 0 - ], - "xaxis": "x", - "y": [ - -405, - -405, - -415, - -415 - ], - "yaxis": "y" + "dd2abf3d137847a0b061bc32e25bf4f5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_973c00d9934e491b89eb23083f3deeed", + "placeholder": "​", + "style": "IPY_MODEL_736f08c910874fafb4a496de8517e53a", + "value": " 466k/466k [00:00<00:00, 3.55MB/s]" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(61,153,112)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.4238227864178827, - 0.4238227864178827, - 0 - ], - "xaxis": "x", - "y": [ - -435, - -435, - -445, - -445 - ], - "yaxis": "y" + "f0f164f0ae99419aaf92f625cb2987e3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(61,153,112)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.6113919609993128, - 0.6113919609993128, - 0.4238227864178827 - ], - "xaxis": "x", - "y": [ - -425, - -425, - -440, - -440 - ], - "yaxis": "y" + "e2101e95402f4b76a654f2fd06d9cb82": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(61,153,112)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.5833882086821892, - 0.7143901041898164, - 0.7143901041898164, - 0.6113919609993128 - ], - "xaxis": "x", - "y": [ - -410, - -410, - -432.5, - -432.5 - ], - "yaxis": "y" + "ed69ce527b2f480abb6fead6089aa870": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(61,153,112)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.6825150816307292, - 0.8865467339513728, - 0.8865467339513728, - 0.7143901041898164 - ], - "xaxis": "x", - "y": [ - -371.25, - -371.25, - -421.25, - -421.25 - ], - "yaxis": "y" + "befc3d34e6924c2d8c5cbfd994c6360e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(255,65,54)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.22016924579619745, - 0.22016924579619745, - 0 - ], - "xaxis": "x", - "y": [ - -475, - -475, - -485, - -485 - ], - "yaxis": "y" + "1c82763c43f541a182de5692fc7a1ca2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(255,65,54)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.5066679991691487, - 0.5066679991691487, - 0.22016924579619745 - ], - "xaxis": "x", - "y": [ - -465, - -465, - -480, - -480 - ], - "yaxis": "y" + "973c00d9934e491b89eb23083f3deeed": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(255,65,54)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.5302013565182664, - 0.5302013565182664, - 0.5066679991691487 - ], - "xaxis": "x", - "y": [ - -455, - -455, - -472.5, - -472.5 - ], - "yaxis": "y" + "736f08c910874fafb4a496de8517e53a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(35,205,205)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.3783237475449943, - 0.3783237475449943, - 0 - ], - "xaxis": "x", - "y": [ - -495, - -495, - -505, - -505 - ], - "yaxis": "y" + "f667052649984f7295359e00c7dfe491": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2712323f94c746c3871e424f0c0bc928", + "IPY_MODEL_dacbe9b563e5468ab9d9f0bbf6d47d8c", + "IPY_MODEL_4fcfbef91ffa4dc48eaf062ed2fea45f" + ], + "layout": "IPY_MODEL_cb8f544c88c34580947daae0b390779b" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(35,205,205)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.39342586151933556, - 0.39342586151933556, - 0 - ], - "xaxis": "x", - "y": [ - -535, - -535, - -545, - -545 - ], - "yaxis": "y" + "2712323f94c746c3871e424f0c0bc928": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2f043d8319c4447399ab62735cf6761f", + "placeholder": "​", + "style": "IPY_MODEL_d5924691f4164f549756bfd57d83b04f", + "value": "Downloading model.safetensors: 100%" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(35,205,205)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.5457860064578354, - 0.5457860064578354, - 0.39342586151933556 - ], - "xaxis": "x", - "y": [ - -525, - -525, - -540, - -540 - ], - "yaxis": "y" + "dacbe9b563e5468ab9d9f0bbf6d47d8c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_392811b52dc141099d755a7392023722", + "max": 267954768, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f2f7dcbf838e4938a4f959bbc4b70e12", + "value": 267954768 + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(35,205,205)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0, - 0.6699488447399525, - 0.6699488447399525, - 0.5457860064578354 - ], - "xaxis": "x", - "y": [ - -515, - -515, - -532.5, - -532.5 - ], - "yaxis": "y" + "4fcfbef91ffa4dc48eaf062ed2fea45f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_952a86292e0043e89e0adae2df4efc3c", + "placeholder": "​", + "style": "IPY_MODEL_3251f229b9a24114b5b1f01d6107b537", + "value": " 268M/268M [00:01<00:00, 157MB/s]" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(35,205,205)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.3783237475449943, - 0.8729512687439737, - 0.8729512687439737, - 0.6699488447399525 - ], - "xaxis": "x", - "y": [ - -500, - -500, - -523.75, - -523.75 - ], - "yaxis": "y" + "cb8f544c88c34580947daae0b390779b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(0,116,217)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.5302013565182664, - 1.0528410175390792, - 1.0528410175390792, - 0.8729512687439737 - ], - "xaxis": "x", - "y": [ - -463.75, - -463.75, - -511.875, - -511.875 - ], - "yaxis": "y" + "2f043d8319c4447399ab62735cf6761f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(0,116,217)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.8865467339513728, - 1.3481969547871322, - 1.3481969547871322, - 1.0528410175390792 - ], - "xaxis": "x", - "y": [ - -396.25, - -396.25, - -487.8125, - -487.8125 - ], - "yaxis": "y" + "d5924691f4164f549756bfd57d83b04f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(0,116,217)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.919690067313055, - 1.604036421668238, - 1.604036421668238, - 1.3481969547871322 - ], - "xaxis": "x", - "y": [ - -311.25, - -311.25, - -442.03125, - -442.03125 - ], - "yaxis": "y" + "392811b52dc141099d755a7392023722": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(0,116,217)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 1.441742429005455, - 1.6465235329143428, - 1.6465235329143428, - 1.604036421668238 - ], - "xaxis": "x", - "y": [ - -124.0625, - -124.0625, - -376.640625, - -376.640625 - ], - "yaxis": "y" + "f2f7dcbf838e4938a4f959bbc4b70e12": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } }, - { - "hoverinfo": "text", - "marker": { - "color": "rgb(0,116,217)" - }, - "mode": "lines", - "type": "scatter", - "x": [ - 0.8456337969927024, - 1.9794277500966373, - 1.9794277500966373, - 1.6465235329143428 - ], - "xaxis": "x", - "y": [ - -20, - -20, - -250.3515625, - -250.3515625 - ], - "yaxis": "y" - } - ], - "layout": { - "autosize": false, - "height": 1025, - "hoverlabel": { - "bgcolor": "white", - "font": { - "family": "Rockwell", - "size": 16 - } - }, - "hovermode": "closest", - "plot_bgcolor": "#ECEFF1", - "showlegend": false, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "white", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "white", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "#C8D4E3", - "linecolor": "#C8D4E3", - "minorgridcolor": "#C8D4E3", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "#C8D4E3", - "linecolor": "#C8D4E3", - "minorgridcolor": "#C8D4E3", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "white", - "showlakes": true, - "showland": true, - "subunitcolor": "#C8D4E3" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "white", - "polar": { - "angularaxis": { - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "" - }, - "bgcolor": "white", - "radialaxis": { - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "white", - "gridcolor": "#DFE8F3", - "gridwidth": 2, - "linecolor": "#EBF0F8", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#EBF0F8" - }, - "yaxis": { - "backgroundcolor": "white", - "gridcolor": "#DFE8F3", - "gridwidth": 2, - "linecolor": "#EBF0F8", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#EBF0F8" - }, - "zaxis": { - "backgroundcolor": "white", - "gridcolor": "#DFE8F3", - "gridwidth": 2, - "linecolor": "#EBF0F8", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#EBF0F8" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "#DFE8F3", - "linecolor": "#A2B1C6", - "ticks": "" - }, - "baxis": { - "gridcolor": "#DFE8F3", - "linecolor": "#A2B1C6", - "ticks": "" - }, - "bgcolor": "white", - "caxis": { - "gridcolor": "#DFE8F3", - "linecolor": "#A2B1C6", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "#EBF0F8", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "#EBF0F8", - "zerolinewidth": 2 - } - } - }, - "title": { - "font": { - "color": "Black", - "size": 22 - }, - "text": "Hierarchical Clustering", - "x": 0.5, - "xanchor": "center", - "yanchor": "top" - }, - "width": 1000, - "xaxis": { - "mirror": "allticks", - "rangemode": "tozero", - "showgrid": false, - "showline": true, - "showticklabels": true, - "ticks": "outside", - "type": "linear", - "zeroline": false - }, - "yaxis": { - "mirror": "allticks", - "range": [ - -550, - 0 - ], - "rangemode": "tozero", - "showgrid": false, - "showline": true, - "showticklabels": true, - "tickmode": "array", - "ticks": "outside", - "ticktext": [ - "46_radio_antenna_lightning", - "51_radio_lost_dropped", - "10_signal_traffic_damaged", - "30_airport_lightning_lights", - "12_hydrant_fire_hit", - "50_hydrant_vehicle_struck", - "26_water_es_ms", - "35_school_water_elementary", - "2_froze_pipe_sewer", - "43_hs_water_tremper", - "19_water_damage_goodman", - "31_center_water_main", - "8_broken_door_glass", - "23_window_broken_windows", - "4_theft_of_stolen", - "24_laptop_theft_from", - "32_phone_system_phones", - "44_laptop_mckinley_damaged", - "3_power_surge_generator", - "40_storm_multiple_sites", - "1_fire_smoke_damage", - "6_lightning_damage_scale", - "34_well_meter_flow", - "39_equipment_playground_slide", - "27_dmg_humboldt_lafollette", - "49_ms_es_lightning", - "41_hs_lightning_hhs", - "48_gym_floor_injured", - "38_wind_fence_park", - "11_wind_damage_course", - "25_roof_wind_shingles", - "18_hail_buildings_roof", - "52_roof_collapsed_collapse", - "53_buildings_building_water", - "54_tower_lightning_north", - "0_glass_vandalism_west", - "13_llm_glass_mendota", - "9_lightning_dept_hall", - "7_park_vandalism_pavilion", - "42_park_washington_vandalism", - "5_graffiti_on_kennedy", - "16_fence_gate_vehicle", - "20_shelter_eastman_farlin", - "28_vandalism_damage_odonnell", - "33_vandalism_lemonweir_lock", - "22_pole_light_damaged", - "21_pole_vehicle_hit", - "29_street_light_run", - "47_street_pole_light", - "15_computer_lightning_to", - "45_water_equipment_carpet", - "36_sign_vehicle_signal", - "37_overhead_door_damaged", - "14_garage_door_hwy", - "17_building_truck_vehicle" - ], - "tickvals": [ - -5, - -15, - -25, - -35, - -45, - -55, - -65, - -75, - -85, - -95, - -105, - -115, - -125, - -135, - -145, - -155, - -165, - -175, - -185, - -195, - -205, - -215, - -225, - -235, - -245, - -255, - -265, - -275, - -285, - -295, - -305, - -315, - -325, - -335, - -345, - -355, - -365, - -375, - -385, - -395, - -405, - -415, - -425, - -435, - -445, - -455, - -465, - -475, - -485, - -495, - -505, - -515, - -525, - -535, - -545 - ], - "type": "linear", - "zeroline": false - } - } - }, - "text/html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "topic_model.visualize_hierarchy()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "QR332SW6EVHK" - }, - "source": [ - "Next, we want to assign labels to each cluster.\n", - "Compared to manually labeling thousands of samples, this task is much less burdensome!\n", - "\n", - "This is usually a manual task. Assignment of labels is guided by the topic information, the topic word scores and the hierarchical clustering.\n", - "\n", - "In our case, the actual labels are available, so that we can use this information to perform the labeling.\n", - "\n", - "Let's inspect how well the clusters matches the labels. The graph below shows one column per topic.\n", - "The shading indicates the distribution of labels within a given topic.\n", - "The presence of a single dark patch in a column indicates that almost all of the samples of the topic are associated with a single label." - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 542 - }, - "id": "RDl-OdssEVHK", - "outputId": "413b0dc3-7b14-405f-97a7-0dcf77b9b9ef" - }, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "coloraxis": "coloraxis", - "hovertemplate": "Topic: %{x}
labels: %{y}
color: %{z}", - "name": "0", - "type": "heatmap", - "x": [ - -1, - 0, - 1, - 2, - 3, - 4, - 5, - 6, - 7, - 8, - 9, - 10, - 11, - 12, - 13, - 14, - 15, - 16, - 17, - 18, - 19, - 20, - 21, - 22, - 23, - 24, - 25, - 26, - 27, - 28, - 29, - 30, - 31, - 32, - 33, - 34, - 35, - 36, - 37, - 38, - 39, - 40, - 41, - 42, - 43, - 44, - 45, - 46, - 47, - 48, - 49, - 50, - 51, - 52, - 53, - 54 - ], - "xaxis": "x", - "y": [ - 0, - 1, - 2, - 3, - 4, - 5, - 6, - 7, - 8 - ], - "yaxis": "y", - "z": [ - [ - 0.4958217270194986, - 1, - 0.09950248756218906, - 0.04395604395604396, - 0, - 0.7950310559006211, - 0.9929078014184397, - 0, - 0.9910714285714286, - 0.8990825688073395, - 0, - 0, - 0, - 0, - 0.8987341772151899, - 0.012987012987012988, - 0.013157894736842105, - 0.0821917808219178, - 0.0273972602739726, - 0, - 0, - 1, - 0, - 0.0625, - 0.8870967741935484, - 0.8688524590163934, - 0.017543859649122806, - 0.03571428571428571, - 1, - 0.9818181818181818, - 0.09259259259259259, - 0, - 0, - 0.061224489795918366, - 0.9795918367346939, - 0, - 0.02127659574468085, - 0.08888888888888889, - 0.045454545454545456, - 0, - 0.2727272727272727, - 0, - 0, - 1, - 0, - 0.6842105263157895, - 0, - 0, - 0, - 0.12121212121212122, - 0, - 0.0625, - 0.12903225806451613, - 0.03333333333333333, - 0.03333333333333333, - 0 - ], - [ - 0.0064995357474466105, - 0, - 0.736318407960199, - 0, - 0.022727272727272728, - 0.006211180124223602, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.02631578947368421, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.016129032258064516, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0196078431372549, - 0, - 0, - 0.02040816326530612, - 0.02127659574468085, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.02564102564102564, - 0, - 0, - 0.02631578947368421, - 0, - 0, - 0.03125, - 0, - 0.03225806451612903, - 0.03333333333333333, - 0, - 0 - ], - [ - 0.20148560817084493, - 0, - 0.01990049751243781, - 0.005494505494505495, - 0.11931818181818182, - 0, - 0, - 0.9921875, - 0, - 0, - 0.9908256880733946, - 0.009615384615384616, - 0, - 0, - 0.02531645569620253, - 0, - 0.9342105263157895, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.9215686274509803, - 0, - 0.7551020408163265, - 0, - 0.851063829787234, - 0.02127659574468085, - 0, - 0, - 0, - 0, - 0.3333333333333333, - 1, - 0, - 0, - 0, - 0.02631578947368421, - 0.9736842105263158, - 0, - 0, - 0.96875, - 0, - 0, - 0, - 0, - 1 - ], - [ - 0.06128133704735376, - 0, - 0, - 0.01098901098901099, - 0.017045454545454544, - 0, - 0, - 0, - 0.008928571428571428, - 0.009174311926605505, - 0, - 0.009615384615384616, - 0.9880952380952381, - 0, - 0, - 0.012987012987012988, - 0.013157894736842105, - 0.0821917808219178, - 0.0547945205479452, - 0.05555555555555555, - 0, - 0, - 0, - 0, - 0.016129032258064516, - 0, - 0.9824561403508771, - 0, - 0, - 0, - 0.037037037037037035, - 0.0196078431372549, - 0, - 0, - 0, - 0, - 0, - 0, - 0.022727272727272728, - 0.9545454545454546, - 0.022727272727272728, - 0.3333333333333333, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.03225806451612903, - 0.1, - 0.03333333333333333, - 0 - ], - [ - 0.0009285051067780873, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0078125, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.9444444444444444, - 0, - 0, - 0.014925373134328358, - 0.015625, - 0, - 0, - 0, - 0, - 0, - 0, - 0.018518518518518517, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.047619047619047616, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.03333333333333333, - 0, - 0 - ], - [ - 0.09377901578458682, - 0, - 0.04975124378109453, - 0.06043956043956044, - 0.005681818181818182, - 0.037267080745341616, - 0, - 0, - 0, - 0.027522935779816515, - 0.009174311926605505, - 0.9711538461538461, - 0, - 0.9759036144578314, - 0.02531645569620253, - 0.935064935064935, - 0, - 0.821917808219178, - 0.8082191780821918, - 0, - 0, - 0, - 0.9552238805970149, - 0.890625, - 0.016129032258064516, - 0.01639344262295082, - 0, - 0, - 0, - 0.01818181818181818, - 0.8333333333333334, - 0.0392156862745098, - 0.04, - 0, - 0, - 0.0851063829787234, - 0, - 0.9111111111111111, - 0.8863636363636364, - 0.022727272727272728, - 0.2727272727272727, - 0, - 0, - 0, - 0, - 0.13157894736842105, - 0, - 0, - 0.9696969696969697, - 0, - 0, - 0.875, - 0.25806451612903225, - 0, - 0.03333333333333333, - 0 - ], - [ - 0.033426183844011144, - 0, - 0.024875621890547265, - 0.17582417582417584, - 0, - 0.006211180124223602, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.012048192771084338, - 0, - 0, - 0, - 0, - 0, - 0, - 0.3382352941176471, - 0, - 0, - 0, - 0, - 0, - 0, - 0.42857142857142855, - 0, - 0, - 0, - 0, - 0.36, - 0.02040816326530612, - 0, - 0, - 0.2553191489361702, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.28205128205128205, - 0, - 0.34210526315789475, - 0, - 0, - 0.21212121212121213, - 0, - 0.03125, - 0.16129032258064516, - 0.03333333333333333, - 0.36666666666666664, - 0 - ], - [ - 0.06963788300835655, - 0, - 0.024875621890547265, - 0.5274725274725275, - 0.011363636363636364, - 0, - 0.0070921985815602835, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.012658227848101266, - 0, - 0, - 0, - 0.0273972602739726, - 0, - 0.6470588235294118, - 0, - 0, - 0, - 0.03225806451612903, - 0, - 0, - 0.5357142857142857, - 0, - 0, - 0.018518518518518517, - 0, - 0.58, - 0.061224489795918366, - 0, - 0, - 0.6808510638297872, - 0, - 0, - 0.022727272727272728, - 0, - 0.2857142857142857, - 0, - 0, - 0.6666666666666666, - 0, - 0.6052631578947368, - 0, - 0, - 0.42424242424242425, - 0, - 0, - 0.03225806451612903, - 0.3333333333333333, - 0.5333333333333333, - 0 - ], - [ - 0.03714020427112349, - 0, - 0.04477611940298507, - 0.17582417582417584, - 0.8238636363636364, - 0.15527950310559005, - 0, - 0, - 0, - 0.06422018348623854, - 0, - 0.009615384615384616, - 0.011904761904761904, - 0.012048192771084338, - 0.0379746835443038, - 0.03896103896103896, - 0.013157894736842105, - 0.0136986301369863, - 0.0821917808219178, - 0, - 0.014705882352941176, - 0, - 0.029850746268656716, - 0.03125, - 0.03225806451612903, - 0.11475409836065574, - 0, - 0, - 0, - 0, - 0, - 0, - 0.02, - 0.10204081632653061, - 0, - 0.0425531914893617, - 0.02127659574468085, - 0, - 0.045454545454545456, - 0, - 0.4318181818181818, - 0, - 0, - 0, - 0.02564102564102564, - 0.18421052631578946, - 0.02631578947368421, - 0, - 0.030303030303030304, - 0.24242424242424243, - 0, - 0.03125, - 0.3548387096774194, - 0.43333333333333335, - 0, - 0 - ] - ] - } - ], - "layout": { - "coloraxis": { - "cmax": 1, - "cmin": -0.05, - "colorscale": [ - [ - 0, - "rgb(255,255,255)" - ], - [ - 0.125, - "rgb(240,240,240)" - ], - [ - 0.25, - "rgb(217,217,217)" - ], - [ - 0.375, - "rgb(189,189,189)" - ], - [ - 0.5, - "rgb(150,150,150)" - ], - [ - 0.625, - "rgb(115,115,115)" - ], - [ - 0.75, - "rgb(82,82,82)" - ], - [ - 0.875, - "rgb(37,37,37)" - ], - [ - 1, - "rgb(0,0,0)" - ] - ] - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "dtick": 1, - "scaleanchor": "y", - "title": { - "text": "Topic" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "dtick": 1, - "range": [ - 0, - 8 - ], - "title": { - "text": "labels" - } - } - } - }, - "text/html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "df_train[\"Topic\"] = topics\n", - "tb = pd.pivot_table(df_train, index=[\"Topic\"], columns=[\"labels\"], aggfunc='count', fill_value=0)[\"Description\"]\n", - "fig = px.imshow(tb.divide(tb.sum(axis=1), axis=0).T, zmin=-0.05)\n", - "fig.update_layout(xaxis={\"dtick\": 1}, yaxis={\"dtick\": 1, \"range\":[0,8]}, coloraxis={\"colorscale\": \"Greys\"})\n", - "fig.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "cLoeG-9tEVHK" - }, - "source": [ - "Obviously, the topic `-1`, which represents the outliers, has a finite frequency for many classes.\n", - "Further, the classes 6 (`WaterNW`) and 7 (`WaterW`) seem to be difficult to tell apart from the clusters; this affects some of the topics.\n", - "For most other topics, the clustering aligns quite well with the labels.\n", - "\n", - "Overall, it appears reasonable to map each topic to the label with the highest frequency. Apart from the exceptions mentioned above, this aligns with a mapping that a human would define manually, in absence of the actual labels.\n", - "\n", - "Therefore, let's define the mapping from topics to labels by picking the label with the highest frequency. The table below shows the topic info, enriched with the label counts and the mapping. " - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "NZ6vPSS-EVHK", - "outputId": "9ba06643-0e5a-40ac-d096-7365def09ae8" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
TopicCountName012345678mappinglabel
0-11077-1_vandalism_at_lightning_es53472176611013675400Vandalism
102080_glass_vandalism_west_es208000000000Vandalism
212011_fire_smoke_damage_equipment20148400105591Fire
321822_froze_pipe_sewer_pipes80120113296327WaterW
431763_power_surge_generator_spoilage0421301021458Misc
541614_theft_of_stolen_break1281000610250Vandalism
651415_graffiti_on_kennedy_hoyt140000000100Vandalism
761286_lightning_damage_scale_dpw001270100002Lightning
871127_park_vandalism_pavilion_dmg111001000000Vandalism
981098_broken_door_glass_breakage98001030070Vandalism
1091099_lightning_dept_hall_hwy001080010002Lightning
111010410_signal_traffic_damaged_paradise001101010015Vehicle
12118411_wind_damage_course_golf00083000013Wind
13128312_hydrant_fire_hit_damaged00000811015Vehicle
14137913_llm_glass_mendota_hawk71020020130Vandalism
15147714_garage_door_hwy_shop10010720035Vehicle
16157615_computer_lightning_to_equipment12711000012Lightning
17167316_fence_gate_vehicle_damaged60060600015Vehicle
18177317_building_truck_vehicle_by20040590265Vehicle
19187218_hail_buildings_roof_multiple00046800004Hail
20196819_water_damage_goodman_pool000000234417WaterW
21206820_shelter_eastman_farlin_seymour68000000000Vandalism
22216721_pole_vehicle_hit_light00001640025Vehicle
23226422_pole_light_damaged_lightpole40001570025Vehicle
24236223_window_broken_windows_screens55101010220Vandalism
25246124_laptop_theft_from_of53000010070Vandalism
26255725_roof_wind_shingles_blew10056000003Wind
27265626_water_es_ms_damage200000243007WaterW
28275527_dmg_humboldt_lafollette_vandalism55000000000Vandalism
29285528_vandalism_damage_odonnell_bandshell54000010000Vandalism
30295429_street_light_run_damaged50021450105Vehicle
31305130_airport_lightning_lights_runway01471020002Lightning
32315031_center_water_main_dept000002182917WaterW
33324932_phone_system_phones_telephone30370001352Lightning
34334933_vandalism_lemonweir_lock_gazebo48100000000Vandalism
35344734_well_meter_flow_lightning01400040022Lightning
36354735_school_water_elementary_high101000123217WaterW
37364536_sign_vehicle_signal_traffic40000410005Vehicle
38374437_overhead_door_damaged_loader20010390025Vehicle
39384438_wind_fence_park_trees00042010103Wind
40394439_equipment_playground_slide_gps1200101200198Misc
41404240_storm_multiple_sites_locations0014142001202Lightning
42414241_hs_lightning_hhs_damage00420000002Lightning
43424142_park_washington_vandalism_jacobus41000000000Vandalism
44433943_hs_water_tremper_pw010000112617WaterW
45443844_laptop_mckinley_damaged_computer26000050070Vandalism
46453845_water_equipment_carpet_to001000132317WaterW
47463846_radio_antenna_lightning_radios01370000002Lightning
48473347_street_pole_light_streetlight00000320015Vehicle
49483348_gym_floor_injured_k940000071487WaterW
50493249_ms_es_lightning_damage01310000002Lightning
51503250_hydrant_vehicle_struck_hit20000281015Vehicle
52513151_radio_lost_dropped_portable41010851118Misc
53523052_roof_collapsed_collapse_gutter110310110138Misc
54533053_buildings_building_water_basement100101111607WaterW
55543054_tower_lightning_north_internet00300000002Lightning
\n", - "
" - ], - "text/plain": [ - " Topic Count Name 0 1 2 3 \\\n", - "0 -1 1077 -1_vandalism_at_lightning_es 534 7 217 66 \n", - "1 0 208 0_glass_vandalism_west_es 208 0 0 0 \n", - "2 1 201 1_fire_smoke_damage_equipment 20 148 4 0 \n", - "3 2 182 2_froze_pipe_sewer_pipes 8 0 1 2 \n", - "4 3 176 3_power_surge_generator_spoilage 0 4 21 3 \n", - "5 4 161 4_theft_of_stolen_break 128 1 0 0 \n", - "6 5 141 5_graffiti_on_kennedy_hoyt 140 0 0 0 \n", - "7 6 128 6_lightning_damage_scale_dpw 0 0 127 0 \n", - "8 7 112 7_park_vandalism_pavilion_dmg 111 0 0 1 \n", - "9 8 109 8_broken_door_glass_breakage 98 0 0 1 \n", - "10 9 109 9_lightning_dept_hall_hwy 0 0 108 0 \n", - "11 10 104 10_signal_traffic_damaged_paradise 0 0 1 1 \n", - "12 11 84 11_wind_damage_course_golf 0 0 0 83 \n", - "13 12 83 12_hydrant_fire_hit_damaged 0 0 0 0 \n", - "14 13 79 13_llm_glass_mendota_hawk 71 0 2 0 \n", - "15 14 77 14_garage_door_hwy_shop 1 0 0 1 \n", - "16 15 76 15_computer_lightning_to_equipment 1 2 71 1 \n", - "17 16 73 16_fence_gate_vehicle_damaged 6 0 0 6 \n", - "18 17 73 17_building_truck_vehicle_by 2 0 0 4 \n", - "19 18 72 18_hail_buildings_roof_multiple 0 0 0 4 \n", - "20 19 68 19_water_damage_goodman_pool 0 0 0 0 \n", - "21 20 68 20_shelter_eastman_farlin_seymour 68 0 0 0 \n", - "22 21 67 21_pole_vehicle_hit_light 0 0 0 0 \n", - "23 22 64 22_pole_light_damaged_lightpole 4 0 0 0 \n", - "24 23 62 23_window_broken_windows_screens 55 1 0 1 \n", - "25 24 61 24_laptop_theft_from_of 53 0 0 0 \n", - "26 25 57 25_roof_wind_shingles_blew 1 0 0 56 \n", - "27 26 56 26_water_es_ms_damage 2 0 0 0 \n", - "28 27 55 27_dmg_humboldt_lafollette_vandalism 55 0 0 0 \n", - "29 28 55 28_vandalism_damage_odonnell_bandshell 54 0 0 0 \n", - "30 29 54 29_street_light_run_damaged 5 0 0 2 \n", - "31 30 51 30_airport_lightning_lights_runway 0 1 47 1 \n", - "32 31 50 31_center_water_main_dept 0 0 0 0 \n", - "33 32 49 32_phone_system_phones_telephone 3 0 37 0 \n", - "34 33 49 33_vandalism_lemonweir_lock_gazebo 48 1 0 0 \n", - "35 34 47 34_well_meter_flow_lightning 0 1 40 0 \n", - "36 35 47 35_school_water_elementary_high 1 0 1 0 \n", - "37 36 45 36_sign_vehicle_signal_traffic 4 0 0 0 \n", - "38 37 44 37_overhead_door_damaged_loader 2 0 0 1 \n", - "39 38 44 38_wind_fence_park_trees 0 0 0 42 \n", - "40 39 44 39_equipment_playground_slide_gps 12 0 0 1 \n", - "41 40 42 40_storm_multiple_sites_locations 0 0 14 14 \n", - "42 41 42 41_hs_lightning_hhs_damage 0 0 42 0 \n", - "43 42 41 42_park_washington_vandalism_jacobus 41 0 0 0 \n", - "44 43 39 43_hs_water_tremper_pw 0 1 0 0 \n", - "45 44 38 44_laptop_mckinley_damaged_computer 26 0 0 0 \n", - "46 45 38 45_water_equipment_carpet_to 0 0 1 0 \n", - "47 46 38 46_radio_antenna_lightning_radios 0 1 37 0 \n", - "48 47 33 47_street_pole_light_streetlight 0 0 0 0 \n", - "49 48 33 48_gym_floor_injured_k9 4 0 0 0 \n", - "50 49 32 49_ms_es_lightning_damage 0 1 31 0 \n", - "51 50 32 50_hydrant_vehicle_struck_hit 2 0 0 0 \n", - "52 51 31 51_radio_lost_dropped_portable 4 1 0 1 \n", - "53 52 30 52_roof_collapsed_collapse_gutter 1 1 0 3 \n", - "54 53 30 53_buildings_building_water_basement 1 0 0 1 \n", - "55 54 30 54_tower_lightning_north_internet 0 0 30 0 \n", - "\n", - " 4 5 6 7 8 mapping label \n", - "0 1 101 36 75 40 0 Vandalism \n", - "1 0 0 0 0 0 0 Vandalism \n", - "2 0 10 5 5 9 1 Fire \n", - "3 0 11 32 96 32 7 WaterW \n", - "4 0 1 0 2 145 8 Misc \n", - "5 0 6 1 0 25 0 Vandalism \n", - "6 0 0 0 1 0 0 Vandalism \n", - "7 1 0 0 0 0 2 Lightning \n", - "8 0 0 0 0 0 0 Vandalism \n", - "9 0 3 0 0 7 0 Vandalism \n", - "10 0 1 0 0 0 2 Lightning \n", - "11 0 101 0 0 1 5 Vehicle \n", - "12 0 0 0 0 1 3 Wind \n", - "13 0 81 1 0 1 5 Vehicle \n", - "14 0 2 0 1 3 0 Vandalism \n", - "15 0 72 0 0 3 5 Vehicle \n", - "16 0 0 0 0 1 2 Lightning \n", - "17 0 60 0 0 1 5 Vehicle \n", - "18 0 59 0 2 6 5 Vehicle \n", - "19 68 0 0 0 0 4 Hail \n", - "20 0 0 23 44 1 7 WaterW \n", - "21 0 0 0 0 0 0 Vandalism \n", - "22 1 64 0 0 2 5 Vehicle \n", - "23 1 57 0 0 2 5 Vehicle \n", - "24 0 1 0 2 2 0 Vandalism \n", - "25 0 1 0 0 7 0 Vandalism \n", - "26 0 0 0 0 0 3 Wind \n", - "27 0 0 24 30 0 7 WaterW \n", - "28 0 0 0 0 0 0 Vandalism \n", - "29 0 1 0 0 0 0 Vandalism \n", - "30 1 45 0 1 0 5 Vehicle \n", - "31 0 2 0 0 0 2 Lightning \n", - "32 0 2 18 29 1 7 WaterW \n", - "33 0 0 1 3 5 2 Lightning \n", - "34 0 0 0 0 0 0 Vandalism \n", - "35 0 4 0 0 2 2 Lightning \n", - "36 0 0 12 32 1 7 WaterW \n", - "37 0 41 0 0 0 5 Vehicle \n", - "38 0 39 0 0 2 5 Vehicle \n", - "39 0 1 0 1 0 3 Wind \n", - "40 0 12 0 0 19 8 Misc \n", - "41 2 0 0 12 0 2 Lightning \n", - "42 0 0 0 0 0 2 Lightning \n", - "43 0 0 0 0 0 0 Vandalism \n", - "44 0 0 11 26 1 7 WaterW \n", - "45 0 5 0 0 7 0 Vandalism \n", - "46 0 0 13 23 1 7 WaterW \n", - "47 0 0 0 0 0 2 Lightning \n", - "48 0 32 0 0 1 5 Vehicle \n", - "49 0 0 7 14 8 7 WaterW \n", - "50 0 0 0 0 0 2 Lightning \n", - "51 0 28 1 0 1 5 Vehicle \n", - "52 0 8 5 1 11 8 Misc \n", - "53 1 0 1 10 13 8 Misc \n", - "54 0 1 11 16 0 7 WaterW \n", - "55 0 0 0 0 0 2 Lightning " - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tb[\"mapping\"] = tb.values.argmax(axis=1)\n", - "tb[\"label\"] = [labels[i] for i in tb[\"mapping\"]]\n", - "mapping = {i: tb.loc[i, \"mapping\"] for i in tb.index}\n", - "topic_model.get_topic_info().merge(tb, on=\"Topic\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "YkF2EY-hEVHK" - }, - "source": [ - "Now, let's apply this model to the validation set. First, we assign each sample to a cluster, based on the clustering model." - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "xeE03QWFEVHK", - "outputId": "b6a5ff69-a3a6-40be-f9b2-fb9fb38cfba5" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/ubuntu/anaconda3/envs/pytorch_latest_p37/lib/python3.7/site-packages/scipy/sparse/_index.py:125: SparseEfficiencyWarning:\n", - "\n", - "Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient.\n", - "\n" - ] - } - ], - "source": [ - "topics_test, probs_test = topic_model.transform(df_valid[\"Description\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "gKz-IvZEEVHL" - }, - "source": [ - "Then, we apply the mapping from topics to labels, which we have defined above based on the training set. The table below shows for each topic the frequency by label, and the mapping." - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "WRLhMAZhEVHL", - "outputId": "d396bc87-da4e-491e-be9d-7104692a7a9c" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
labels012345678mapping
Topic
-15733628028138180
153501012121
2411006211197
300500000298
417010010090
559000030010
600110000002
79000000000
818000000010
90051000002
1010020100015
1100034000113
1200000130005
13104101051110
1400000130005
1501260000022
161000090015
1710000150035
1800021800004
190000005307
203000000000
2100010470005
220011060015
2315000000030
245000000050
2500022000013
260000002007
281000000000
2910000190005
3000111000002
310000004207
320040000002
335000000000
340130000002
350200003107
3600000220025
3730120150015
380007010003
391000020018
400033000302
430000002007
440000000020
450000004007
4600110000002
470000030015
480000006327
500000070005
510000010038
520001000118
530100004327
540140000002
\n", - "
" - ], - "text/plain": [ - "labels 0 1 2 3 4 5 6 7 8 mapping\n", - "Topic \n", - "-1 57 3 36 28 0 28 13 8 18 0\n", - " 1 5 35 0 1 0 1 2 1 2 1\n", - " 2 4 1 1 0 0 6 21 11 9 7\n", - " 3 0 0 5 0 0 0 0 0 29 8\n", - " 4 17 0 1 0 0 1 0 0 9 0\n", - " 5 59 0 0 0 0 3 0 0 1 0\n", - " 6 0 0 11 0 0 0 0 0 0 2\n", - " 7 9 0 0 0 0 0 0 0 0 0\n", - " 8 18 0 0 0 0 0 0 0 1 0\n", - " 9 0 0 5 1 0 0 0 0 0 2\n", - " 10 1 0 0 2 0 10 0 0 1 5\n", - " 11 0 0 0 34 0 0 0 1 1 3\n", - " 12 0 0 0 0 0 13 0 0 0 5\n", - " 13 104 1 0 1 0 5 1 1 1 0\n", - " 14 0 0 0 0 0 13 0 0 0 5\n", - " 15 0 1 26 0 0 0 0 0 2 2\n", - " 16 1 0 0 0 0 9 0 0 1 5\n", - " 17 1 0 0 0 0 15 0 0 3 5\n", - " 18 0 0 0 2 18 0 0 0 0 4\n", - " 19 0 0 0 0 0 0 5 3 0 7\n", - " 20 3 0 0 0 0 0 0 0 0 0\n", - " 21 0 0 0 1 0 47 0 0 0 5\n", - " 22 0 0 1 1 0 6 0 0 1 5\n", - " 23 15 0 0 0 0 0 0 0 3 0\n", - " 24 5 0 0 0 0 0 0 0 5 0\n", - " 25 0 0 0 22 0 0 0 0 1 3\n", - " 26 0 0 0 0 0 0 2 0 0 7\n", - " 28 1 0 0 0 0 0 0 0 0 0\n", - " 29 1 0 0 0 0 19 0 0 0 5\n", - " 30 0 0 11 1 0 0 0 0 0 2\n", - " 31 0 0 0 0 0 0 4 2 0 7\n", - " 32 0 0 4 0 0 0 0 0 0 2\n", - " 33 5 0 0 0 0 0 0 0 0 0\n", - " 34 0 1 3 0 0 0 0 0 0 2\n", - " 35 0 2 0 0 0 0 3 1 0 7\n", - " 36 0 0 0 0 0 22 0 0 2 5\n", - " 37 3 0 1 2 0 15 0 0 1 5\n", - " 38 0 0 0 7 0 1 0 0 0 3\n", - " 39 1 0 0 0 0 2 0 0 1 8\n", - " 40 0 0 3 3 0 0 0 3 0 2\n", - " 43 0 0 0 0 0 0 2 0 0 7\n", - " 44 0 0 0 0 0 0 0 0 2 0\n", - " 45 0 0 0 0 0 0 4 0 0 7\n", - " 46 0 0 11 0 0 0 0 0 0 2\n", - " 47 0 0 0 0 0 3 0 0 1 5\n", - " 48 0 0 0 0 0 0 6 3 2 7\n", - " 50 0 0 0 0 0 7 0 0 0 5\n", - " 51 0 0 0 0 0 1 0 0 3 8\n", - " 52 0 0 0 1 0 0 0 1 1 8\n", - " 53 0 1 0 0 0 0 4 3 2 7\n", - " 54 0 1 4 0 0 0 0 0 0 2" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_valid[\"Topic\"] = topics_test\n", - "df_valid[\"prob\"] = probs_test\n", - "df_valid[\"pred\"] = [mapping[t] for t in topics_test]\n", - "df_valid.to_excel(\"results/peril_topics.xlsx\")\n", - "tb_valid = pd.pivot_table(df_valid, index=[\"Topic\"], columns=[\"labels\"], aggfunc='count', fill_value=0)[\"Description\"]\n", - "tb_valid[\"mapping\"] = [mapping[t] for t in tb_valid.index]\n", - "tb_valid" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "m7epfnhsEVHL" - }, - "source": [ - "This classifier achieves an accuracy score of ca. 70%, compared to 30% obtained with the dummy classifier. " - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 872 - }, - "id": "ZF9x0l1xEVHL", - "outputId": "8585246e-643d-4e7b-f2fa-20c3ea94a77c" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Topic modeling by clustering\n", - "accuracy score = 69.6%, log loss = nan, Brier loss = nan\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " Vandalism 0.63 0.95 0.76 310\n", - " Fire 0.74 0.76 0.75 46\n", - " Lightning 0.86 0.63 0.73 123\n", - " Wind 0.94 0.59 0.72 107\n", - " Hail 0.90 1.00 0.95 18\n", - " Vehicle 0.88 0.79 0.83 227\n", - " WaterNW 0.00 0.00 0.00 67\n", - " WaterW 0.23 0.61 0.33 38\n", - " Misc 0.76 0.33 0.46 103\n", - "\n", - " accuracy 0.70 1039\n", - " macro avg 0.66 0.63 0.61 1039\n", - "weighted avg 0.71 0.70 0.68 1039\n", - "\n" - ] - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_peril_topic_a", - "format": "svg" - } - }, - "data": [ - { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "xaxis": "x", - "y": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "yaxis": "y", - "z": [ - [ - 293, - 5, - 0, - 0, - 0, - 7, - 0, - 4, - 1 - ], - [ - 4, - 35, - 3, - 0, - 0, - 0, - 0, - 4, - 0 - ], - [ - 37, - 0, - 78, - 0, - 0, - 2, - 0, - 1, - 5 - ], - [ - 29, - 1, - 5, - 63, - 2, - 6, - 0, - 0, - 1 - ], - [ - 0, - 0, - 0, - 0, - 18, - 0, - 0, - 0, - 0 - ], - [ - 37, - 1, - 0, - 1, - 0, - 179, - 0, - 6, - 3 - ], - [ - 14, - 2, - 0, - 0, - 0, - 0, - 0, - 51, - 0 - ], - [ - 9, - 1, - 3, - 1, - 0, - 0, - 0, - 23, - 1 - ], - [ - 40, - 2, - 2, - 2, - 0, - 10, - 0, - 13, - 34 - ] - ] - } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 14 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Topic modeling by clustering" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } - } - } - }, - "text/html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "_ = evaluate_classifier(df_valid[\"labels\"], df_valid[\"pred\"], None, labels, \"Topic modeling by clustering\", \"cm_peril_topic_a\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Kq6ygqVhEVHL" - }, - "source": [ - "BERTopic provides the function `find_topics` which returns a list of IDs and similarity scores of topics that best match a given search term.\n", - "\n", - "This is useful to validate the mapping. Let's use the search term \"Fire\" and retrieve the three most similar topics.\n", - "For each of these topics, we print the similarity score and the label it was mapped to. We also show the word scores for each topic." - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 394 - }, - "id": "8lXgN3eBEVHL", - "outputId": "eca8d60f-a11e-4bc2-a29d-f5b7d3d284fe" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "topic 1: similarity score 91.8%, mapped to peril 1 (Fire)\n", - "topic 12: similarity score 69.0%, mapped to peril 5 (Vehicle)\n", - "topic 6: similarity score 61.5%, mapped to peril 2 (Lightning)\n" - ] - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "marker": { - "color": "#D55E00" - }, - "orientation": "h", - "type": "bar", - "x": [ - 0.023295897805408042, - 0.023555605798973325, - 0.025803975483149527, - 0.08229676777844862, - 0.15913408180789676 - ], - "xaxis": "x", - "y": [ - "station ", - "equipment ", - "damage ", - "smoke ", - "fire " - ], - "yaxis": "y" - }, - { - "marker": { - "color": "#0072B2" - }, - "orientation": "h", - "type": "bar", - "x": [ - 0.06773847894241732, - 0.06843868470222605, - 0.08788076091307075, - 0.2101435049735843, - 0.37106834322585786 - ], - "xaxis": "x2", - "y": [ - "run ", - "damaged ", - "hit ", - "fire ", - "hydrant " - ], - "yaxis": "y2" - }, - { - "marker": { - "color": "#CC79A7" - }, - "orientation": "h", - "type": "bar", - "x": [ - 0.020046212271247463, - 0.034534857629611976, - 0.03582062495989983, - 0.06723236635579213, - 0.14756059548565328 - ], - "xaxis": "x3", - "y": [ - "museum ", - "dpw ", - "scale ", - "damage ", - "lightning " - ], - "yaxis": "y3" - } - ], - "layout": { - "annotations": [ - { - "font": { - "size": 16 - }, - "showarrow": false, - "text": "Topic 1", - "x": 0.0875, - "xanchor": "center", - "xref": "paper", - "y": 1, - "yanchor": "bottom", - "yref": "paper" - }, - { - "font": { - "size": 16 - }, - "showarrow": false, - "text": "Topic 12", - "x": 0.36250000000000004, - "xanchor": "center", - "xref": "paper", - "y": 1, - "yanchor": "bottom", - "yref": "paper" - }, - { - "font": { - "size": 16 - }, - "showarrow": false, - "text": "Topic 6", - "x": 0.6375000000000001, - "xanchor": "center", - "xref": "paper", - "y": 1, - "yanchor": "bottom", - "yref": "paper" - } - ], - "height": 325, - "hoverlabel": { - "bgcolor": "white", - "font": { - "family": "Rockwell", - "size": 16 - } - }, - "showlegend": false, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "white", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "white", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "#C8D4E3", - "linecolor": "#C8D4E3", - "minorgridcolor": "#C8D4E3", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "#C8D4E3", - "linecolor": "#C8D4E3", - "minorgridcolor": "#C8D4E3", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "white", - "showlakes": true, - "showland": true, - "subunitcolor": "#C8D4E3" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "white", - "polar": { - "angularaxis": { - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "" - }, - "bgcolor": "white", - "radialaxis": { - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "white", - "gridcolor": "#DFE8F3", - "gridwidth": 2, - "linecolor": "#EBF0F8", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#EBF0F8" - }, - "yaxis": { - "backgroundcolor": "white", - "gridcolor": "#DFE8F3", - "gridwidth": 2, - "linecolor": "#EBF0F8", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#EBF0F8" - }, - "zaxis": { - "backgroundcolor": "white", - "gridcolor": "#DFE8F3", - "gridwidth": 2, - "linecolor": "#EBF0F8", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#EBF0F8" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "#DFE8F3", - "linecolor": "#A2B1C6", - "ticks": "" - }, - "baxis": { - "gridcolor": "#DFE8F3", - "linecolor": "#A2B1C6", - "ticks": "" - }, - "bgcolor": "white", - "caxis": { - "gridcolor": "#DFE8F3", - "linecolor": "#A2B1C6", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "#EBF0F8", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "#EBF0F8", - "zerolinewidth": 2 - } - } - }, - "title": { - "font": { - "color": "Black", - "size": 22 - }, - "text": "Topic Word Scores", - "x": 0.5, - "xanchor": "center", - "yanchor": "top" - }, - "width": 1000, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 0.175 - ], - "showgrid": true - }, - "xaxis2": { - "anchor": "y2", - "domain": [ - 0.275, - 0.45 - ], - "showgrid": true - }, - "xaxis3": { - "anchor": "y3", - "domain": [ - 0.55, - 0.7250000000000001 - ], - "showgrid": true - }, - "xaxis4": { - "anchor": "y4", - "domain": [ - 0.825, - 1 - ], - "showgrid": true - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "showgrid": true - }, - "yaxis2": { - "anchor": "x2", - "domain": [ - 0, - 1 - ], - "showgrid": true - }, - "yaxis3": { - "anchor": "x3", - "domain": [ - 0, - 1 - ], - "showgrid": true - }, - "yaxis4": { - "anchor": "x4", - "domain": [ - 0, - 1 - ], - "showgrid": true - } - } - }, - "text/html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "similar_topics, similarity = topic_model.find_topics(\"Fire\", top_n=3)\n", - "for t, s in zip(similar_topics, similarity):\n", - " print(f\"topic {t:2d}: similarity score {s:.1%}, mapped to peril {mapping[t]:d} ({labels[mapping[t]]})\")\n", - "topic_model.visualize_barchart(similar_topics)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "zP9N-QnoEVHM" - }, - "source": [ - "As expected, the topics which have been mapped to \"Fire\" appear first in the list, with similarity scores of more than 80%.\n", - "\n", - "The first topic that was not mapped to \"Fire\" has a similarity score of less than 70%. It was mapped to the label \"Vehicle\".\n", - "Indeed: Although the word \"Fire\" ranks second in the word score, this is in combination with hydrant. This is about vehicles hitting fire hydrants." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "67ZBWOL-EVHM" - }, - "source": [ - "\n", - "\n", - "### 5.2. Refinement\n", - "\n", - "Above, a relatively large number of samples was classified as outlier. All outliers were mapped to a single class, but this mapping is questionable, because we have seen that outlier samples belong to different classes.\n", - "\n", - "To mitigate this issue, we could label the outlier samples manually. However, this is quite tedious.\n", - "\n", - "Alternatively, we can train a classifier to the labels obtained from the unsupervised approach. To avoid label noise, we suppress outliers.\n", - "\n", - "First, we create the training dataset. We replace the true labels by the labels obtained from the clustering approach." - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 49, - "referenced_widgets": [ - "812345908d9c456b892444c0b98cae07", - "32c3cd5ee8dd4ab09011eed21d488ab6", - "57f258f537b548ae9f6f7a4f7e6a0078", - "1a4d202a3564477cb941ecf2c69e3a33", - "0b3b964e02a546b4aedd07d27135d031", - "46b16ac89d734566a2098ba73d31f56b", - "99ae5a8cceee4c7ab0daeea24cb0c2a5", - "dd4bd7681c8b44a2b7162b365948b8bd", - "0fd482518b9f4859866abc02b3f98f94", - "f3720a4f21c2491eb4ea17f3efcc74d1", - "d7207b39009a4219bd76e13063f6bee9" - ] - }, - "id": "rM4tmo_WEVHM", - "outputId": "a7ff735c-2cc2-473e-bc4b-6b86a6d799b2" - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "099231f01c2a429c991f22e06af5a5bd", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/4 [00:00=0].copy()\n", - "df_train_unsupervised[\"labels\"] = [mapping[t] for t in df_train_unsupervised[\"Topic\"]]\n", - "ds_train_unsupervised = Dataset.from_pandas(df_train_unsupervised)\n", - "ds_train_unsupervised = ds_train_unsupervised.map(tokenize, batched=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "4Mdi7Y6aEVHN", - "outputId": "e5b8a5e3-76cb-493d-8f63-d5aca1e07267" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "loading configuration file https://huggingface.co/distilbert-base-uncased/resolve/main/config.json from cache at /home/ubuntu/.cache/huggingface/transformers/23454919702d26495337f3da04d1655c7ee010d5ec9d77bdb9e399e00302c0a1.91b885ab15d631bf9cee9dc9d25ece0afd932f2f5130eba28f2055b2220c0333\n", - "Model config DistilBertConfig {\n", - " \"_name_or_path\": \"distilbert-base-uncased\",\n", - " \"activation\": \"gelu\",\n", - " \"architectures\": [\n", - " \"DistilBertForMaskedLM\"\n", - " ],\n", - " \"attention_dropout\": 0.1,\n", - " \"dim\": 768,\n", - " \"dropout\": 0.1,\n", - " \"hidden_dim\": 3072,\n", - " \"id2label\": {\n", - " \"0\": \"LABEL_0\",\n", - " \"1\": \"LABEL_1\",\n", - " \"2\": \"LABEL_2\",\n", - " \"3\": \"LABEL_3\",\n", - " \"4\": \"LABEL_4\",\n", - " \"5\": \"LABEL_5\",\n", - " \"6\": \"LABEL_6\",\n", - " \"7\": \"LABEL_7\",\n", - " \"8\": \"LABEL_8\"\n", - " },\n", - " \"initializer_range\": 0.02,\n", - " \"label2id\": {\n", - " \"LABEL_0\": 0,\n", - " \"LABEL_1\": 1,\n", - " \"LABEL_2\": 2,\n", - " \"LABEL_3\": 3,\n", - " \"LABEL_4\": 4,\n", - " \"LABEL_5\": 5,\n", - " \"LABEL_6\": 6,\n", - " \"LABEL_7\": 7,\n", - " \"LABEL_8\": 8\n", - " },\n", - " \"max_position_embeddings\": 512,\n", - " \"model_type\": \"distilbert\",\n", - " \"n_heads\": 12,\n", - " \"n_layers\": 6,\n", - " \"pad_token_id\": 0,\n", - " \"qa_dropout\": 0.1,\n", - " \"seq_classif_dropout\": 0.2,\n", - " \"sinusoidal_pos_embds\": false,\n", - " \"tie_weights_\": true,\n", - " \"transformers_version\": \"4.19.2\",\n", - " \"vocab_size\": 30522\n", - "}\n", - "\n", - "loading weights file https://huggingface.co/distilbert-base-uncased/resolve/main/pytorch_model.bin from cache at /home/ubuntu/.cache/huggingface/transformers/9c169103d7e5a73936dd2b627e42851bec0831212b677c637033ee4bce9ab5ee.126183e36667471617ae2f0835fab707baa54b731f991507ebbb55ea85adb12a\n", - "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_layer_norm.bias', 'vocab_transform.bias', 'vocab_projector.bias', 'vocab_layer_norm.weight', 'vocab_projector.weight', 'vocab_transform.weight']\n", - "- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", - "- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", - "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.weight', 'classifier.weight', 'classifier.bias', 'pre_classifier.bias']\n", - "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", - "PyTorch: setting up devices\n", - "The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).\n", - "The following columns in the training set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: Lightning, WaterW, Wind, WaterNW, Vandalism, words per description, Fire, Hail, Vehicle, Misc, __index_level_0__, Description, Loss, Topic. If Lightning, WaterW, Wind, WaterNW, Vandalism, words per description, Fire, Hail, Vehicle, Misc, __index_level_0__, Description, Loss, Topic are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n", - "***** Running training *****\n", - " Num examples = 3914\n", - " Num Epochs = 2\n", - " Instantaneous batch size per device = 8\n", - " Total train batch size (w. parallel, distributed & accumulation) = 8\n", - " Gradient Accumulation steps = 1\n", - " Total optimization steps = 980\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " [980/980 00:40, Epoch 2/2]\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
StepTraining Loss
4890.387200
9780.093200

" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Training completed. Do not forget to share your model on huggingface.co/models =)\n", - "\n", - "\n", - "Saving model checkpoint to distilbert-base-uncased_peril_u\n", - "Configuration saved in distilbert-base-uncased_peril_u/config.json\n", - "Model weights saved in distilbert-base-uncased_peril_u/pytorch_model.bin\n" - ] - } - ], - "source": [ - "model_name = \"distilbert-base-uncased\"\n", - "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", - "torch.manual_seed(42) # for reproducibility, set random seed before instantiating the model\n", - "model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(labels)).to(device)\n", - "\n", - "# train the model\n", - "batch_size = 8\n", - "logging_steps = len(ds_train_unsupervised) // batch_size\n", - "training_args = TrainingArguments(\n", - " output_dir=model_name+\"_peril_u_epochs\",\n", - " num_train_epochs=2,\n", - " per_device_train_batch_size=batch_size,\n", - " per_device_eval_batch_size=batch_size,\n", - " metric_for_best_model=\"f1\",\n", - " logging_steps=logging_steps,\n", - " save_strategy=trainer_utils.IntervalStrategy.NO,\n", - ")\n", - "trainer = Trainer(model=model, args=training_args,\n", - " compute_metrics=compute_metrics, train_dataset=ds_train_unsupervised,\n", - " eval_dataset=ds[\"test\"])\n", - "trainer.train();\n", - "trainer.save_model(model_name + \"_peril_u\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Rs65tNt_EVHN" - }, - "source": [ - "Then, we evaluate the classifier on the test set, by comparing the predicted to the true labels." - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 961 - }, - "id": "HldJUXwtEVHN", - "outputId": "4e384eaa-5e89-47de-b40e-e92bf7ddfe77" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "The following columns in the test set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: Lightning, WaterW, Wind, cls_hidden_state, WaterNW, Vandalism, Fire, mean_hidden_state, Hail, Vehicle, Misc, Description, Loss. If Lightning, WaterW, Wind, cls_hidden_state, WaterNW, Vandalism, Fire, mean_hidden_state, Hail, Vehicle, Misc, Description, Loss are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n", - "***** Running Prediction *****\n", - " Num examples = 1039\n", - " Batch size = 8\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "

\n", - " \n", - " \n", - " [130/130 00:01]\n", - "
\n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Topic modeling by clustering, refined\n", - "accuracy score = 79.2%, log loss = 1.456, Brier loss = 0.385\n", - "classification report\n", - " precision recall f1-score support\n", - "\n", - " Vandalism 0.85 0.93 0.89 310\n", - " Fire 0.76 0.85 0.80 46\n", - " Lightning 0.88 0.94 0.91 123\n", - " Wind 0.99 0.80 0.89 107\n", - " Hail 0.90 1.00 0.95 18\n", - " Vehicle 0.87 0.89 0.88 227\n", - " WaterNW 0.00 0.00 0.00 67\n", - " WaterW 0.28 0.87 0.42 38\n", - " Misc 0.70 0.41 0.52 103\n", - "\n", - " accuracy 0.79 1039\n", - " macro avg 0.69 0.74 0.69 1039\n", - "weighted avg 0.78 0.79 0.77 1039\n", - "\n" - ] - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly", - "toImageButtonOptions": { - "filename": "cm_peril_topic_b", - "format": "svg" - } - }, - "data": [ - { - "coloraxis": "coloraxis", - "hovertemplate": "x: %{x}
y: %{y}
color: %{z}", - "name": "0", - "texttemplate": "%{z}", - "type": "heatmap", - "x": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "xaxis": "x", - "y": [ - " Vandalism ", - " Fire ", - " Lightning ", - " Wind ", - " Hail ", - " Vehicle ", - " WaterNW ", - " WaterW ", - " Misc " - ], - "yaxis": "y", - "z": [ - [ - 288, - 7, - 3, - 0, - 0, - 8, - 0, - 3, - 1 - ], - [ - 1, - 39, - 3, - 0, - 0, - 1, - 0, - 1, - 1 - ], - [ - 1, - 1, - 116, - 0, - 0, - 1, - 0, - 0, - 4 - ], - [ - 3, - 0, - 5, - 86, - 2, - 8, - 0, - 2, - 1 - ], - [ - 0, - 0, - 0, - 0, - 18, - 0, - 0, - 0, - 0 - ], - [ - 11, - 0, - 0, - 0, - 0, - 201, - 0, - 9, - 6 - ], - [ - 5, - 1, - 0, - 0, - 0, - 0, - 0, - 59, - 2 - ], - [ - 0, - 0, - 1, - 1, - 0, - 0, - 0, - 33, - 3 - ], - [ - 30, - 3, - 4, - 0, - 0, - 11, - 0, - 13, - 42 - ] - ] - } - ], - "layout": { - "coloraxis": { - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ], - "showscale": false - }, - "font": { - "size": 14 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Topic modeling by clustering, refined" - }, - "width": 600, - "xaxis": { - "anchor": "y", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "scaleanchor": "y", - "title": { - "text": "predicted class" - } - }, - "yaxis": { - "anchor": "x", - "autorange": "reversed", - "constrain": "domain", - "domain": [ - 0, - 1 - ], - "title": { - "text": "actual class" - } - } - } - }, - "text/html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "predictions = trainer.predict(ds[\"test\"])\n", - "_ = evaluate_classifier(predictions.label_ids, None, softmax(predictions.predictions, axis=1), labels, \"Topic modeling by clustering, refined\", \"cm_peril_topic_b\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "r_LJQY04EVHN" - }, - "source": [ - "The accuracy score has improved significantly." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0Wet19WmEVHN" - }, - "source": [ - "\n", - "\n", - "## 6. Conclusions\n", - "\n", - "Congratulations!\n", - "\n", - "In this Part II of the tutorial, you have first applied the techniques you have learned in Part I to a dataset with shorter texts.\n", - "\n", - "Then you have learned how to use zero shot classification in a situation with no labels. The beauty of this approach is that it requires no training and produces a reasonable classification by a list of user-defined expressions.\n", - "\n", - "You have also seen that unsupervised classification can be achieved by similarity scoring between the input sequence and a list of user-defined expressions.\n", - "\n", - "Going one step further, you have seen an approach that creates clusters of similar documents and represents each cluster by typical words. This can be used as a starting point to create meaningful labels.\n", - "\n", - "If you have enjoyed this tutorial, feel free to apply any of the approaches - or improved versions, of course - to your own text data, to enrich your structured features available for supervised learning tasks." - ] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "collapsed_sections": [ - "hcc6Je4lEVG4", - "iEu2UBDEEVG4", - "44WiOM3SEVG-", - "CoYTxK22EVHG", - "csG9Uh15maLE" - ], - "name": "Actuarial_Applications_of_NLP_Part_2_v2.ipynb", - "provenance": [], - "toc_visible": true - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.10" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "00311803314143ecbb24e25acbb94f66": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "00b59754edd24f61a38ea1ed4f1aa077": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "00bddf74632a484b929d238afc51c81e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "03f86c9d0b764e36b23e30358346eaf3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0427a43036264a3683b9ccc05ae4d263": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fe358f54827f476d98557365e873d898", - "IPY_MODEL_5f70a433d78f4d7494af38d6cb103845", - "IPY_MODEL_a8983ba16a794aad8271b7d69a81b3ad" - ], - "layout": "IPY_MODEL_e6fa423db2cd4a628ce17ffd90d3d254" - } - }, - "059dc7a7910e447cb50d06979bdbf539": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "05b5736964ad48e5825672d3ca3cfe69": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "05d19b34fe2e49b5b2076627e73288f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "064dca1b1b824a908647633e4f72f71b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "091fcb8d2a714647a2ece136d3ffeb07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a04fbcff413a4775b5e0476618069995", - "max": 1355863, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_cfe231dfa61e4d2fb55d28535bde9dc4", - "value": 1355863 - } - }, - "099e5c754c404468a90fb9247cc0bbdc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "09ea5fdae5eb49fd898d7d9f027a5785": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ead6bc3051794fca93f0269308fd0c0c", - "max": 349, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_d413bf53515b4cc5ac81b444f15fd19c", - "value": 349 - } - }, - "0a1bd69095c54b25b1641114bcc4d932": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_279fd335dcb44b5bbaec54749a862539", - "placeholder": "​", - "style": "IPY_MODEL_0f7e760ab9444b9196a317d5abd6d309", - "value": " 1/1 [00:00<00:00, 18.67ba/s]" - } - }, - "0a9cd7f035cf4540a15e3d22b74fd5f6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0af9681c674541f5874c3eb7f1798ac4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0b3b964e02a546b4aedd07d27135d031": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0befa271378e45059b91035558802962": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0c8d5caa32624d3e950372123ea76085": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0d15af1100e1498bbcc991f5b78adc59": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0d1dc7e37a7441079a9955a166d0c46d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0d240a2d4bbd40b282dc5a64609672a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c8ee1ad0025148138522d1f3d35a01cf", - "placeholder": "​", - "style": "IPY_MODEL_6b92e4f8e8914c9098eeb35e2daf2882", - "value": " 612/612 [00:00<00:00, 15.7kB/s]" - } - }, - "0d6060ee7aec42d492f9bb1e4b8f2ce4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ecb380ec3dc849c983440cb1b73bfa30", - "placeholder": "​", - "style": "IPY_MODEL_1de320a9241847a894efd02932b989b7", - "value": " 65/65 [00:00<00:00, 72.64ba/s]" - } - }, - "0df5ec008faf4097863467f9fa482d92": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_05b5736964ad48e5825672d3ca3cfe69", - "placeholder": "​", - "style": "IPY_MODEL_89fa8071833c4955b78bb6f8ddfcd4f3", - "value": " 1.18k/1.18k [00:00<00:00, 31.2kB/s]" - } - }, - "0edf2e575f3347f287a964f4e1f3fc49": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0f7e760ab9444b9196a317d5abd6d309": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0fd482518b9f4859866abc02b3f98f94": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "10ad0b729d7a403198a35900081f1108": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1178f617fe0042c3876a9006de9a1d53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "11ab378d7c254c64a910872ea18d7e27": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1369dd9f01474e18ad1d1f0cec6cb77a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "141b59a274af4e12987648aad7c1c0a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2e468409dc97440da727a31629f71d1a", - "max": 1175, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_593c169dfbf345629433470655a325d1", - "value": 1175 - } - }, - "15d67358fa8242faae6b0eca661afcbf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7017cacda2dc4e72971a437d0a2a028c", - "placeholder": "​", - "style": "IPY_MODEL_9b8bc0251d4e422587c993e0935d846e", - "value": "100%" - } - }, - "184ac127cfe442a181e9d1135f45d4b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8ce831be076d4a0aaeac2dea7f74571c", - "max": 112, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_4b9d8d5cbe864468b109aa5abf25d092", - "value": 112 - } - }, - "18cac2a5cc9a48bdab2a64891fb1f66f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1906621155644db484bfe4d4fe07ce12": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1a36071ac6d14266b2208e8a9bc86732": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_24ee4d111fc34bc294d38e589360cd38", - "IPY_MODEL_d68fc2f69eaf48bf905e133be2bc82f1", - "IPY_MODEL_6d477c6ce2fd4e83913ac7fd0eae45dd" - ], - "layout": "IPY_MODEL_1e3fe01fd1b949f9a59742f9ebcf2f15" - } - }, - "1a4d202a3564477cb941ecf2c69e3a33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f3720a4f21c2491eb4ea17f3efcc74d1", - "placeholder": "​", - "style": "IPY_MODEL_d7207b39009a4219bd76e13063f6bee9", - "value": " 5/5 [00:00<00:00, 3.22ba/s]" - } - }, - "1b612c743595417ba3f393056c6a7e7a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1bc3df520c024829b8e9379fd4f09cf7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1bd452a69f6f408182343235b5f74435": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1de320a9241847a894efd02932b989b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1e3fe01fd1b949f9a59742f9ebcf2f15": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1ec9d7b1c71a440db6089c6539f680a3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1f8047295eff40b19f0a976e67f98c3a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "203a6cc968e944c6b70c10e574370b92": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2044594efdf34fcf8d1a84ad027885eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2081108498f544d8b70330a5cf2b33f3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "223f257b5927425ea2793ff78a60a591": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "225b0156f4354ab0a5df66a2d58017d6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "22dd156738a64b1d9c36306ade52a9df": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "23fbeb7bd6a345dcae57aa2807c05fb2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0a9cd7f035cf4540a15e3d22b74fd5f6", - "placeholder": "​", - "style": "IPY_MODEL_46091f4e750c47889eb6a1e852267734", - "value": " 5/5 [00:00<00:00, 20.44ba/s]" - } - }, - "24ee4d111fc34bc294d38e589360cd38": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7d0fcbb785544e5cb5e8dd2ae7aa1f98", - "placeholder": "​", - "style": "IPY_MODEL_babdfdcf27714853ae2be7ea4e7d0713", - "value": "100%" - } - }, - "278142b28f7341209ff853d67c354a10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_90d526066e8c4987a16cbcf7e01c1038", - "placeholder": "​", - "style": "IPY_MODEL_c220518979d74b8c9089ffc8fb62ca04", - "value": "Downloading: 100%" - } - }, - "279fd335dcb44b5bbaec54749a862539": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "27d41f8299cb473180149d8504862c09": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "28c6d8a464d4483eb8abae01f4cf14db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "28eab6f7e43848fcae1d568a26083a55": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2925e8f3abb342f9a10e9e78fa152a81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_943cc95dedf842a09a12e422c28c70f0", - "placeholder": "​", - "style": "IPY_MODEL_9b6a0849f182474c88493b24657e5103", - "value": "100%" - } - }, - "2ac2219e56074d8a9c6a276a0742c618": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dd49d64d85e24fa8b1b6bc33804fc597", - "IPY_MODEL_993d9d6c6c3942cea4abd0852253257f", - "IPY_MODEL_6dc91b7ebdf041bab30eb87fb25d80cf" - ], - "layout": "IPY_MODEL_92640e149e0640efbf76f5d1c0a69012" - } - }, - "2acd1b83b0364cf0b5be89d058f6277d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2081108498f544d8b70330a5cf2b33f3", - "placeholder": "​", - "style": "IPY_MODEL_ada3c89be1224ffea01d05a6696977ab", - "value": " 112/112 [00:00<00:00, 2.72kB/s]" - } - }, - "2b3c46c4f2914c809ec948a648fb291e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2c3b2a634ba147de9014180a70dacc1b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2c84acd0ade64716a46cc6fa86bc6951": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d5c6923249b345599fae1f92fbab2681", - "IPY_MODEL_8f35f14c856d4a8994aaca9820e22ec6", - "IPY_MODEL_0d240a2d4bbd40b282dc5a64609672a6" - ], - "layout": "IPY_MODEL_3732cedae3eb4ca89fda08e5467715ee" - } - }, - "2d1a52b80c5a4213a6dc911524663467": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2e468409dc97440da727a31629f71d1a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2eaea0dc84ed4ebfba680f2fcfa04637": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2d1a52b80c5a4213a6dc911524663467", - "max": 65, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_bd967c22dcca4384b1f2ef93792eec5b", - "value": 65 - } - }, - "3027db6a4b5f4b34ad69c5c34681fc97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "32b677302bf749f8bb437be83cf1a9d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "32c3cd5ee8dd4ab09011eed21d488ab6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_46b16ac89d734566a2098ba73d31f56b", - "placeholder": "​", - "style": "IPY_MODEL_99ae5a8cceee4c7ab0daeea24cb0c2a5", - "value": "100%" - } - }, - "33a0207a4af444c0a62de263d5772590": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_abf058cbf4d0482eb0b7d3c5cb2dac0c", - "max": 5, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_bd085d626c39431c87272f1775c31725", - "value": 5 - } - }, - "352c9cd723a84d698fe110f0056f756b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8c59ac47b9ab4b1093a738827bf15261", - "IPY_MODEL_184ac127cfe442a181e9d1135f45d4b9", - "IPY_MODEL_2acd1b83b0364cf0b5be89d058f6277d" - ], - "layout": "IPY_MODEL_af8f72598deb46588804ca1689d32bd3" - } - }, - "3732cedae3eb4ca89fda08e5467715ee": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "38a5ae14a1ed4f248790e722ef07c632": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "38b7e0b568c447079ff87f12e6ba21a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_18cac2a5cc9a48bdab2a64891fb1f66f", - "max": 53, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_77cd1035f5e94347aa781762a85b6244", - "value": 53 - } - }, - "38e01a43e0424095b0216725223cacc3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a95f0fe4ce3b424ca87a41b1f678c249", - "max": 13156, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_f40893f97e914de090030cccd9cd0be0", - "value": 13156 - } - }, - "38f92f34bc5b4a658dd2f6fbcaec80f1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "395756fef94a4599999d43242fb15233": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "39586bcb9c1b4fbca93d05a582209753": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3a3ccd73339b465ea43741d1edeadd68": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c511ddfcffae4ea286eabbddcb07bc5e", - "IPY_MODEL_5b93aeeeffcb48ed85bb027905659782", - "IPY_MODEL_ae7311c2f28749a4a191de0455a5378c" - ], - "layout": "IPY_MODEL_3aaa95820770413db9e0e25a53be9d19" - } - }, - "3aaa95820770413db9e0e25a53be9d19": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3b71a74a8cc84a6ab5ba95795030faba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_696b1b25f9bb4ff6b3ddc764c690c804", - "placeholder": "​", - "style": "IPY_MODEL_6ff6ee62693b4ce3af2624122d1a7e88", - "value": "Downloading: 100%" - } - }, - "3cb8f213216b4db4b17b6159ff8af1b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3e3f7f53c2d949ebbc9b41d2eec97a4b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3e95e45bdc9147808b25ce2e2b842969": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3fb6cc95ab404b988cad7d68a28a8b50": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "403a646eafea4a1ea95fab6f6e76d023": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "40c801e68caf4b678ab85afae0ef4423": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_86f9a8016dd741fe84808a5babf042a6", - "placeholder": "​", - "style": "IPY_MODEL_6df44ef8a0a142cca7d6af2bfc067cb6", - "value": " 878k/878k [00:01<00:00, 427kB/s]" - } - }, - "411cf8ff337647fd8c1591faf98610c7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4188c72c71db4ecb82e754385003bcf4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "41ea8e1316d340df99aae24bd8c93969": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dbbb4af430e04eadae3287109ef79f77", - "IPY_MODEL_38b7e0b568c447079ff87f12e6ba21a0", - "IPY_MODEL_78961bf6ea3c445a86de8c0a9fa60301" - ], - "layout": "IPY_MODEL_c013bf903fbd4af5bfc99bc0abf78996" - } - }, - "420475421b5043dd96330c4d2005e2db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4262b30ff3384960ada0f7042955027b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "43346612910e44a6ab4618c90fa27829": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_459e68fba5b84cc88db37198e399de63", - "max": 350, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_f39dec147f404f0b851468d008fec716", - "value": 350 - } - }, - "43cbd67bf5714404b0895a53cedf5fd6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2925e8f3abb342f9a10e9e78fa152a81", - "IPY_MODEL_71a02d2db9a7422f924c991a48a3ce9c", - "IPY_MODEL_fd3051ae1a27483da9bfaca20612aca5" - ], - "layout": "IPY_MODEL_a192e1868ac1430597d5fcb565b7c632" - } - }, - "44585c198e864e9f86c6c69d466d3031": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "44fe5107721a490c8b5139744d00d6b3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "45564f8299044b5da17d323762393edb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4588c062e290463bac0a5f468fd56c0d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "459e68fba5b84cc88db37198e399de63": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "46091f4e750c47889eb6a1e852267734": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "465a869777814955a2eff4f206bb3c91": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "46b16ac89d734566a2098ba73d31f56b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "47149232a2d640ca97e85f58cc8af710": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "473781ce46bf4bd9acf858135c26c31b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "47727eb57d314f00b035238e90681338": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "47e1eb19e96a481cb5cf3cdab90d87c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "48e2b645abee40c6b5fcf2586c877f34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6926a810d0674b67aaef319fc6457132", - "placeholder": "​", - "style": "IPY_MODEL_761295306fb94ad6a48a52b3dd4f6c4b", - "value": "Downloading: 100%" - } - }, - "499f2cd457cd4b5da95cb3ec2c2eb635": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4a12f613fa4f4fc0881791941e1c8e0d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bd9ba4aaae6745dcb6b78effa1c8e937", - "placeholder": "​", - "style": "IPY_MODEL_c4a7299fdc564d09b5c662b2eeec51d1", - "value": "Downloading merges.txt: 100%" - } - }, - "4b9d8d5cbe864468b109aa5abf25d092": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4cdd9588dc4f493ea45fae1da13d1d31": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d030c4d6f5914aa5a437c53b52e01ea9", - "max": 231508, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_1178f617fe0042c3876a9006de9a1d53", - "value": 231508 - } - }, - "4d6ec2b0c2bc435e9d3fcbdff951b29b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4df39113ca2043258a34afe304f3d9d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b0202f326ca64676a4b9e2333edf2533", - "placeholder": "​", - "style": "IPY_MODEL_b74e13ff83d148f3898ab00cec0ea79e", - "value": " 13.2k/13.2k [00:00<00:00, 404kB/s]" - } - }, - "4fc06fe12e514785a121c7ae1b9e0c97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "505d2e0776f9413d9e65233a8c7a3ce0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "506e50b472fc48718c2e43b843ca56f7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "509bafaa375041d4b001bacce41a5318": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "50a500aedb6347b9b193bc9d2d544647": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "52b1066a90f24f3a89b56702c5d67fd6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3b71a74a8cc84a6ab5ba95795030faba", - "IPY_MODEL_cb267211536c4106a41b588fa2213296", - "IPY_MODEL_91118756833249068ba8c266b98fe113" - ], - "layout": "IPY_MODEL_86d75ca4676b4db6871a9881611d8c0a" - } - }, - "52ec7cde15c54517800202fea56f6f9b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5671ca67fe5347dc9ce8d78bdc84f147": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "57d028e4b6204017bf158df49b358d48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "57f258f537b548ae9f6f7a4f7e6a0078": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dd4bd7681c8b44a2b7162b365948b8bd", - "max": 5, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_0fd482518b9f4859866abc02b3f98f94", - "value": 5 - } - }, - "5821fd6e83244dc69f06caf1c69420df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_717b5278234d44b3acd04dc27a31dfe2", - "placeholder": "​", - "style": "IPY_MODEL_509bafaa375041d4b001bacce41a5318", - "value": " 350/350 [00:00<00:00, 14.0kB/s]" - } - }, - "583071c719374ee996e4c7d254890412": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "589d76442a81446f81ff107f0449ef35": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5901aeb5d1e24779952c96b8263e62a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "592526530ec44c1886774b8ddbd9306a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_45564f8299044b5da17d323762393edb", - "max": 116, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_3027db6a4b5f4b34ad69c5c34681fc97", - "value": 116 - } - }, - "593c169dfbf345629433470655a325d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5b93aeeeffcb48ed85bb027905659782": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e53e65e6566d41aba1ae11474fd534ba", - "max": 90888945, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_6f380f1159304891bb0e77a369c8f5e9", - "value": 90888945 - } - }, - "5c475d1892c94592b7398bc028439f7a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ba73900d058346d49be5dca064b5e663", - "placeholder": "​", - "style": "IPY_MODEL_e6efec28608d40d1806a247484911a6d", - "value": "Downloading: 100%" - } - }, - "5d8af77774244f15a0b53a5a5498c61b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_203a6cc968e944c6b70c10e574370b92", - "placeholder": "​", - "style": "IPY_MODEL_e7be1952f3234c38adc44db5d30684b4", - "value": " 116/116 [00:00<00:00, 3.56kB/s]" - } - }, - "5e161921a5b547fbb813dedff389dc31": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6ef6110defb94222863e8e996095d917", - "IPY_MODEL_69ec9cf67095408a9fa7b90b5d0f1402", - "IPY_MODEL_8ca63df694944110b2e324c1f8bf2664" - ], - "layout": "IPY_MODEL_6860a13715bd4749866ce60e6c186ca4" - } - }, - "5ed062448c2149d1b83d037bd4570aad": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5f70a433d78f4d7494af38d6cb103845": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c53fd5527ead4008b3f00a323a391b41", - "max": 1154, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_00b59754edd24f61a38ea1ed4f1aa077", - "value": 1154 - } - }, - "60099a13723c4e1c97b4eeb6909faf64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_44585c198e864e9f86c6c69d466d3031", - "placeholder": "​", - "style": "IPY_MODEL_af16e2ef100240498a1cec6c85719307", - "value": " 5/5 [00:00<00:00, 11.14ba/s]" - } - }, - "60fe343d068a47a7b64090d7c38bdf5a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "61482c60ad804e2fb3e195b9c3daf54e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "615e006f120643e68ed890a78766c9e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_669341ce6b2e4aa3b14d33110b236c9c", - "max": 2, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_32b677302bf749f8bb437be83cf1a9d2", - "value": 2 - } - }, - "61dd26d4ee6a42c5a9f0d5e5f1748633": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "61f5ce18c63a428194767ea7a9bc8c6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "62cfc810ac124d2e801c0166c4cc49a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "62fd3930106f4355871cee9397fec8cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "64568851a9ce44d1bb791bf2b8a4c4ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9fbf6b3450724f188a4aeccd325f1b4a", - "placeholder": "​", - "style": "IPY_MODEL_b044b4d34a2a42ed81212cc5c5e401ea", - "value": "100%" - } - }, - "65c2905bddb9483cbe58b3711dfb400e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ccdd150660704acaa0e5bae0e44d8566", - "IPY_MODEL_091fcb8d2a714647a2ece136d3ffeb07", - "IPY_MODEL_e5221be381054945a6e4c507799f88a7" - ], - "layout": "IPY_MODEL_fef3a407898f44798e08baf4a27f5fcb" - } - }, - "669341ce6b2e4aa3b14d33110b236c9c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6789e4b00123408386fad863dc4ff235": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "67eff42814534eae9adbeab6ceeb14cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_15d67358fa8242faae6b0eca661afcbf", - "IPY_MODEL_99fc1a725e834ae78d73c65412b7fe7a", - "IPY_MODEL_c1ca50f6ee3b42c2a993e8c58f1900f3" - ], - "layout": "IPY_MODEL_00311803314143ecbb24e25acbb94f66" - } - }, - "6860a13715bd4749866ce60e6c186ca4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6877960084d644908dcd99df7fde80db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8a0735f52b9c4f949897b336c80766bc", - "IPY_MODEL_fa0a76c3235948c1a26ae247a37fd02a", - "IPY_MODEL_e23a1b561a4442adb4b7aab8fd862b9c" - ], - "layout": "IPY_MODEL_fbc30ecadc1241089bc9928439a8daee" - } - }, - "68e79e7d3f644a64b1e9a6b965b9873d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_885205ed837d43ac9dd9685cb0cb1779", - "placeholder": "​", - "style": "IPY_MODEL_e489fa3983a54d4aa24fd5fc7c3c0398", - "value": " 10.6k/10.6k [00:00<00:00, 308kB/s]" - } - }, - "6926a810d0674b67aaef319fc6457132": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "696b1b25f9bb4ff6b3ddc764c690c804": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "69ec9cf67095408a9fa7b90b5d0f1402": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e7283168055b48acb94cf69be4ee57fd", - "max": 483, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_f9afd1d342804aca92854daed877309c", - "value": 483 - } - }, - "6ad218f38bae4a0db5557c334d03c14b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6b92e4f8e8914c9098eeb35e2daf2882": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6ba1a277d3c74922975166c8578cb552": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c883626d4ab54836831f016aee1a3b3a", - "placeholder": "​", - "style": "IPY_MODEL_a8e558bade474b4ea205d1fe31519cd6", - "value": " 2/2 [00:00<00:00, 4.94ba/s]" - } - }, - "6d477c6ce2fd4e83913ac7fd0eae45dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c6837ff9f2f04351b5dc0dd7cb7452a9", - "placeholder": "​", - "style": "IPY_MODEL_a6e08cd785a9445798047aab9a9c5af8", - "value": " 65/65 [00:01<00:00, 62.12ba/s]" - } - }, - "6dc91b7ebdf041bab30eb87fb25d80cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fee2373861754a5aa57deca0fe0a549f", - "placeholder": "​", - "style": "IPY_MODEL_62cfc810ac124d2e801c0166c4cc49a8", - "value": " 2/2 [00:00<00:00, 6.97ba/s]" - } - }, - "6dd9fea4b17f4b3ab425bd27dd36fc6e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6df44ef8a0a142cca7d6af2bfc067cb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6e6899d861c84ad388b49f3ad6488ed7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_28eab6f7e43848fcae1d568a26083a55", - "placeholder": "​", - "style": "IPY_MODEL_4588c062e290463bac0a5f468fd56c0d", - "value": "Downloading: 100%" - } - }, - "6e710b3d2d94441c805bfaf194bd6228": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6ef6110defb94222863e8e996095d917": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cd8230629dc94c56b5eb1260cff145a0", - "placeholder": "​", - "style": "IPY_MODEL_0c8d5caa32624d3e950372123ea76085", - "value": "Downloading config.json: 100%" - } - }, - "6f380f1159304891bb0e77a369c8f5e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6f75d8f4973b4190971e31114659357f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ca23d08401e14f0ea2f26b30474cd851", - "IPY_MODEL_141b59a274af4e12987648aad7c1c0a9", - "IPY_MODEL_0df5ec008faf4097863467f9fa482d92" - ], - "layout": "IPY_MODEL_c2edb8c2fa8c4b448bb1c606ec89ec75" - } - }, - "6ff6ee62693b4ce3af2624122d1a7e88": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7017cacda2dc4e72971a437d0a2a028c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "701c8174d1ea43cfa251c81708f1fc77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c458935ca1564885b1195ad72beed0f6", - "placeholder": "​", - "style": "IPY_MODEL_7351dbf107194d1f9ed9d263dfe62f2c", - "value": " 1.52G/1.52G [01:02<00:00, 6.85MB/s]" - } - }, - "70d5e293d0a343ee813f8a5d57dcfd2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7b7f296ea45d40aba5537caa21c47bf3", - "IPY_MODEL_ff61a61119094626a738050955793c39", - "IPY_MODEL_701c8174d1ea43cfa251c81708f1fc77" - ], - "layout": "IPY_MODEL_064dca1b1b824a908647633e4f72f71b" - } - }, - "717b5278234d44b3acd04dc27a31dfe2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "71a02d2db9a7422f924c991a48a3ce9c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7e7c9bdd6daa4d10b024d99e64e05ea6", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_0befa271378e45059b91035558802962", - "value": 1 - } - }, - "724e61cdd8074ae99517fae53bc06854": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0edf2e575f3347f287a964f4e1f3fc49", - "placeholder": "​", - "style": "IPY_MODEL_0d15af1100e1498bbcc991f5b78adc59", - "value": "100%" - } - }, - "726446afcb2d42d7b8f806631dfbeb61": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7269518d12b24e2c95b5eb45d1aa88af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_982b01ca4ba14504934ee6e440ad019f", - "IPY_MODEL_f375cf9a3bc343c6958a2a20b9b6b096", - "IPY_MODEL_c663b01bc6c540ffab55a0a0e84fb027" - ], - "layout": "IPY_MODEL_e0d677c6cf6c40eeb8e7fd769b8b9020" - } - }, - "72d1f3de89dc45b3ad3dbfa93184f757": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bfeace42248941eaad5251bcee579dde", - "max": 456318, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_465a869777814955a2eff4f206bb3c91", - "value": 456318 - } - }, - "7351dbf107194d1f9ed9d263dfe62f2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7451eb4fc5d548b6bd6bf146533ca049": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_499f2cd457cd4b5da95cb3ec2c2eb635", - "placeholder": "​", - "style": "IPY_MODEL_afee60b7de804dd2bbbece6125975782", - "value": "100%" - } - }, - "74762ff37b2a4d828633630af1ed1ecb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "74cfe3c0a87d46b6a7254c9fabc0e3a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_403a646eafea4a1ea95fab6f6e76d023", - "max": 5, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_87091c179a7541c6b3584b0b02789a50", - "value": 5 - } - }, - "75e2ce0c1d814f3eb0cbe57cd6caf3b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "75eaa88df13247d2a326f1216d68918e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "761295306fb94ad6a48a52b3dd4f6c4b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "77cd1035f5e94347aa781762a85b6244": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7859b4f0ccff4091a7d7b28c0ea795fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ad04758f764b4f3dbb71bd7822085f53", - "IPY_MODEL_4cdd9588dc4f493ea45fae1da13d1d31", - "IPY_MODEL_fa7ed39b1e6244ef809f6a8875e66836" - ], - "layout": "IPY_MODEL_75eaa88df13247d2a326f1216d68918e" - } - }, - "78961bf6ea3c445a86de8c0a9fa60301": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1f8047295eff40b19f0a976e67f98c3a", - "placeholder": "​", - "style": "IPY_MODEL_90202f1772e04b4ead3ff10a6e7ed150", - "value": " 53.0/53.0 [00:00<00:00, 1.37kB/s]" - } - }, - "79fc0fde09ff419bb70cd4fcf60166bd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7b10b5954a0f45fa8435e4255a208d49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7b26397bea754aaeb2e7c60852f182e4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7b5019ea704940c9abb4fc87f7556e43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7b7f296ea45d40aba5537caa21c47bf3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4188c72c71db4ecb82e754385003bcf4", - "placeholder": "​", - "style": "IPY_MODEL_b0d7fc82ccb34ed5b45448d581bf2727", - "value": "Downloading pytorch_model.bin: 100%" - } - }, - "7ca61d692c464aa48568b65d63c86e36": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7cfddd8a70ab4ba98dddcc7e42b491a8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7d0fcbb785544e5cb5e8dd2ae7aa1f98": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7d9ac315f1614932985252e878fd53ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7e7c9bdd6daa4d10b024d99e64e05ea6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7f74e439781b403089ad377dd50c658e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_df9a7621df924d88b3c65ba841f1be41", - "IPY_MODEL_feed20df83614d89ad29099b05c32a84", - "IPY_MODEL_23fbeb7bd6a345dcae57aa2807c05fb2" - ], - "layout": "IPY_MODEL_411cf8ff337647fd8c1591faf98610c7" - } - }, - "80f9504c61574e52ab1d4adcc62d62a6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "812345908d9c456b892444c0b98cae07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_32c3cd5ee8dd4ab09011eed21d488ab6", - "IPY_MODEL_57f258f537b548ae9f6f7a4f7e6a0078", - "IPY_MODEL_1a4d202a3564477cb941ecf2c69e3a33" - ], - "layout": "IPY_MODEL_0b3b964e02a546b4aedd07d27135d031" - } - }, - "823eb9fed415468fb18776f13a899991": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8373feff24314cb694208947a8738fe5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "841cb44b752d47c2a21e4c663da38048": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "844ba52e1f6947f790fe4add513e398a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_80f9504c61574e52ab1d4adcc62d62a6", - "max": 312, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_5671ca67fe5347dc9ce8d78bdc84f147", - "value": 312 - } - }, - "85f350e4537f422bbc436500fcdb0f40": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7451eb4fc5d548b6bd6bf146533ca049", - "IPY_MODEL_cc0f395961ef4078941ee410aad3d010", - "IPY_MODEL_0a1bd69095c54b25b1641114bcc4d932" - ], - "layout": "IPY_MODEL_9524aa31300a4c8d9bb85cf04fe94f58" - } - }, - "86d75ca4676b4db6871a9881611d8c0a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "86f9a8016dd741fe84808a5babf042a6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "87091c179a7541c6b3584b0b02789a50": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "885205ed837d43ac9dd9685cb0cb1779": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "88b1b4ec2b4845e2a421a88fd4d3f2ca": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "89e36db6c06b42b9891fcd33e5041677": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "89fa8071833c4955b78bb6f8ddfcd4f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8a0735f52b9c4f949897b336c80766bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_61dd26d4ee6a42c5a9f0d5e5f1748633", - "placeholder": "​", - "style": "IPY_MODEL_b7e14c0716ec42dd9bc8705202998881", - "value": "Downloading pytorch_model.bin: 100%" - } - }, - "8c04349225674a9691eb9956b383f393": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8c2e4b1aef0643079e6d074c7b3df700": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8c59ac47b9ab4b1093a738827bf15261": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f75815ed31734a98aff984b195c71ca5", - "placeholder": "​", - "style": "IPY_MODEL_8c04349225674a9691eb9956b383f393", - "value": "Downloading: 100%" - } - }, - "8ca63df694944110b2e324c1f8bf2664": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_395756fef94a4599999d43242fb15233", - "placeholder": "​", - "style": "IPY_MODEL_7ca61d692c464aa48568b65d63c86e36", - "value": " 483/483 [00:00<00:00, 6.90kB/s]" - } - }, - "8ce831be076d4a0aaeac2dea7f74571c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8d672c5dd2394accb419b50af6369d8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a9a18ba5036c4957a11bfcccaa2bcbea", - "IPY_MODEL_b6e0555332d04740b5724ced980fb823", - "IPY_MODEL_d692a6ab5155487eb74e0c529e18dace" - ], - "layout": "IPY_MODEL_cb4d69702f514e5688aaed4e0cb2d68e" - } - }, - "8db5f342b5384702b5151f3b322c440d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fb6db763317e4bbda9cba708c654d63b", - "IPY_MODEL_998eda4a96db48e3812e5abc99efaabe", - "IPY_MODEL_c8a74725ae254744b8a186455e829510" - ], - "layout": "IPY_MODEL_8373feff24314cb694208947a8738fe5" - } - }, - "8e092557c85b4112b493f0abbcd00835": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8e7db1dd82b5406e9c1b1699dc43b6dd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8eac561ce34a49ab8c55e44d1a7ada05": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8ec05331ade54131a517c23402fa631b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6e6899d861c84ad388b49f3ad6488ed7", - "IPY_MODEL_cd40c48954164c04a1c3ca2f21a0a93a", - "IPY_MODEL_f733c4422f064d8baf9e1d4537185011" - ], - "layout": "IPY_MODEL_afdd3ead171c4a1a88b912d5605a8ac3" - } - }, - "8f35f14c856d4a8994aaca9820e22ec6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_47727eb57d314f00b035238e90681338", - "max": 612, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_39586bcb9c1b4fbca93d05a582209753", - "value": 612 - } - }, - "8f3f3bc6709340cb8256a29186d167ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3e3f7f53c2d949ebbc9b41d2eec97a4b", - "placeholder": "​", - "style": "IPY_MODEL_61482c60ad804e2fb3e195b9c3daf54e", - "value": "100%" - } - }, - "90202f1772e04b4ead3ff10a6e7ed150": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "90d526066e8c4987a16cbcf7e01c1038": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "91118756833249068ba8c266b98fe113": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1906621155644db484bfe4d4fe07ce12", - "placeholder": "​", - "style": "IPY_MODEL_61f5ce18c63a428194767ea7a9bc8c6f", - "value": " 190/190 [00:00<00:00, 6.53kB/s]" - } - }, - "92640e149e0640efbf76f5d1c0a69012": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "943cc95dedf842a09a12e422c28c70f0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9524aa31300a4c8d9bb85cf04fe94f58": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "962e5812ab924251b94c65ed1d6689db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9637b86b7807491a84098c2114e691df": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9688dd1f639a4c0680ad9a9c983e3447": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "96e1dc646e07413cb3d2de813ace9557": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e59c0e8b62654e89af549065e81c566d", - "IPY_MODEL_09ea5fdae5eb49fd898d7d9f027a5785", - "IPY_MODEL_b3aac4c5435e475aba0d006367212b54" - ], - "layout": "IPY_MODEL_fd58814a4c97441d911481a3b810d555" - } - }, - "982b01ca4ba14504934ee6e440ad019f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0d1dc7e37a7441079a9955a166d0c46d", - "placeholder": "​", - "style": "IPY_MODEL_f4143e675e7543a9af0bd70636306db6", - "value": "Downloading tokenizer.json: 100%" - } - }, - "993d9d6c6c3942cea4abd0852253257f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_099e5c754c404468a90fb9247cc0bbdc", - "max": 2, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_962e5812ab924251b94c65ed1d6689db", - "value": 2 - } - }, - "998eda4a96db48e3812e5abc99efaabe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5ed062448c2149d1b83d037bd4570aad", - "max": 28, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_f0556ff087614accad129c6ca7ee9ed8", - "value": 28 - } - }, - "99ae5a8cceee4c7ab0daeea24cb0c2a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "99fc1a725e834ae78d73c65412b7fe7a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cf0e6cab40e548dc9b972aa7d8986559", - "max": 312, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_7b5019ea704940c9abb4fc87f7556e43", - "value": 312 - } - }, - "9b1a721fdb7e4341b9f4537d009d0abe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9b338a9cc78a4c8196e2e0f0e34be824": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9b6a0849f182474c88493b24657e5103": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9b8788d6cf47462c8b693a6bbf0de0e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6789e4b00123408386fad863dc4ff235", - "placeholder": "​", - "style": "IPY_MODEL_5901aeb5d1e24779952c96b8263e62a0", - "value": " 39.3k/39.3k [00:00<00:00, 618kB/s]" - } - }, - "9b8bc0251d4e422587c993e0935d846e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9ba3ea34fde448a2a478524403cc8038": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7b26397bea754aaeb2e7c60852f182e4", - "max": 26, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_ba0e140e43614be3a776cb929ed8d5bb", - "value": 26 - } - }, - "9bcd120e350a415fabd76b387730e2ef": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9ccad851f5ec43cabe766cd13bfd594f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a567b6bc200349a392136a8c544448b5", - "IPY_MODEL_cb1aeeb006bc475e99ba806bf8624566", - "IPY_MODEL_9b8788d6cf47462c8b693a6bbf0de0e3" - ], - "layout": "IPY_MODEL_fcb348895f0243958ce39af66638433e" - } - }, - "9fbf6b3450724f188a4aeccd325f1b4a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a04fbcff413a4775b5e0476618069995": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a0bddffbbc794534bd008fb8bbc31153": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dcee270b34da412fa65ebeffdfa75f66", - "IPY_MODEL_844ba52e1f6947f790fe4add513e398a", - "IPY_MODEL_a5ffca33779d4dfca4e7aa8c6780c88a" - ], - "layout": "IPY_MODEL_225b0156f4354ab0a5df66a2d58017d6" - } - }, - "a145ccc5ad3440309655bdc56ed329d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_48e2b645abee40c6b5fcf2586c877f34", - "IPY_MODEL_a930ad54c6d542f4846a38a75ba0dbca", - "IPY_MODEL_68e79e7d3f644a64b1e9a6b965b9873d" - ], - "layout": "IPY_MODEL_79fc0fde09ff419bb70cd4fcf60166bd" - } - }, - "a1910eeb981144dca95cf8e6dda49eb4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4a12f613fa4f4fc0881791941e1c8e0d", - "IPY_MODEL_72d1f3de89dc45b3ad3dbfa93184f757", - "IPY_MODEL_e91cb5eb1a894209b3599ba5eb3f215d" - ], - "layout": "IPY_MODEL_8e7db1dd82b5406e9c1b1699dc43b6dd" - } - }, - "a192e1868ac1430597d5fcb565b7c632": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a388d930425f462d831235f5f1f01d5a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a5544445e9a04406bfe2185f53bfa799": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a567b6bc200349a392136a8c544448b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3e95e45bdc9147808b25ce2e2b842969", - "placeholder": "​", - "style": "IPY_MODEL_223f257b5927425ea2793ff78a60a591", - "value": "Downloading: 100%" - } - }, - "a5ffca33779d4dfca4e7aa8c6780c88a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cb9672f222594a2ca19b89b286da2bed", - "placeholder": "​", - "style": "IPY_MODEL_7b10b5954a0f45fa8435e4255a208d49", - "value": " 312/312 [00:04<00:00, 74.04ba/s]" - } - }, - "a623fa5f4e16419f99f40f8837228e7e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a6556e2718524752b34217ff63a9fc4d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_64568851a9ce44d1bb791bf2b8a4c4ae", - "IPY_MODEL_74cfe3c0a87d46b6a7254c9fabc0e3a4", - "IPY_MODEL_c60da4ac32f448c886b571de6f37a76b" - ], - "layout": "IPY_MODEL_059dc7a7910e447cb50d06979bdbf539" - } - }, - "a6e08cd785a9445798047aab9a9c5af8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a7f0da2b16144f4bb8d6eadc63dc8cb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a8983ba16a794aad8271b7d69a81b3ad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d7d032ad620448f2b18e6c4c06c7154f", - "placeholder": "​", - "style": "IPY_MODEL_fefec331bdc5456498084257b45a03b6", - "value": " 1.13k/1.13k [00:00<00:00, 29.2kB/s]" - } - }, - "a8e558bade474b4ea205d1fe31519cd6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a930ad54c6d542f4846a38a75ba0dbca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e04f5119ee654401942c040b0ede110b", - "max": 10610, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_9b1a721fdb7e4341b9f4537d009d0abe", - "value": 10610 - } - }, - "a95f0fe4ce3b424ca87a41b1f678c249": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a9a18ba5036c4957a11bfcccaa2bcbea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e7af31e46e174ea6b2a1a168784269d0", - "placeholder": "​", - "style": "IPY_MODEL_6e710b3d2d94441c805bfaf194bd6228", - "value": "Downloading: 100%" - } - }, - "ab70f467b69a47349a1c5d3839b884b9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "abf058cbf4d0482eb0b7d3c5cb2dac0c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ad04758f764b4f3dbb71bd7822085f53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_823eb9fed415468fb18776f13a899991", - "placeholder": "​", - "style": "IPY_MODEL_05d19b34fe2e49b5b2076627e73288f5", - "value": "Downloading vocab.txt: 100%" - } - }, - "ada3c89be1224ffea01d05a6696977ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ae7311c2f28749a4a191de0455a5378c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d76596c02a514829b97a4a025e15e0a6", - "placeholder": "​", - "style": "IPY_MODEL_7d9ac315f1614932985252e878fd53ef", - "value": " 90.9M/90.9M [00:01<00:00, 59.8MB/s]" - } - }, - "af16e2ef100240498a1cec6c85719307": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "af8f72598deb46588804ca1689d32bd3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "afdd3ead171c4a1a88b912d5605a8ac3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "afee60b7de804dd2bbbece6125975782": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b0202f326ca64676a4b9e2333edf2533": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b044b4d34a2a42ed81212cc5c5e401ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b0d7fc82ccb34ed5b45448d581bf2727": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b187b12607ce49419f849fa1d1fcab8c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b361bfc331fb42a7ab25522003c63f06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b3aac4c5435e475aba0d006367212b54": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2b3c46c4f2914c809ec948a648fb291e", - "placeholder": "​", - "style": "IPY_MODEL_1bd452a69f6f408182343235b5f74435", - "value": " 349/349 [00:00<00:00, 10.6kB/s]" - } - }, - "b560f1a23b664f19b3025e200ee52ba2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8f3f3bc6709340cb8256a29186d167ca", - "IPY_MODEL_33a0207a4af444c0a62de263d5772590", - "IPY_MODEL_60099a13723c4e1c97b4eeb6909faf64" - ], - "layout": "IPY_MODEL_1369dd9f01474e18ad1d1f0cec6cb77a" - } - }, - "b5709e8c44fa41da92ce6553466c4781": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b6e0555332d04740b5724ced980fb823": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_22dd156738a64b1d9c36306ade52a9df", - "max": 466247, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_f9c813702cbd43a8a7756f9925b8e091", - "value": 466247 - } - }, - "b74e13ff83d148f3898ab00cec0ea79e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b7e14c0716ec42dd9bc8705202998881": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b85ea9918cea4475a7dcf968114a5537": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ba0e140e43614be3a776cb929ed8d5bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ba73900d058346d49be5dca064b5e663": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "babdfdcf27714853ae2be7ea4e7d0713": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "bcad04bb62194a10a94f1317a1292ead": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4262b30ff3384960ada0f7042955027b", - "max": 898822, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_589d76442a81446f81ff107f0449ef35", - "value": 898822 - } - }, - "bd085d626c39431c87272f1775c31725": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bd967c22dcca4384b1f2ef93792eec5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bd9ba4aaae6745dcb6b78effa1c8e937": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bdcc9a7699f040f68fd3ce7e85dcce5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bec6ddd26c264fc1b85869d3f84df41d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bfd22ee5ae88497cb077f75071249dde": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bfeace42248941eaad5251bcee579dde": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c013bf903fbd4af5bfc99bc0abf78996": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c1ca50f6ee3b42c2a993e8c58f1900f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3fb6cc95ab404b988cad7d68a28a8b50", - "placeholder": "​", - "style": "IPY_MODEL_d10cf159a50646d6a376fa65e6042589", - "value": " 312/312 [00:08<00:00, 39.55ba/s]" - } - }, - "c220518979d74b8c9089ffc8fb62ca04": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c2edb8c2fa8c4b448bb1c606ec89ec75": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c315d91e15f34eeaa4ee955f88e86285": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c42d01f933044313b2860cabae5ce5ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cbd8a118b2904c4a88c0c93abea26d44", - "placeholder": "​", - "style": "IPY_MODEL_38a5ae14a1ed4f248790e722ef07c632", - "value": "Downloading vocab.json: 100%" - } - }, - "c458935ca1564885b1195ad72beed0f6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c4a7299fdc564d09b5c662b2eeec51d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c510dfd747254a1588b761a3fdde091d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c511ddfcffae4ea286eabbddcb07bc5e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8eac561ce34a49ab8c55e44d1a7ada05", - "placeholder": "​", - "style": "IPY_MODEL_420475421b5043dd96330c4d2005e2db", - "value": "Downloading: 100%" - } - }, - "c53fd5527ead4008b3f00a323a391b41": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c5a0e59e0ec14d53a655c8f087c3c071": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c60da4ac32f448c886b571de6f37a76b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_583071c719374ee996e4c7d254890412", - "placeholder": "​", - "style": "IPY_MODEL_ff630cfd369b4f3892eb32d0df84a0db", - "value": " 5/5 [00:00<00:00, 9.24ba/s]" - } - }, - "c663b01bc6c540ffab55a0a0e84fb027": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_eebda1a16e4b4a4783a1da98f2d1a2f6", - "placeholder": "​", - "style": "IPY_MODEL_10ad0b729d7a403198a35900081f1108", - "value": " 455k/455k [00:00<00:00, 824kB/s]" - } - }, - "c6837ff9f2f04351b5dc0dd7cb7452a9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c75799c0da57418fb2beceede73ba46b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f4e15b7446214c6f86cb0095711fe9f2", - "IPY_MODEL_9ba3ea34fde448a2a478524403cc8038", - "IPY_MODEL_c9ec17636a764edab3bb01eda508dca3" - ], - "layout": "IPY_MODEL_a5544445e9a04406bfe2185f53bfa799" - } - }, - "c883626d4ab54836831f016aee1a3b3a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c8a74725ae254744b8a186455e829510": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6dd9fea4b17f4b3ab425bd27dd36fc6e", - "placeholder": "​", - "style": "IPY_MODEL_52ec7cde15c54517800202fea56f6f9b", - "value": " 28.0/28.0 [00:00<00:00, 252B/s]" - } - }, - "c8ee1ad0025148138522d1f3d35a01cf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c9ec17636a764edab3bb01eda508dca3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1ec9d7b1c71a440db6089c6539f680a3", - "placeholder": "​", - "style": "IPY_MODEL_fbef18bdfa234ff8b17413b096029fb8", - "value": " 26.0/26.0 [00:00<00:00, 419B/s]" - } - }, - "ca23d08401e14f0ea2f26b30474cd851": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_88b1b4ec2b4845e2a421a88fd4d3f2ca", - "placeholder": "​", - "style": "IPY_MODEL_d5d0343c5f044627a9eb7831abb65756", - "value": "Downloading: 100%" - } - }, - "cb1aeeb006bc475e99ba806bf8624566": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_841cb44b752d47c2a21e4c663da38048", - "max": 39265, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_d53e5b8834ec494c998ba9342ae1c6e1", - "value": 39265 - } - }, - "cb267211536c4106a41b588fa2213296": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9bcd120e350a415fabd76b387730e2ef", - "max": 190, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_50a500aedb6347b9b193bc9d2d544647", - "value": 190 - } - }, - "cb4d69702f514e5688aaed4e0cb2d68e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cb9672f222594a2ca19b89b286da2bed": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cbd8a118b2904c4a88c0c93abea26d44": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cc0f395961ef4078941ee410aad3d010": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f072a260238d44aba5746762092530cb", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_473781ce46bf4bd9acf858135c26c31b", - "value": 1 - } - }, - "cc4705d0575944adbc0987368d3e49ca": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ccdd150660704acaa0e5bae0e44d8566": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9637b86b7807491a84098c2114e691df", - "placeholder": "​", - "style": "IPY_MODEL_28c6d8a464d4483eb8abae01f4cf14db", - "value": "Downloading tokenizer.json: 100%" - } - }, - "cd40c48954164c04a1c3ca2f21a0a93a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_00bddf74632a484b929d238afc51c81e", - "max": 231508, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_2c3b2a634ba147de9014180a70dacc1b", - "value": 231508 - } - }, - "cd8230629dc94c56b5eb1260cff145a0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cf0e6cab40e548dc9b972aa7d8986559": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cfe231dfa61e4d2fb55d28535bde9dc4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d030c4d6f5914aa5a437c53b52e01ea9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d066e40caa1b4a5590496a2aeb9dcea8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d70e851f6f7b43a38559aa4d3a5b6c84", - "IPY_MODEL_615e006f120643e68ed890a78766c9e2", - "IPY_MODEL_6ba1a277d3c74922975166c8578cb552" - ], - "layout": "IPY_MODEL_7cfddd8a70ab4ba98dddcc7e42b491a8" - } - }, - "d10cf159a50646d6a376fa65e6042589": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d360844c59b849e1807a0f2b3019fd8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d413bf53515b4cc5ac81b444f15fd19c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d53e5b8834ec494c998ba9342ae1c6e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d5c6923249b345599fae1f92fbab2681": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_60fe343d068a47a7b64090d7c38bdf5a", - "placeholder": "​", - "style": "IPY_MODEL_6ad218f38bae4a0db5557c334d03c14b", - "value": "Downloading: 100%" - } - }, - "d5d0343c5f044627a9eb7831abb65756": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d68fc2f69eaf48bf905e133be2bc82f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9688dd1f639a4c0680ad9a9c983e3447", - "max": 65, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_bdcc9a7699f040f68fd3ce7e85dcce5c", - "value": 65 - } - }, - "d692a6ab5155487eb74e0c529e18dace": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_47149232a2d640ca97e85f58cc8af710", - "placeholder": "​", - "style": "IPY_MODEL_2044594efdf34fcf8d1a84ad027885eb", - "value": " 466k/466k [00:00<00:00, 876kB/s]" - } - }, - "d70e851f6f7b43a38559aa4d3a5b6c84": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ec079ac635894ee2a7ebe1315129fc74", - "placeholder": "​", - "style": "IPY_MODEL_11ab378d7c254c64a910872ea18d7e27", - "value": "100%" - } - }, - "d7207b39009a4219bd76e13063f6bee9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d76596c02a514829b97a4a025e15e0a6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d7d032ad620448f2b18e6c4c06c7154f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d98808d12cdc4bfc8f5423f8cdbba476": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "daf1284fcd1c45bc9bb3f430544db154": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "dbbb4af430e04eadae3287109ef79f77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b85ea9918cea4475a7dcf968114a5537", - "placeholder": "​", - "style": "IPY_MODEL_47e1eb19e96a481cb5cf3cdab90d87c3", - "value": "Downloading: 100%" - } - }, - "dcee270b34da412fa65ebeffdfa75f66": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8e092557c85b4112b493f0abbcd00835", - "placeholder": "​", - "style": "IPY_MODEL_b5709e8c44fa41da92ce6553466c4781", - "value": "100%" - } - }, - "dd49d64d85e24fa8b1b6bc33804fc597": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bfd22ee5ae88497cb077f75071249dde", - "placeholder": "​", - "style": "IPY_MODEL_27d41f8299cb473180149d8504862c09", - "value": "100%" - } - }, - "dd4bd7681c8b44a2b7162b365948b8bd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "df9a7621df924d88b3c65ba841f1be41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9b338a9cc78a4c8196e2e0f0e34be824", - "placeholder": "​", - "style": "IPY_MODEL_89e36db6c06b42b9891fcd33e5041677", - "value": "100%" - } - }, - "e04f5119ee654401942c040b0ede110b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e0d677c6cf6c40eeb8e7fd769b8b9020": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e23a1b561a4442adb4b7aab8fd862b9c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bec6ddd26c264fc1b85869d3f84df41d", - "placeholder": "​", - "style": "IPY_MODEL_75e2ce0c1d814f3eb0cbe57cd6caf3b6", - "value": " 256M/256M [00:09<00:00, 26.3MB/s]" - } - }, - "e2c6f05a6875492b9a958e693629145a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b187b12607ce49419f849fa1d1fcab8c", - "placeholder": "​", - "style": "IPY_MODEL_a7f0da2b16144f4bb8d6eadc63dc8cb6", - "value": "Downloading: 100%" - } - }, - "e489fa3983a54d4aa24fd5fc7c3c0398": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e4c457574310465bbe2175c04874e996": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c42d01f933044313b2860cabae5ce5ee", - "IPY_MODEL_bcad04bb62194a10a94f1317a1292ead", - "IPY_MODEL_40c801e68caf4b678ab85afae0ef4423" - ], - "layout": "IPY_MODEL_d98808d12cdc4bfc8f5423f8cdbba476" - } - }, - "e5221be381054945a6e4c507799f88a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0af9681c674541f5874c3eb7f1798ac4", - "placeholder": "​", - "style": "IPY_MODEL_c315d91e15f34eeaa4ee955f88e86285", - "value": " 1.29M/1.29M [00:00<00:00, 2.74MB/s]" - } - }, - "e53e65e6566d41aba1ae11474fd534ba": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e59c0e8b62654e89af549065e81c566d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cc4705d0575944adbc0987368d3e49ca", - "placeholder": "​", - "style": "IPY_MODEL_74762ff37b2a4d828633630af1ed1ecb", - "value": "Downloading: 100%" - } - }, - "e6efec28608d40d1806a247484911a6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e6fa423db2cd4a628ce17ffd90d3d254": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e7283168055b48acb94cf69be4ee57fd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e7af31e46e174ea6b2a1a168784269d0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e7be1952f3234c38adc44db5d30684b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e91cb5eb1a894209b3599ba5eb3f215d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f3e128dab6a24396b8deb3526a90040a", - "placeholder": "​", - "style": "IPY_MODEL_a623fa5f4e16419f99f40f8837228e7e", - "value": " 446k/446k [00:00<00:00, 865kB/s]" - } - }, - "ead6bc3051794fca93f0269308fd0c0c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ec079ac635894ee2a7ebe1315129fc74": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ecb380ec3dc849c983440cb1b73bfa30": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "eebda1a16e4b4a4783a1da98f2d1a2f6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f02c6045c6f74123b82c0988a08d2910": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e2c6f05a6875492b9a958e693629145a", - "IPY_MODEL_38e01a43e0424095b0216725223cacc3", - "IPY_MODEL_4df39113ca2043258a34afe304f3d9d2" - ], - "layout": "IPY_MODEL_726446afcb2d42d7b8f806631dfbeb61" - } - }, - "f0556ff087614accad129c6ca7ee9ed8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f072a260238d44aba5746762092530cb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f23f28f634ad46668da2af750c51d17d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5c475d1892c94592b7398bc028439f7a", - "IPY_MODEL_43346612910e44a6ab4618c90fa27829", - "IPY_MODEL_5821fd6e83244dc69f06caf1c69420df" - ], - "layout": "IPY_MODEL_daf1284fcd1c45bc9bb3f430544db154" - } - }, - "f2d518ef81f546d9b034cbf3d8be71ca": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f3720a4f21c2491eb4ea17f3efcc74d1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f375cf9a3bc343c6958a2a20b9b6b096": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1b612c743595417ba3f393056c6a7e7a", - "max": 466062, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_57d028e4b6204017bf158df49b358d48", - "value": 466062 - } - }, - "f39dec147f404f0b851468d008fec716": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f3e128dab6a24396b8deb3526a90040a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f40893f97e914de090030cccd9cd0be0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f4143e675e7543a9af0bd70636306db6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f4e15b7446214c6f86cb0095711fe9f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a388d930425f462d831235f5f1f01d5a", - "placeholder": "​", - "style": "IPY_MODEL_3cb8f213216b4db4b17b6159ff8af1b2", - "value": "Downloading tokenizer_config.json: 100%" - } - }, - "f5b83013d0794a26be03e02f036519cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_278142b28f7341209ff853d67c354a10", - "IPY_MODEL_592526530ec44c1886774b8ddbd9306a", - "IPY_MODEL_5d8af77774244f15a0b53a5a5498c61b" - ], - "layout": "IPY_MODEL_1bc3df520c024829b8e9379fd4f09cf7" - } - }, - "f733c4422f064d8baf9e1d4537185011": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_03f86c9d0b764e36b23e30358346eaf3", - "placeholder": "​", - "style": "IPY_MODEL_62fd3930106f4355871cee9397fec8cf", - "value": " 232k/232k [00:00<00:00, 923kB/s]" - } - }, - "f75815ed31734a98aff984b195c71ca5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f9afd1d342804aca92854daed877309c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f9c813702cbd43a8a7756f9925b8e091": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fa0a76c3235948c1a26ae247a37fd02a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fd2100438f864e3b957fab001fc2122b", - "max": 267967963, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_d360844c59b849e1807a0f2b3019fd8a", - "value": 267967963 - } - }, - "fa7ed39b1e6244ef809f6a8875e66836": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_44fe5107721a490c8b5139744d00d6b3", - "placeholder": "​", - "style": "IPY_MODEL_8c2e4b1aef0643079e6d074c7b3df700", - "value": " 226k/226k [00:00<00:00, 832kB/s]" - } - }, - "fb6db763317e4bbda9cba708c654d63b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_506e50b472fc48718c2e43b843ca56f7", - "placeholder": "​", - "style": "IPY_MODEL_505d2e0776f9413d9e65233a8c7a3ce0", - "value": "Downloading tokenizer_config.json: 100%" - } - }, - "fbc30ecadc1241089bc9928439a8daee": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fbef18bdfa234ff8b17413b096029fb8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "fcb348895f0243958ce39af66638433e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fd0b9cfbcbe043508af4da14b2c3b5d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_724e61cdd8074ae99517fae53bc06854", - "IPY_MODEL_2eaea0dc84ed4ebfba680f2fcfa04637", - "IPY_MODEL_0d6060ee7aec42d492f9bb1e4b8f2ce4" - ], - "layout": "IPY_MODEL_4d6ec2b0c2bc435e9d3fcbdff951b29b" - } - }, - "fd2100438f864e3b957fab001fc2122b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fd3051ae1a27483da9bfaca20612aca5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f2d518ef81f546d9b034cbf3d8be71ca", - "placeholder": "​", - "style": "IPY_MODEL_c5a0e59e0ec14d53a655c8f087c3c071", - "value": " 1/1 [00:00<00:00, 28.60ba/s]" - } - }, - "fd58814a4c97441d911481a3b810d555": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fd90644c12544a3d8444543cf97dbeab": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fe358f54827f476d98557365e873d898": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fd90644c12544a3d8444543cf97dbeab", - "placeholder": "​", - "style": "IPY_MODEL_b361bfc331fb42a7ab25522003c63f06", - "value": "Downloading config.json: 100%" - } - }, - "fee2373861754a5aa57deca0fe0a549f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "feed20df83614d89ad29099b05c32a84": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_38f92f34bc5b4a658dd2f6fbcaec80f1", - "max": 5, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_c510dfd747254a1588b761a3fdde091d", - "value": 5 - } - }, - "fef3a407898f44798e08baf4a27f5fcb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fefec331bdc5456498084257b45a03b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ff61a61119094626a738050955793c39": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ab70f467b69a47349a1c5d3839b884b9", - "max": 1629486723, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_4fc06fe12e514785a121c7ae1b9e0c97", - "value": 1629486723 - } - }, - "ff630cfd369b4f3892eb32d0df84a0db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } + "952a86292e0043e89e0adae2df4efc3c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3251f229b9a24114b5b1f01d6107b537": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4026dcdddca340c38ce39e52b42af5b0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5745ecf2686c4ee48768c8e8ea52564a", + "IPY_MODEL_88e6c818218646b8b4113f90a3d9d46f", + "IPY_MODEL_9b6ad42d8e9e4871bfb469ba885545dd" + ], + "layout": "IPY_MODEL_e8dbf55012d24eab949ea28e7eb5d3e3" + } + }, + "5745ecf2686c4ee48768c8e8ea52564a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_16eaf10ff5154c5ab2ce2659ca5c1285", + "placeholder": "​", + "style": "IPY_MODEL_65f2b9ceee2a40b098f4b91674afc150", + "value": "Map: 100%" + } + }, + "88e6c818218646b8b4113f90a3d9d46f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_db8e8d115fd8479f96170f1576c6dbcc", + "max": 4991, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8372541436324b378ccb10e048e3fd7f", + "value": 4991 + } + }, + "9b6ad42d8e9e4871bfb469ba885545dd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_65d257a1c45746239e3fd0d1bd2c3828", + "placeholder": "​", + "style": "IPY_MODEL_9dfaae0a3ebe49239983c37cfad58845", + "value": " 4991/4991 [00:00<00:00, 11343.21 examples/s]" + } + }, + "e8dbf55012d24eab949ea28e7eb5d3e3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "16eaf10ff5154c5ab2ce2659ca5c1285": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "65f2b9ceee2a40b098f4b91674afc150": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "db8e8d115fd8479f96170f1576c6dbcc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8372541436324b378ccb10e048e3fd7f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "65d257a1c45746239e3fd0d1bd2c3828": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9dfaae0a3ebe49239983c37cfad58845": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ffc413f82c644528a2ec8705f6db4048": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_27eb980ee9e94d1aaa03c0a86ff0ed74", + "IPY_MODEL_6a7503a48c7341bf81e2d07a4304c72f", + "IPY_MODEL_f961a58e35a1457ebc6c708b9295d731" + ], + "layout": "IPY_MODEL_5ee2ed5078264f7f8aaf97347153dc6c" + } + }, + "27eb980ee9e94d1aaa03c0a86ff0ed74": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d558eb7761a546b68a6b93c92fe6bba0", + "placeholder": "​", + "style": "IPY_MODEL_04b109903925482ca83ee9136a8a7565", + "value": "Map: 100%" + } + }, + "6a7503a48c7341bf81e2d07a4304c72f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_031e975a4e0c4926b11472fb06c766c4", + "max": 1039, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4dda2fe09cc548a9b2f46ccd43109ab9", + "value": 1039 + } + }, + "f961a58e35a1457ebc6c708b9295d731": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7d7905f3a80a4c85a443dcce8825ee95", + "placeholder": "​", + "style": "IPY_MODEL_337470f659eb40b2a7a4c34e7de77538", + "value": " 1039/1039 [00:00<00:00, 8515.28 examples/s]" + } + }, + "5ee2ed5078264f7f8aaf97347153dc6c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d558eb7761a546b68a6b93c92fe6bba0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "04b109903925482ca83ee9136a8a7565": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "031e975a4e0c4926b11472fb06c766c4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4dda2fe09cc548a9b2f46ccd43109ab9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7d7905f3a80a4c85a443dcce8825ee95": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "337470f659eb40b2a7a4c34e7de77538": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1493d02ebe5146b59c14a9d21523b0d1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_92697c12d850440aad104272e36b1a8a", + "IPY_MODEL_f1f6f5c3543a48999885e41446bc6e86", + "IPY_MODEL_a6ac626f1faa49efad60429bb84824db" + ], + "layout": "IPY_MODEL_62165eba4361461eab98456acd808fb4" + } + }, + "92697c12d850440aad104272e36b1a8a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5e16292476884785ac7efd851bcec214", + "placeholder": "​", + "style": "IPY_MODEL_1e241a02605547a9bf09c8946266da84", + "value": "Map: 100%" + } + }, + "f1f6f5c3543a48999885e41446bc6e86": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cd4deec5594a4242b71fefa3043f3903", + "max": 4991, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_82133d8b579a4601804e29d3fe8de1e3", + "value": 4991 + } + }, + "a6ac626f1faa49efad60429bb84824db": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c4c55b80077748f4b07c5377d505c6db", + "placeholder": "​", + "style": "IPY_MODEL_531e193006114c64b93f3930c2f24807", + "value": " 4991/4991 [00:13<00:00, 712.79 examples/s]" + } + }, + "62165eba4361461eab98456acd808fb4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5e16292476884785ac7efd851bcec214": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1e241a02605547a9bf09c8946266da84": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cd4deec5594a4242b71fefa3043f3903": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "82133d8b579a4601804e29d3fe8de1e3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c4c55b80077748f4b07c5377d505c6db": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "531e193006114c64b93f3930c2f24807": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9158ec9a01eb48cdb910b060ad1185a1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dc883c3f9c854538a85e8c77cc46b551", + "IPY_MODEL_40801320d0c3492bb7f1dcb4b6c4fb94", + "IPY_MODEL_6578fe1e9a6b49f9b550123e7eaad22d" + ], + "layout": "IPY_MODEL_675b68fe3ed04594bba5b948c0ada867" + } + }, + "dc883c3f9c854538a85e8c77cc46b551": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_332a4a95247742c3a6f2a2c459b2b3a8", + "placeholder": "​", + "style": "IPY_MODEL_1bb7af7c85a9484dab55cc126d22384d", + "value": "Map: 100%" + } + }, + "40801320d0c3492bb7f1dcb4b6c4fb94": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6cf7ca09d01945129f73e3d7e19c0c19", + "max": 1039, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d3f5fb056a3d46c785b1fde844052659", + "value": 1039 + } + }, + "6578fe1e9a6b49f9b550123e7eaad22d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_775a2a2703f04531ae1d855b8a353e64", + "placeholder": "​", + "style": "IPY_MODEL_154131c8d35a432cbaa126824c79892e", + "value": " 1039/1039 [00:02<00:00, 322.16 examples/s]" + } + }, + "675b68fe3ed04594bba5b948c0ada867": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "332a4a95247742c3a6f2a2c459b2b3a8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1bb7af7c85a9484dab55cc126d22384d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6cf7ca09d01945129f73e3d7e19c0c19": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d3f5fb056a3d46c785b1fde844052659": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "775a2a2703f04531ae1d855b8a353e64": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "154131c8d35a432cbaa126824c79892e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2200519804e141398ad3b7ec1a1651d7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_58536efab4a94045af79a642549cb28f", + "IPY_MODEL_f07aa0b876924898b8e66b35ed36e7cf", + "IPY_MODEL_8e2925bd03e649ea939aeb8dc061c0a3" + ], + "layout": "IPY_MODEL_cd5917f3d0624092b32c4d9bfed69a98" + } + }, + "58536efab4a94045af79a642549cb28f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c8d4274188bf464d8686f83280ffa9e1", + "placeholder": "​", + "style": "IPY_MODEL_9d3d3feb9b25419a876586ec51da8ee0", + "value": "Downloading (…)lve/main/config.json: 100%" + } + }, + "f07aa0b876924898b8e66b35ed36e7cf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f9379789ea434bca9e3a040f774b9a31", + "max": 1154, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a10b60b5ec8b4668a6f12474e6f944ce", + "value": 1154 + } + }, + "8e2925bd03e649ea939aeb8dc061c0a3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_30fe641c399544e3b1111fd1043802e9", + "placeholder": "​", + "style": "IPY_MODEL_b829f2bd5c53486a9339df054a5b090a", + "value": " 1.15k/1.15k [00:00<00:00, 42.4kB/s]" + } + }, + "cd5917f3d0624092b32c4d9bfed69a98": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c8d4274188bf464d8686f83280ffa9e1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9d3d3feb9b25419a876586ec51da8ee0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f9379789ea434bca9e3a040f774b9a31": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a10b60b5ec8b4668a6f12474e6f944ce": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "30fe641c399544e3b1111fd1043802e9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b829f2bd5c53486a9339df054a5b090a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1cc54f2db67b43299c32ac3d80a14a05": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a838ad30c8214f70825456bdbe8040bc", + "IPY_MODEL_714784cacd254171ae4c654a6df16aac", + "IPY_MODEL_257651054ee64b0b86426ea8867abf34" + ], + "layout": "IPY_MODEL_979e96beb1cf47d7a7cbe26597cc1b97" + } + }, + "a838ad30c8214f70825456bdbe8040bc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6b09cf6fa47b44209bf41d1d82f0eddd", + "placeholder": "​", + "style": "IPY_MODEL_ff5f70c5ba78479e9600101bd61a9762", + "value": "Downloading model.safetensors: 100%" + } + }, + "714784cacd254171ae4c654a6df16aac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_02eaa5b14ccb4420b54a63c06289a9c6", + "max": 1629437147, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ea26895dcf48415392b883b65349b063", + "value": 1629437147 + } + }, + "257651054ee64b0b86426ea8867abf34": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_961a9f04da1342d08899144b0392d3a0", + "placeholder": "​", + "style": "IPY_MODEL_3cfab93db69a4da4a23a8852950430e3", + "value": " 1.63G/1.63G [00:14<00:00, 62.8MB/s]" + } + }, + "979e96beb1cf47d7a7cbe26597cc1b97": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b09cf6fa47b44209bf41d1d82f0eddd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ff5f70c5ba78479e9600101bd61a9762": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "02eaa5b14ccb4420b54a63c06289a9c6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ea26895dcf48415392b883b65349b063": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "961a9f04da1342d08899144b0392d3a0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3cfab93db69a4da4a23a8852950430e3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "545125171280483eb39001760dbe64b8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d9668e4d305e49808115050d94abbf10", + "IPY_MODEL_c0d4c7a7053d419cbb0bb6e1dc86d218", + "IPY_MODEL_43223ffb2f3947198fa57c73af2dea9c" + ], + "layout": "IPY_MODEL_15e421344c8341d1a8011702d4dc07c3" + } + }, + "d9668e4d305e49808115050d94abbf10": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2577d0d7013f4fb7b500916137bed1b0", + "placeholder": "​", + "style": "IPY_MODEL_541d2d7200b44dfab80178e1c68806ec", + "value": "Downloading (…)okenizer_config.json: 100%" + } + }, + "c0d4c7a7053d419cbb0bb6e1dc86d218": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9499be411d9d42bfbcd5477b53fe8d74", + "max": 26, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_feb9bad9b33943729dcc67a7ffd8c8ef", + "value": 26 + } + }, + "43223ffb2f3947198fa57c73af2dea9c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cfaa75849a064d66b18893963f1413a4", + "placeholder": "​", + "style": "IPY_MODEL_cc93da4a48374a95bfaf600b321b5464", + "value": " 26.0/26.0 [00:00<00:00, 1.07kB/s]" + } + }, + "15e421344c8341d1a8011702d4dc07c3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2577d0d7013f4fb7b500916137bed1b0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "541d2d7200b44dfab80178e1c68806ec": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9499be411d9d42bfbcd5477b53fe8d74": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "feb9bad9b33943729dcc67a7ffd8c8ef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cfaa75849a064d66b18893963f1413a4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cc93da4a48374a95bfaf600b321b5464": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bde596f909cf4f4c8ec7166f6d6ff5da": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3757acbc0aa943cd9a2a22fa0336805c", + "IPY_MODEL_67495b76189f4489bc4ec4b3cbe8b2aa", + "IPY_MODEL_6fd8d362aa5049e087e6210660c8aac7" + ], + "layout": "IPY_MODEL_4ca172d25bc2489a90bef50b6ab671e1" + } + }, + "3757acbc0aa943cd9a2a22fa0336805c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_410a5a0a52ee46f19413833ea0c9ffa9", + "placeholder": "​", + "style": "IPY_MODEL_2150f647187d4df5805ed69fe91456e9", + "value": "Downloading (…)olve/main/vocab.json: 100%" + } + }, + "67495b76189f4489bc4ec4b3cbe8b2aa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c263ee996b7e476e96fd77456922635d", + "max": 898822, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2352fe8e75fa460b8859823270b054e3", + "value": 898822 + } + }, + "6fd8d362aa5049e087e6210660c8aac7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_19503938c7c9427ab9368718f113d0dc", + "placeholder": "​", + "style": "IPY_MODEL_3575328060fc48c39207ac7ed254108d", + "value": " 899k/899k [00:00<00:00, 4.61MB/s]" + } + }, + "4ca172d25bc2489a90bef50b6ab671e1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "410a5a0a52ee46f19413833ea0c9ffa9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2150f647187d4df5805ed69fe91456e9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c263ee996b7e476e96fd77456922635d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2352fe8e75fa460b8859823270b054e3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "19503938c7c9427ab9368718f113d0dc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3575328060fc48c39207ac7ed254108d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b7343b6eba3a4c6fbfb41de9a2f1c2a5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_146686cbbb514f95892dc87061565fb2", + "IPY_MODEL_1e98e49f489543e78e3384b66c048cc6", + "IPY_MODEL_a106da5cb7314f03b075ee7c0e4e9ec7" + ], + "layout": "IPY_MODEL_7db3a1b06b714d7ab26338bdb4062b4c" + } + }, + "146686cbbb514f95892dc87061565fb2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cedf88473f774984a22f65e06f7608bb", + "placeholder": "​", + "style": "IPY_MODEL_5c9474ce8e3a45658f68e823d74f1995", + "value": "Downloading (…)olve/main/merges.txt: 100%" + } + }, + "1e98e49f489543e78e3384b66c048cc6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e390d3472da24d7286239e9b852dad6c", + "max": 456318, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7e73588e6d82482fa7398bc4d4e0e913", + "value": 456318 + } + }, + "a106da5cb7314f03b075ee7c0e4e9ec7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5af9d65c8ac242f0972d93f48c9fc4bb", + "placeholder": "​", + "style": "IPY_MODEL_e5a9124fe6044842a27a9c30883d5869", + "value": " 456k/456k [00:00<00:00, 3.45MB/s]" + } + }, + "7db3a1b06b714d7ab26338bdb4062b4c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cedf88473f774984a22f65e06f7608bb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c9474ce8e3a45658f68e823d74f1995": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e390d3472da24d7286239e9b852dad6c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e73588e6d82482fa7398bc4d4e0e913": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5af9d65c8ac242f0972d93f48c9fc4bb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e5a9124fe6044842a27a9c30883d5869": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "489233bb8c044988a3e08102f8aadbf8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7f0fd2b6ae724ebe93b39e15d0b18ffa", + "IPY_MODEL_bcb392fa900e4f78ab0f5d985ccb0c5e", + "IPY_MODEL_07dfbcc8771f48d6b3426dc82ef74617" + ], + "layout": "IPY_MODEL_60eb749393b2460c92b6af9d8632b73e" + } + }, + "7f0fd2b6ae724ebe93b39e15d0b18ffa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_319fbe6f513644b9bd98d76589a70b1f", + "placeholder": "​", + "style": "IPY_MODEL_5add45e0435b4f16b94b59d969ece2f6", + "value": "Downloading (…)/main/tokenizer.json: 100%" + } + }, + "bcb392fa900e4f78ab0f5d985ccb0c5e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b83f6ddd989d4f67957622f1c5932d87", + "max": 1355863, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2c27bf385c1c4e2892044acfd233b326", + "value": 1355863 + } + }, + "07dfbcc8771f48d6b3426dc82ef74617": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_118bb1212469463d87ef9762316cf9cd", + "placeholder": "​", + "style": "IPY_MODEL_5790a88fec1141ae8813301962eae01d", + "value": " 1.36M/1.36M [00:00<00:00, 6.96MB/s]" + } + }, + "60eb749393b2460c92b6af9d8632b73e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "319fbe6f513644b9bd98d76589a70b1f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5add45e0435b4f16b94b59d969ece2f6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b83f6ddd989d4f67957622f1c5932d87": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2c27bf385c1c4e2892044acfd233b326": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "118bb1212469463d87ef9762316cf9cd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5790a88fec1141ae8813301962eae01d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5f74275afa1d46da8085b979edd7d4de": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_627058aa0f314f1eb21388e8a327a429", + "IPY_MODEL_0d27a80e51674bc4ab93817c47e22d34", + "IPY_MODEL_94a41b1e2e0a4ea79b1031aa5828ecb6" + ], + "layout": "IPY_MODEL_3a6a1f92769f4bfa924920c8c003a02f" + } + }, + "627058aa0f314f1eb21388e8a327a429": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c1ae57b61c9b4b949e0fa0581611aa80", + "placeholder": "​", + "style": "IPY_MODEL_9a10cedca8a44948840681975df987a7", + "value": "Downloading (…)okenizer_config.json: 100%" + } + }, + "0d27a80e51674bc4ab93817c47e22d34": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c3ae5a90e564510aac2ce4a61b9c56d", + "max": 352, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9096ce54dea847bc9d398ae31f086c16", + "value": 352 + } + }, + "94a41b1e2e0a4ea79b1031aa5828ecb6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_66e0472ab90e4c6c94d18e374f8cf9c7", + "placeholder": "​", + "style": "IPY_MODEL_05fbe6032b7f421fa897992621795b33", + "value": " 352/352 [00:00<00:00, 13.0kB/s]" + } + }, + "3a6a1f92769f4bfa924920c8c003a02f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c1ae57b61c9b4b949e0fa0581611aa80": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9a10cedca8a44948840681975df987a7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1c3ae5a90e564510aac2ce4a61b9c56d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9096ce54dea847bc9d398ae31f086c16": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "66e0472ab90e4c6c94d18e374f8cf9c7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "05fbe6032b7f421fa897992621795b33": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4595744bea1843c79d6c8b11027c1db8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_320c7ca65249451a824d2df8c430a3a4", + "IPY_MODEL_a279e42a1701404bbcb2732ed248a334", + "IPY_MODEL_0998c7ff46e74d49b9fb991a337bad0e" + ], + "layout": "IPY_MODEL_7f15dfe1fa454a1e8faa2c764e437ba7" + } + }, + "320c7ca65249451a824d2df8c430a3a4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a7c671a21dee45829a450e40de873384", + "placeholder": "​", + "style": "IPY_MODEL_45d00478792d44cfa033feb875b84a7b", + "value": "Downloading (…)solve/main/vocab.txt: 100%" + } + }, + "a279e42a1701404bbcb2732ed248a334": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3fb4ac16169c4bdab40cf7189de202d9", + "max": 231508, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_800b4b1478b94daa9045c8d183de2bdd", + "value": 231508 + } + }, + "0998c7ff46e74d49b9fb991a337bad0e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b027b9effe2b44d895b3f5babedaf6e7", + "placeholder": "​", + "style": "IPY_MODEL_8c49c80da8b84575ae24724c345fcb06", + "value": " 232k/232k [00:00<00:00, 3.06MB/s]" + } + }, + "7f15dfe1fa454a1e8faa2c764e437ba7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a7c671a21dee45829a450e40de873384": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "45d00478792d44cfa033feb875b84a7b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3fb4ac16169c4bdab40cf7189de202d9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "800b4b1478b94daa9045c8d183de2bdd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b027b9effe2b44d895b3f5babedaf6e7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8c49c80da8b84575ae24724c345fcb06": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1c9d63e6919242a193aafd755220497d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6c08750a5b304550b784400b5cd48846", + "IPY_MODEL_47bb8f56b89549ae8a72b8976a3664eb", + "IPY_MODEL_c927c1d243364d1c88534038402d3629" + ], + "layout": "IPY_MODEL_8c34114e5cbb479eb8b8fc691a3e65da" + } + }, + "6c08750a5b304550b784400b5cd48846": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f3c04685c6af44bd9bf88d404d1f8c9d", + "placeholder": "​", + "style": "IPY_MODEL_4124b1638d2c4ca1ae0c9fc7a92c2884", + "value": "Downloading (…)/main/tokenizer.json: 100%" + } + }, + "47bb8f56b89549ae8a72b8976a3664eb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_62abd2484e5444d6859d3bbd639fa4d7", + "max": 466247, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1245ab4237cc4ee9b6c851301607b301", + "value": 466247 + } + }, + "c927c1d243364d1c88534038402d3629": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_47622165b2ae457d8578e141318e95d5", + "placeholder": "​", + "style": "IPY_MODEL_6f3f15dd4f0f4e7bafd6c29414269465", + "value": " 466k/466k [00:00<00:00, 2.39MB/s]" + } + }, + "8c34114e5cbb479eb8b8fc691a3e65da": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f3c04685c6af44bd9bf88d404d1f8c9d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4124b1638d2c4ca1ae0c9fc7a92c2884": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "62abd2484e5444d6859d3bbd639fa4d7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1245ab4237cc4ee9b6c851301607b301": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "47622165b2ae457d8578e141318e95d5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6f3f15dd4f0f4e7bafd6c29414269465": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ccf3d21d1e394e79a736bb5ae51e1a1c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ebc5ae4cf440454a945580961ea23bb1", + "IPY_MODEL_0202fb280ebb4149b1f3a85545fe5cd3", + "IPY_MODEL_362c20f6821747b1a9854c094f00f672" + ], + "layout": "IPY_MODEL_1fcdb6ee7a894d32b11901032dce5f92" + } + }, + "ebc5ae4cf440454a945580961ea23bb1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d6704ca6a7a24c1d9489f662a65921bf", + "placeholder": "​", + "style": "IPY_MODEL_716aeb463e49482ca7fbf7c4af312138", + "value": "Downloading (…)cial_tokens_map.json: 100%" + } + }, + "0202fb280ebb4149b1f3a85545fe5cd3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_69eb91d460e24f29b479b64bdc270847", + "max": 112, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9914a5f63edd444db1e7bc0992fb2770", + "value": 112 + } + }, + "362c20f6821747b1a9854c094f00f672": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5b4ed5562c0242d9a69788aeebe0f9af", + "placeholder": "​", + "style": "IPY_MODEL_325c8a22307c4b77a84f549627db0d5a", + "value": " 112/112 [00:00<00:00, 4.48kB/s]" + } + }, + "1fcdb6ee7a894d32b11901032dce5f92": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d6704ca6a7a24c1d9489f662a65921bf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "716aeb463e49482ca7fbf7c4af312138": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "69eb91d460e24f29b479b64bdc270847": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9914a5f63edd444db1e7bc0992fb2770": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5b4ed5562c0242d9a69788aeebe0f9af": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "325c8a22307c4b77a84f549627db0d5a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "448a40829fdf408cac3af81ef9c03df4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_32b565d94b2f405693f5eba1bc16f53d", + "IPY_MODEL_78ad4e18627b4131aca129f38652ccba", + "IPY_MODEL_e89c8fe1562b45b7818ff20c4ef58f8e" + ], + "layout": "IPY_MODEL_39cbad4a6bd944b4bd18ea9b14debac2" + } + }, + "32b565d94b2f405693f5eba1bc16f53d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6859fef3694e4c49b0ab633200756934", + "placeholder": "​", + "style": "IPY_MODEL_b51d592bfbf34b24b16544f42dcad5e8", + "value": "Downloading (…)lve/main/config.json: 100%" + } + }, + "78ad4e18627b4131aca129f38652ccba": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b9711b3014f0476d8cccb1642cf28681", + "max": 573, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a331fc31a1546f093494ee2404cfbe1", + "value": 573 + } + }, + "e89c8fe1562b45b7818ff20c4ef58f8e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_739340399a6c4c4fb50143e3587423ad", + "placeholder": "​", + "style": "IPY_MODEL_8c183b90a3dd45c2a7fe797ea079e319", + "value": " 573/573 [00:00<00:00, 20.4kB/s]" + } + }, + "39cbad4a6bd944b4bd18ea9b14debac2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6859fef3694e4c49b0ab633200756934": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b51d592bfbf34b24b16544f42dcad5e8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b9711b3014f0476d8cccb1642cf28681": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5a331fc31a1546f093494ee2404cfbe1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "739340399a6c4c4fb50143e3587423ad": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8c183b90a3dd45c2a7fe797ea079e319": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f51acf459e944e7cb86ec7e57c47496f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_221e6c077d39456f839d859fbd67e9cc", + "IPY_MODEL_9d814a3f4ba5482199f7c5f91bf7e39d", + "IPY_MODEL_e7f354b860fb45cfa7368eb01f2e5c01" + ], + "layout": "IPY_MODEL_2067761d355d4de3ab734ecd38d85702" + } + }, + "221e6c077d39456f839d859fbd67e9cc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d96a4c788fa140e2ac5977582e2a2ff1", + "placeholder": "​", + "style": "IPY_MODEL_ea0f1a6513ce4d73b9362a9839999312", + "value": "Downloading pytorch_model.bin: 100%" + } + }, + "9d814a3f4ba5482199f7c5f91bf7e39d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_71ed5aad90ba4794b7242efa2f66e82a", + "max": 133506609, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_423662a69bcb4312ae86d9f23290a447", + "value": 133506609 + } + }, + "e7f354b860fb45cfa7368eb01f2e5c01": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3bae1d2fbd2449af80e6c0a6ff3cadb0", + "placeholder": "​", + "style": "IPY_MODEL_2866aaeac9af4b35a0b9a76c33d8dece", + "value": " 134M/134M [00:00<00:00, 198MB/s]" + } + }, + "2067761d355d4de3ab734ecd38d85702": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d96a4c788fa140e2ac5977582e2a2ff1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ea0f1a6513ce4d73b9362a9839999312": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "71ed5aad90ba4794b7242efa2f66e82a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "423662a69bcb4312ae86d9f23290a447": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3bae1d2fbd2449af80e6c0a6ff3cadb0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2866aaeac9af4b35a0b9a76c33d8dece": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2c818172220a463b86e8506b8d4d4544": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3cf0a2866240469badd808cdff21dcf9", + "IPY_MODEL_096c8611486245f48d2a47a32aaedf0b", + "IPY_MODEL_78200e8e8f524a388aa1089ef4c764d6" + ], + "layout": "IPY_MODEL_d2f9abbf266d401ea70b2ed1393ad106" + } + }, + "3cf0a2866240469badd808cdff21dcf9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8107463dabdf4361bc1ee1e398332d98", + "placeholder": "​", + "style": "IPY_MODEL_61cd7bef43a64e3c986d7494fefd620c", + "value": "Map: 100%" + } + }, + "096c8611486245f48d2a47a32aaedf0b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fbc79b5a25e047109998ca2544270d24", + "max": 4991, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7aa2febe09344f7faab7e2ea3f17934e", + "value": 4991 + } + }, + "78200e8e8f524a388aa1089ef4c764d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4a84260fa3684ecd994ee4ce71852196", + "placeholder": "​", + "style": "IPY_MODEL_fd3cbbc513fb402f8fe15574a1d01a73", + "value": " 4991/4991 [00:00<00:00, 9302.35 examples/s]" + } + }, + "d2f9abbf266d401ea70b2ed1393ad106": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8107463dabdf4361bc1ee1e398332d98": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "61cd7bef43a64e3c986d7494fefd620c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fbc79b5a25e047109998ca2544270d24": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7aa2febe09344f7faab7e2ea3f17934e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4a84260fa3684ecd994ee4ce71852196": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fd3cbbc513fb402f8fe15574a1d01a73": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b69dea2394c444a787c6a91a928e152d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d891083164114c5897b56c53c4359093", + "IPY_MODEL_e5607e4bdd69490698439daafe1807c7", + "IPY_MODEL_ee50e9d4ff9943f082ee58e0e6ef39e0" + ], + "layout": "IPY_MODEL_5d0afb221a2d40acb65ea5b2813b94a0" + } + }, + "d891083164114c5897b56c53c4359093": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_02eb4fbb7db247629b770404b5e14da0", + "placeholder": "​", + "style": "IPY_MODEL_0267f239aaf94ddeacff27abe4b693c9", + "value": "Map: 100%" + } + }, + "e5607e4bdd69490698439daafe1807c7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_133779a0c5364fbbb0c30cc303420f0e", + "max": 1039, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f748d8f0253346668978c01abaf7837f", + "value": 1039 + } + }, + "ee50e9d4ff9943f082ee58e0e6ef39e0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cceb23f1972042489c92ad40707125f4", + "placeholder": "​", + "style": "IPY_MODEL_d0bafc08bf5b41ef90d430ad3dbd84a7", + "value": " 1039/1039 [00:00<00:00, 7945.23 examples/s]" + } + }, + "5d0afb221a2d40acb65ea5b2813b94a0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "02eb4fbb7db247629b770404b5e14da0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0267f239aaf94ddeacff27abe4b693c9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "133779a0c5364fbbb0c30cc303420f0e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f748d8f0253346668978c01abaf7837f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cceb23f1972042489c92ad40707125f4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d0bafc08bf5b41ef90d430ad3dbd84a7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d3ebe58a4bb44911a68cf0a28d27f668": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ef894bea7b7c4f93aa5e465adc65bb15", + "IPY_MODEL_8b4d22668b924a2e84d447cda3c6807c", + "IPY_MODEL_b5cb6f10f5b449ed9d88db38ff511b57" + ], + "layout": "IPY_MODEL_dd03e7b8ecc949a39978fb4026921284" + } + }, + "ef894bea7b7c4f93aa5e465adc65bb15": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ff6685df85604180a57eef690acecd02", + "placeholder": "​", + "style": "IPY_MODEL_7d94b89825564b42bea692dce185ae01", + "value": "Map: 100%" + } + }, + "8b4d22668b924a2e84d447cda3c6807c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_31e39dcf9d5e44bd95840402a8e23f9a", + "max": 4991, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e1b2a889ce334bc99a123f1406619435", + "value": 4991 + } + }, + "b5cb6f10f5b449ed9d88db38ff511b57": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2d4f765e93c146f385b073d808e4d5e6", + "placeholder": "​", + "style": "IPY_MODEL_effd70ee57ed411482632ae361864d15", + "value": " 4991/4991 [00:06<00:00, 747.83 examples/s]" + } + }, + "dd03e7b8ecc949a39978fb4026921284": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ff6685df85604180a57eef690acecd02": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7d94b89825564b42bea692dce185ae01": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "31e39dcf9d5e44bd95840402a8e23f9a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e1b2a889ce334bc99a123f1406619435": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2d4f765e93c146f385b073d808e4d5e6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "effd70ee57ed411482632ae361864d15": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5b0266cdaf324d719520d2a894b178f9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_97a81e281a5f4015884cef52097e1376", + "IPY_MODEL_e9519922ea3b42d191e5e77b36e86630", + "IPY_MODEL_ceb84e2b4df846db80c15e4a54bf04b0" + ], + "layout": "IPY_MODEL_830993d753904c4ab00c361e6bb7f386" + } + }, + "97a81e281a5f4015884cef52097e1376": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_43b680131b1d4688ba25e321351eae1c", + "placeholder": "​", + "style": "IPY_MODEL_7134252fb8204035959c1a2caf3445cb", + "value": "Map: 100%" + } + }, + "e9519922ea3b42d191e5e77b36e86630": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6855168610e1450e890f8ef0a1b40b97", + "max": 1039, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6bea289840764a38a254fdb81056443e", + "value": 1039 + } + }, + "ceb84e2b4df846db80c15e4a54bf04b0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6afbdd3d62bd4c8ba0301ea78d5dd47f", + "placeholder": "​", + "style": "IPY_MODEL_fa8e9cf4596b482a96adad3c0a9b8042", + "value": " 1039/1039 [00:01<00:00, 941.83 examples/s]" + } + }, + "830993d753904c4ab00c361e6bb7f386": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "43b680131b1d4688ba25e321351eae1c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7134252fb8204035959c1a2caf3445cb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6855168610e1450e890f8ef0a1b40b97": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6bea289840764a38a254fdb81056443e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6afbdd3d62bd4c8ba0301ea78d5dd47f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fa8e9cf4596b482a96adad3c0a9b8042": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fdc6f7cf2e2a4486b7ccf475144f30e7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0b8a5b7ed9734f9bb40d69c7e4820820", + "IPY_MODEL_32bf9d8b267d473e80d053005ef22859", + "IPY_MODEL_bcd0bac05ba242209a629baddafb00cf" + ], + "layout": "IPY_MODEL_cfbe1975542949c1807736707be93141" + } + }, + "0b8a5b7ed9734f9bb40d69c7e4820820": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5254c26dd1db49a486692129d809ac39", + "placeholder": "​", + "style": "IPY_MODEL_632f8d67102b41b3865dab13d8a6219c", + "value": "Map: 100%" + } + }, + "32bf9d8b267d473e80d053005ef22859": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4766d42a9fd541fab09c6e5052a9a8e8", + "max": 13, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_10f361903ae341c7bcbd2cceabafb728", + "value": 13 + } + }, + "bcd0bac05ba242209a629baddafb00cf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d441eeb13e2c4e3a9bbc6bf1d9fcaac5", + "placeholder": "​", + "style": "IPY_MODEL_f472b3d813494f7795748b7046a9766f", + "value": " 13/13 [00:00<00:00, 581.96 examples/s]" + } + }, + "cfbe1975542949c1807736707be93141": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5254c26dd1db49a486692129d809ac39": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "632f8d67102b41b3865dab13d8a6219c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4766d42a9fd541fab09c6e5052a9a8e8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "10f361903ae341c7bcbd2cceabafb728": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d441eeb13e2c4e3a9bbc6bf1d9fcaac5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f472b3d813494f7795748b7046a9766f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "318bd1e4c10c464983f083db1afe60bf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_22b5ae363fe0419eb7c0e13050948ec3", + "IPY_MODEL_e87902dd30fc4a82a230af76bf1528d0", + "IPY_MODEL_9ab40312bef04711a2a0347bfd527708" + ], + "layout": "IPY_MODEL_e29b0382ca914048b2fceaa68c6714ff" + } + }, + "22b5ae363fe0419eb7c0e13050948ec3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_80df714e378046918773f4e7d58e36e4", + "placeholder": "​", + "style": "IPY_MODEL_995ada87ad8c483d899cb58817bce566", + "value": "Map: 100%" + } + }, + "e87902dd30fc4a82a230af76bf1528d0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f2f910180dab4a4ba449d94e02a3430b", + "max": 13, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1ef714e4cbe5437ba7460f81740df425", + "value": 13 + } + }, + "9ab40312bef04711a2a0347bfd527708": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0b305b33835f4be7b9c62b29be826045", + "placeholder": "​", + "style": "IPY_MODEL_4d05924654ef41a6bd62372337a386da", + "value": " 13/13 [00:00<00:00, 259.22 examples/s]" + } + }, + "e29b0382ca914048b2fceaa68c6714ff": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "80df714e378046918773f4e7d58e36e4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "995ada87ad8c483d899cb58817bce566": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f2f910180dab4a4ba449d94e02a3430b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1ef714e4cbe5437ba7460f81740df425": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0b305b33835f4be7b9c62b29be826045": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4d05924654ef41a6bd62372337a386da": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a5031e1dc6974abda39169786b5c199d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c75fd940551245829dc2e7393c7173b3", + "IPY_MODEL_40da65b891d240aea9358b2d487257ce", + "IPY_MODEL_92b58e9a24be486bb72a6a8e4bc10af4" + ], + "layout": "IPY_MODEL_85cb5dd482d740bf872763b94bdbd3fb" + } + }, + "c75fd940551245829dc2e7393c7173b3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3f8b3f16df4b4be996979e0c4abf8c02", + "placeholder": "​", + "style": "IPY_MODEL_6e59977f9d02489885b3dccf336304b6", + "value": "Map: 100%" + } + }, + "40da65b891d240aea9358b2d487257ce": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8824371c43c84ff6a973aff7f2dbd032", + "max": 4991, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_241f3b90f6a842e09a9bea0b24f5c936", + "value": 4991 + } + }, + "92b58e9a24be486bb72a6a8e4bc10af4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d1b13e4ae377404e84b5d4128fa5fa08", + "placeholder": "​", + "style": "IPY_MODEL_044c8ea072134111a3634a0f9815125e", + "value": " 4991/4991 [00:00<00:00, 18340.41 examples/s]" + } + }, + "85cb5dd482d740bf872763b94bdbd3fb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3f8b3f16df4b4be996979e0c4abf8c02": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6e59977f9d02489885b3dccf336304b6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8824371c43c84ff6a973aff7f2dbd032": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "241f3b90f6a842e09a9bea0b24f5c936": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d1b13e4ae377404e84b5d4128fa5fa08": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "044c8ea072134111a3634a0f9815125e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0a93b0ad407449ffb60629889468f722": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_545539439faa4dd68428ba67c8497efb", + "IPY_MODEL_78dd7d0bb9a94aaea598d1154da76314", + "IPY_MODEL_605cab64c1454b16ae4fa738fe749222" + ], + "layout": "IPY_MODEL_293771f688a5487caa6852958c93c1e2" + } + }, + "545539439faa4dd68428ba67c8497efb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8dcd26bbf7084ce599d4f793e50f0433", + "placeholder": "​", + "style": "IPY_MODEL_a0c16d99783740469f83a1451561e2a3", + "value": "Downloading (…)e9125/.gitattributes: 100%" + } + }, + "78dd7d0bb9a94aaea598d1154da76314": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b029308c7f2741e2be2d41bed714424b", + "max": 1175, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b4517d2b1bf7483995ab260bf21376c8", + "value": 1175 + } + }, + "605cab64c1454b16ae4fa738fe749222": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ad89c7a7393644e69e462b04f912079d", + "placeholder": "​", + "style": "IPY_MODEL_c98ceb9a76224a2e9d379e2e3f2b1643", + "value": " 1.18k/1.18k [00:00<00:00, 42.0kB/s]" + } + }, + "293771f688a5487caa6852958c93c1e2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8dcd26bbf7084ce599d4f793e50f0433": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a0c16d99783740469f83a1451561e2a3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b029308c7f2741e2be2d41bed714424b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b4517d2b1bf7483995ab260bf21376c8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ad89c7a7393644e69e462b04f912079d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c98ceb9a76224a2e9d379e2e3f2b1643": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d8e09e61568a467c928f1a810d5dacf7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f5f6a7b0f944dd9be63047ecbd1052f", + "IPY_MODEL_7855b8efab284ad58f64fc35ffc130ce", + "IPY_MODEL_ad2bc40eec7344a0bd4cab0461952fbb" + ], + "layout": "IPY_MODEL_8256b776f57246ad9763b1560395d4b5" + } + }, + "0f5f6a7b0f944dd9be63047ecbd1052f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_758e8f60f8f2407abd27e9ba6c27caa1", + "placeholder": "​", + "style": "IPY_MODEL_6d86c1e2d4b54e998e63516991747611", + "value": "Downloading (…)_Pooling/config.json: 100%" + } + }, + "7855b8efab284ad58f64fc35ffc130ce": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_54b3fd81ee77419d8d3969aac3b75c1c", + "max": 190, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_908c7f7f09624aaca95553aed79af6a1", + "value": 190 + } + }, + "ad2bc40eec7344a0bd4cab0461952fbb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9c41b1d1ad84442688442fdcb61479fd", + "placeholder": "​", + "style": "IPY_MODEL_7edf0149002045e9b48eb4d50c9f5943", + "value": " 190/190 [00:00<00:00, 7.86kB/s]" + } + }, + "8256b776f57246ad9763b1560395d4b5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "758e8f60f8f2407abd27e9ba6c27caa1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6d86c1e2d4b54e998e63516991747611": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "54b3fd81ee77419d8d3969aac3b75c1c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "908c7f7f09624aaca95553aed79af6a1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9c41b1d1ad84442688442fdcb61479fd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7edf0149002045e9b48eb4d50c9f5943": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a57fb66bfbdd427881a9e3825e3c477b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1f83e073333f4280b3265842151588e3", + "IPY_MODEL_39e27c577a994959afd7cf01d5ae58ec", + "IPY_MODEL_5a125462ef474964a68f5d1ca863d48a" + ], + "layout": "IPY_MODEL_3c4ee169ef1744dab58d4299047efe3b" + } + }, + "1f83e073333f4280b3265842151588e3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cf72fda1a65c4a73bf422998fb8100a4", + "placeholder": "​", + "style": "IPY_MODEL_de764140bba446afb6faa7cf4b64130b", + "value": "Downloading (…)7e55de9125/README.md: 100%" + } + }, + "39e27c577a994959afd7cf01d5ae58ec": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ec2f29cfa86a4d60bd9c0b97a4e4eaa0", + "max": 10610, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_061c896648b241d9b6844cce5cbe9384", + "value": 10610 + } + }, + "5a125462ef474964a68f5d1ca863d48a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_47338744bb804702a918aa01c15dac3c", + "placeholder": "​", + "style": "IPY_MODEL_a380b4c20a0f48e3ab60f64815aa6371", + "value": " 10.6k/10.6k [00:00<00:00, 443kB/s]" + } + }, + "3c4ee169ef1744dab58d4299047efe3b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cf72fda1a65c4a73bf422998fb8100a4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "de764140bba446afb6faa7cf4b64130b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ec2f29cfa86a4d60bd9c0b97a4e4eaa0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "061c896648b241d9b6844cce5cbe9384": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "47338744bb804702a918aa01c15dac3c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a380b4c20a0f48e3ab60f64815aa6371": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3adb7f184b394e1f9c0e1d972dd74824": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2feb0dea2733457eb4fe564c4c6c3638", + "IPY_MODEL_cc653b9583c64e7296a5a7aee00f4d71", + "IPY_MODEL_af558c5ada404484ac68934e8ec72874" + ], + "layout": "IPY_MODEL_c79a60b8fa4b45d7acc70c4ea6fda415" + } + }, + "2feb0dea2733457eb4fe564c4c6c3638": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7fa300386dd240798331bcbdc7beb04e", + "placeholder": "​", + "style": "IPY_MODEL_04922f056ede4cc28e16aca5ef771120", + "value": "Downloading (…)55de9125/config.json: 100%" + } + }, + "cc653b9583c64e7296a5a7aee00f4d71": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_045ddc78143b445494f8c78672f081af", + "max": 612, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_28647e49f768427094f2de4689711c6a", + "value": 612 + } + }, + "af558c5ada404484ac68934e8ec72874": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e143aef52827432e84ccd648d25e79da", + "placeholder": "​", + "style": "IPY_MODEL_8689afc30539442d88d6add9acc43ced", + "value": " 612/612 [00:00<00:00, 28.4kB/s]" + } + }, + "c79a60b8fa4b45d7acc70c4ea6fda415": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7fa300386dd240798331bcbdc7beb04e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "04922f056ede4cc28e16aca5ef771120": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "045ddc78143b445494f8c78672f081af": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "28647e49f768427094f2de4689711c6a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e143aef52827432e84ccd648d25e79da": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8689afc30539442d88d6add9acc43ced": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "da9f459e78334daeaf85d15efce5cabb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ef9e43f56cee405cb88e7111886be517", + "IPY_MODEL_bd56d5bf6f3e45e99c746c4414f24f79", + "IPY_MODEL_e5f97293ce03488398ee7eff2b7acb65" + ], + "layout": "IPY_MODEL_00b4a55efa1f440cb9427fc3261d1e12" + } + }, + "ef9e43f56cee405cb88e7111886be517": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bcac9643e7d846b4a1b03a5605042976", + "placeholder": "​", + "style": "IPY_MODEL_fd7f741ef4054ab7b8bc692e4b71e04b", + "value": "Downloading (…)ce_transformers.json: 100%" + } + }, + "bd56d5bf6f3e45e99c746c4414f24f79": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_72800938513345898591b1fe44810aaf", + "max": 116, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_14fe74db8e4c4977803b462bc941af24", + "value": 116 + } + }, + "e5f97293ce03488398ee7eff2b7acb65": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bb7a6e56d5e84db78fa525aeb533e546", + "placeholder": "​", + "style": "IPY_MODEL_7557209fd8784f3d9c614f230b3a4547", + "value": " 116/116 [00:00<00:00, 4.56kB/s]" + } + }, + "00b4a55efa1f440cb9427fc3261d1e12": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bcac9643e7d846b4a1b03a5605042976": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fd7f741ef4054ab7b8bc692e4b71e04b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "72800938513345898591b1fe44810aaf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "14fe74db8e4c4977803b462bc941af24": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bb7a6e56d5e84db78fa525aeb533e546": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7557209fd8784f3d9c614f230b3a4547": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "241075466ab6455eb52ac3072766046b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_905a4aae088846319dd660c39971be1b", + "IPY_MODEL_1c85bfbd56864c538fb33fbb066c437d", + "IPY_MODEL_fdda33f9ab734b4c88b9c6c1facae84b" + ], + "layout": "IPY_MODEL_0db9b2f2ee2446859095a082c35d3111" + } + }, + "905a4aae088846319dd660c39971be1b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_17e12f0e81274ace8e6741644d57516a", + "placeholder": "​", + "style": "IPY_MODEL_c8162a3c0ecb4849b8715026656174cc", + "value": "Downloading (…)125/data_config.json: 100%" + } + }, + "1c85bfbd56864c538fb33fbb066c437d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1853a24008f54bd18d730d8d3f70a7a7", + "max": 39265, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0d2d84b74bba49269851798b8e75191a", + "value": 39265 + } + }, + "fdda33f9ab734b4c88b9c6c1facae84b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a78062463dd94f4c8ad4453684017d5d", + "placeholder": "​", + "style": "IPY_MODEL_ebd5f31cbe5c4694ae21ed3de5a558cb", + "value": " 39.3k/39.3k [00:00<00:00, 1.72MB/s]" + } + }, + "0db9b2f2ee2446859095a082c35d3111": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "17e12f0e81274ace8e6741644d57516a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c8162a3c0ecb4849b8715026656174cc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1853a24008f54bd18d730d8d3f70a7a7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d2d84b74bba49269851798b8e75191a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a78062463dd94f4c8ad4453684017d5d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ebd5f31cbe5c4694ae21ed3de5a558cb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3763bc3b756e443aa83bbcfcbe56ea9b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_403eff6c9efe48da858f22802297a625", + "IPY_MODEL_780e4d663a4f45e087650776fb5fd4bd", + "IPY_MODEL_ed796dd3445c40cd9bdbe5dd8115f0b9" + ], + "layout": "IPY_MODEL_e39c3c4eb2db4d8b80cbf86157cfdcf3" + } + }, + "403eff6c9efe48da858f22802297a625": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2b4e8ed72673494bb9531d22f37aa37f", + "placeholder": "​", + "style": "IPY_MODEL_fc0504f969c34a5999c2f046a17b9e58", + "value": "Downloading pytorch_model.bin: 100%" + } + }, + "780e4d663a4f45e087650776fb5fd4bd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2e60b7e5121b4f4cbe02c5e70d2436c4", + "max": 90888945, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_831417d971094b00b38d000e105556e1", + "value": 90888945 + } + }, + "ed796dd3445c40cd9bdbe5dd8115f0b9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_207b5bde178c48b6983ae98bd90372b9", + "placeholder": "​", + "style": "IPY_MODEL_bfe0555f0672497485e69bc7d156111e", + "value": " 90.9M/90.9M [00:00<00:00, 159MB/s]" + } + }, + "e39c3c4eb2db4d8b80cbf86157cfdcf3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2b4e8ed72673494bb9531d22f37aa37f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fc0504f969c34a5999c2f046a17b9e58": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2e60b7e5121b4f4cbe02c5e70d2436c4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "831417d971094b00b38d000e105556e1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "207b5bde178c48b6983ae98bd90372b9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bfe0555f0672497485e69bc7d156111e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "96250a8028524757a432ec794b438d0e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_81a571f6382b45eabf40398b549b674d", + "IPY_MODEL_b5e18c4c4f3a4a3e9a5d8aa89b3c7222", + "IPY_MODEL_8ccd518744fa427fbd7466a192204f2d" + ], + "layout": "IPY_MODEL_3205286f337a482abe1999891a56db15" + } + }, + "81a571f6382b45eabf40398b549b674d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2fd85852c8a446b794bef0414a5d1b42", + "placeholder": "​", + "style": "IPY_MODEL_cd2a8dd704e44787ae3e280451d36f39", + "value": "Downloading (…)nce_bert_config.json: 100%" + } + }, + "b5e18c4c4f3a4a3e9a5d8aa89b3c7222": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_33c9c9474d94430da4d8b1176c71b184", + "max": 53, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3040da57fc3a491ca95c3ef746bd813c", + "value": 53 + } + }, + "8ccd518744fa427fbd7466a192204f2d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_44bb15aeab564ca6a5b34a9c2941e298", + "placeholder": "​", + "style": "IPY_MODEL_529b6d913e8a4f2eb7caae1219e95d38", + "value": " 53.0/53.0 [00:00<00:00, 2.10kB/s]" + } + }, + "3205286f337a482abe1999891a56db15": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2fd85852c8a446b794bef0414a5d1b42": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cd2a8dd704e44787ae3e280451d36f39": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "33c9c9474d94430da4d8b1176c71b184": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3040da57fc3a491ca95c3ef746bd813c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "44bb15aeab564ca6a5b34a9c2941e298": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "529b6d913e8a4f2eb7caae1219e95d38": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "681b5052bf724cdca9d6a2d73114c1d1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e53e9a1c02094db29f15099da40103cd", + "IPY_MODEL_6200267d273b48b3a35ac140de49630b", + "IPY_MODEL_1433d12e4c874c79bbbb0286d4eacde4" + ], + "layout": "IPY_MODEL_21f44d8a27be4f1aa0b0203ddc3527b1" + } + }, + "e53e9a1c02094db29f15099da40103cd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_da7e7b42d0c2431e93a0189229cbbc5b", + "placeholder": "​", + "style": "IPY_MODEL_151f9c76297b4ca3bf6b71b08345e0dd", + "value": "Downloading (…)cial_tokens_map.json: 100%" + } + }, + "6200267d273b48b3a35ac140de49630b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_25099eccf4e84cb49fd9ed8b0ed3184f", + "max": 112, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a1b8a7e0639c4170b826da2775ddc5df", + "value": 112 + } + }, + "1433d12e4c874c79bbbb0286d4eacde4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_02c1215b364e4c7b9383b86c6daa4472", + "placeholder": "​", + "style": "IPY_MODEL_568133b1fa894d4288cc0cd302b851ef", + "value": " 112/112 [00:00<00:00, 4.91kB/s]" + } + }, + "21f44d8a27be4f1aa0b0203ddc3527b1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "da7e7b42d0c2431e93a0189229cbbc5b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "151f9c76297b4ca3bf6b71b08345e0dd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "25099eccf4e84cb49fd9ed8b0ed3184f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a1b8a7e0639c4170b826da2775ddc5df": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "02c1215b364e4c7b9383b86c6daa4472": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "568133b1fa894d4288cc0cd302b851ef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6faba8ae0c8b40b69543f3e91a67d225": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d4816bb72f82473ca29bbcb0b37ffb68", + "IPY_MODEL_ddd9638742da46c4a3a82881dbe79846", + "IPY_MODEL_59f257cf1c6d44b090426525857c140a" + ], + "layout": "IPY_MODEL_40fe1b409e494a88b33cd34dc2aa6616" + } + }, + "d4816bb72f82473ca29bbcb0b37ffb68": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d66ed2383e71446daa92c192ffb68ce5", + "placeholder": "​", + "style": "IPY_MODEL_0d8c13840d9b46b1895563aa41fcbd72", + "value": "Downloading (…)e9125/tokenizer.json: 100%" + } + }, + "ddd9638742da46c4a3a82881dbe79846": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_62e674c59ad84a2fa3f6f3f4e333db61", + "max": 466247, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4ca5212c96054392871b75a0ef5c6875", + "value": 466247 + } + }, + "59f257cf1c6d44b090426525857c140a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_494979dd889744de9314ede61e10d2c1", + "placeholder": "​", + "style": "IPY_MODEL_a18dfa4b3fc14f278e1c875d54cb6341", + "value": " 466k/466k [00:00<00:00, 3.56MB/s]" + } + }, + "40fe1b409e494a88b33cd34dc2aa6616": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d66ed2383e71446daa92c192ffb68ce5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d8c13840d9b46b1895563aa41fcbd72": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "62e674c59ad84a2fa3f6f3f4e333db61": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4ca5212c96054392871b75a0ef5c6875": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "494979dd889744de9314ede61e10d2c1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a18dfa4b3fc14f278e1c875d54cb6341": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "37ffffeff297428da5b29b512360f939": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f98261d50e2d400a84eaad5f4bc3a757", + "IPY_MODEL_0390606e1b964339a9a2802f0461a380", + "IPY_MODEL_21499c4a84784d8a80cfff923ec4f593" + ], + "layout": "IPY_MODEL_284f5506aa834873955e5b8e3539a60a" + } + }, + "f98261d50e2d400a84eaad5f4bc3a757": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9f99f1b0afed481b8efc1a04788cdac8", + "placeholder": "​", + "style": "IPY_MODEL_6af24361f81243fca3cf416c487d08c7", + "value": "Downloading (…)okenizer_config.json: 100%" + } + }, + "0390606e1b964339a9a2802f0461a380": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3f72b06f37bb457caffe815207c6af7c", + "max": 350, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7ce328cb515342929c3e9bc538e90763", + "value": 350 + } + }, + "21499c4a84784d8a80cfff923ec4f593": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_100bd06a11b14becb016ec629683188e", + "placeholder": "​", + "style": "IPY_MODEL_d5f600e9d25b46e3a8acc6e66e69de36", + "value": " 350/350 [00:00<00:00, 19.4kB/s]" + } + }, + "284f5506aa834873955e5b8e3539a60a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9f99f1b0afed481b8efc1a04788cdac8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6af24361f81243fca3cf416c487d08c7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3f72b06f37bb457caffe815207c6af7c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7ce328cb515342929c3e9bc538e90763": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "100bd06a11b14becb016ec629683188e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d5f600e9d25b46e3a8acc6e66e69de36": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cea3f981bbce4ab094b9b7d3cd1e3426": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9fe070e4921c4aad95cfccb370ba14e5", + "IPY_MODEL_fc84582f240d4c208f10e37a4a8c8454", + "IPY_MODEL_573eb6654161424d89404c222301a17f" + ], + "layout": "IPY_MODEL_12ae0b0ee8f34ccea5289edfb174e387" + } + }, + "9fe070e4921c4aad95cfccb370ba14e5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ec1d511a8d874500902a03a05dbc728a", + "placeholder": "​", + "style": "IPY_MODEL_3e41a4ad2a13400595ac057fe4d6f54e", + "value": "Downloading (…)9125/train_script.py: 100%" + } + }, + "fc84582f240d4c208f10e37a4a8c8454": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cf2f0bb859254cd1bbcd489e8b7de593", + "max": 13156, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_962d3c30407a4a97b75c5c44e7dfc468", + "value": 13156 + } + }, + "573eb6654161424d89404c222301a17f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5802642641a34552aeb8952350032e24", + "placeholder": "​", + "style": "IPY_MODEL_0df6988eac6d4dedbdc732a41d4330f9", + "value": " 13.2k/13.2k [00:00<00:00, 542kB/s]" + } + }, + "12ae0b0ee8f34ccea5289edfb174e387": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ec1d511a8d874500902a03a05dbc728a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3e41a4ad2a13400595ac057fe4d6f54e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cf2f0bb859254cd1bbcd489e8b7de593": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "962d3c30407a4a97b75c5c44e7dfc468": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5802642641a34552aeb8952350032e24": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0df6988eac6d4dedbdc732a41d4330f9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c6c975acadf940c0b04c2eaaf06aa60a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b1128267ec774682ba6c8237b746c96e", + "IPY_MODEL_c914b15925f7492a9201b63cf6912e5c", + "IPY_MODEL_9abfa4ffcf2547ab8b297c694f4a35a2" + ], + "layout": "IPY_MODEL_26e5d6f0d5094bada101e7077c942e80" + } + }, + "b1128267ec774682ba6c8237b746c96e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ad90886ea329457fae3bc83d3499872f", + "placeholder": "​", + "style": "IPY_MODEL_af63497d6ccd4e36abf8757b54199ef6", + "value": "Downloading (…)7e55de9125/vocab.txt: 100%" + } + }, + "c914b15925f7492a9201b63cf6912e5c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bad55ae359834077b82d5d9379313c22", + "max": 231508, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ddc1de26de03472ea8e1fb05fcb1cb6b", + "value": 231508 + } + }, + "9abfa4ffcf2547ab8b297c694f4a35a2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fd3ea26946c84b50aac2082bcd5ebcc3", + "placeholder": "​", + "style": "IPY_MODEL_c88407178fbb4612b1b8222c3164b6d5", + "value": " 232k/232k [00:00<00:00, 3.43MB/s]" + } + }, + "26e5d6f0d5094bada101e7077c942e80": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad90886ea329457fae3bc83d3499872f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "af63497d6ccd4e36abf8757b54199ef6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bad55ae359834077b82d5d9379313c22": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ddc1de26de03472ea8e1fb05fcb1cb6b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fd3ea26946c84b50aac2082bcd5ebcc3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c88407178fbb4612b1b8222c3164b6d5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7069d66194ea4426be8dc0d7ed47b6d3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0bf3bcdf23354ea1847360045d26d9a1", + "IPY_MODEL_92c107fc11ec477b92401c97cb4b3338", + "IPY_MODEL_59792503e5d4455599186d5ff902821b" + ], + "layout": "IPY_MODEL_922a567fcc724b59b9d6f63adb843459" + } + }, + "0bf3bcdf23354ea1847360045d26d9a1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1e0ab24cf65b4c03a6e3becdfbb21387", + "placeholder": "​", + "style": "IPY_MODEL_26431386aa6d4cc0aa49dd3edc03f950", + "value": "Downloading (…)5de9125/modules.json: 100%" + } + }, + "92c107fc11ec477b92401c97cb4b3338": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5e48399e1c9e42339da52ebfc09b8dcb", + "max": 349, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7775e97259be4f928888070a7c43fcb1", + "value": 349 + } + }, + "59792503e5d4455599186d5ff902821b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e8a81f5b13e04735ba62bdbe90174e76", + "placeholder": "​", + "style": "IPY_MODEL_2fdb513e2bab417bb86ce04500531f92", + "value": " 349/349 [00:00<00:00, 13.5kB/s]" + } + }, + "922a567fcc724b59b9d6f63adb843459": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1e0ab24cf65b4c03a6e3becdfbb21387": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "26431386aa6d4cc0aa49dd3edc03f950": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5e48399e1c9e42339da52ebfc09b8dcb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7775e97259be4f928888070a7c43fcb1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e8a81f5b13e04735ba62bdbe90174e76": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2fdb513e2bab417bb86ce04500531f92": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4ef1df4f11a6406c8ffe11d3be4af259": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6454374431404c1ea46899c35c05b063", + "IPY_MODEL_73e34a464d6142d4bee73412fbc91e93", + "IPY_MODEL_c7eed26541f14cb8a92a29b99b569d34" + ], + "layout": "IPY_MODEL_9d4bac79b75f4d1b8d7965eb5d5c5bc3" + } + }, + "6454374431404c1ea46899c35c05b063": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_41b17d092d6c41f7a4d37d4b454c1825", + "placeholder": "​", + "style": "IPY_MODEL_51acf591d4f2434ba35a4665247c815f", + "value": "Map: 100%" + } + }, + "73e34a464d6142d4bee73412fbc91e93": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_70adad47fbe848ebb9497f683127adf7", + "max": 4329, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a46e3ffffed1435087c74d615ceebe9d", + "value": 4329 + } + }, + "c7eed26541f14cb8a92a29b99b569d34": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_db7ee224b00b4d2eb787d24561e83ce4", + "placeholder": "​", + "style": "IPY_MODEL_4d51eb40e0a1457e8411536dfe0ddb0a", + "value": " 4329/4329 [00:00<00:00, 11617.98 examples/s]" + } + }, + "9d4bac79b75f4d1b8d7965eb5d5c5bc3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "41b17d092d6c41f7a4d37d4b454c1825": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "51acf591d4f2434ba35a4665247c815f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "70adad47fbe848ebb9497f683127adf7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a46e3ffffed1435087c74d615ceebe9d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "db7ee224b00b4d2eb787d24561e83ce4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4d51eb40e0a1457e8411536dfe0ddb0a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } } - } - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/12 - NLP Using Transformers/Actuarial_Applications_of_NLP_Part_3.ipynb b/12 - NLP Using Transformers/Actuarial_Applications_of_NLP_Part_3.ipynb new file mode 100644 index 0000000..5fac5ab --- /dev/null +++ b/12 - NLP Using Transformers/Actuarial_Applications_of_NLP_Part_3.ipynb @@ -0,0 +1,1896 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "kmbK3sewEVGy" + }, + "source": [ + "# Actuarial Applications of Natural Language Processing Using Transformers\n", + "### A Case Study for Processing Text Features in an Actuarial Context\n", + "### Part III – Case Studies on Car Accident Descriptions - Unsupervised Techniques Using ChatGPT\n", + "\n", + "By Andreas Troxler, September 2023\n", + "\n", + "In this Part III of the tutorial, you will learn how ChatGPT can be used to extract features from text when no labels are available.\n", + "This is very relevant in practice: text data is often available, but labels are missing or sparse!\n", + "\n", + "We use the car accident reports already familiar from Part I, and try to find out the number of vehicles involved and whether someone was injured.\n", + "\n", + "As a user of ChatGPT, you need to be aware of its limitations, which can lead to incorrect results. Limitations include the following:\n", + "* ChatGPT may create wrong answers, due to lack of common sense, lack of detailed and up-to-date information, lack of understanding of the context,biases and prejudices, etc.\n", + "* Results obtained by ChatGPT are not reproducible across runs and model versions.\n", + "* It is difficult to explain how ChatGPT arrives at the answer.\n", + "* ChatGPT is a very complex Large Language Model (LLM). As such, it requires significant computational resources.\n", + "* ...\n", + "\n", + "With that in mind, let's get started." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EnmTW4uhEVG3" + }, + "source": [ + "## Notebook Overview\n", + "\n", + "This notebook is divided into tutorial is divided into three parts; they are:\n", + "\n", + "1. [Introduction.](#intro)
\n", + " We begin by explaining pre-requisites. Then we turn to loading and exploring the dataset – ca. 6k records of English and German car accident reports with an average length of about 400 words. This is a repetition from Part I of the tutorial.

\n", + "\n", + "2. [Extract features using ChatGPT.](#chat_gpt)
\n", + " We apply ChatGPT to extract some features from this data.

\n", + " \n", + "3. [Conclusion](#conclusion)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hcc6Je4lEVG4" + }, + "source": [ + "\n", + "\n", + "## 1. Introduction\n", + "\n", + "In this section we discuss the pre-requisites, load and inspect the dataset." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iEu2UBDEEVG4" + }, + "source": [ + "\n", + "\n", + "### 1.1. Prerequisites\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2mGZv-UxvKO_" + }, + "source": [ + "#### Computing Power and OpenAI Account\n", + "\n", + "In this notebook, we use the API provided by OpenAI. Therefore, it does not require GPU support.\n", + "\n", + "On the flipside, you need to [set up an OpenAI account](https://platform.openai.com/signup?launch) and generate your personal API authentication key. In the following, we assume that this key is stored in the file `openai-key.txt` in the working directory. Of course, you can use a different file name. Do not share your API key with others, or expose it in the browser or other client-side code." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qXPfoNIUIpuv" + }, + "source": [ + "#### Local files\n", + "Make sure the following files are available in the directory of the notebook:\n", + "* `tutorial_utils.py` - a collection of utility functions used throughout this notebook\n", + "* `NHTSA_NMVCCS_extract.parquet.gzip` - the data\n", + "* `openai-key.txt` - a text file containing your OpenAI API authentication key\n", + "\n", + "This notebook will create the following subdirectory:\n", + "* `results` - figures and Excel files" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3ahENX7-EVG5" + }, + "source": [ + "#### Getting started with Python and Jupyter Notebook\n", + "\n", + "For this tutorial, we assume that you are already familiar with Python and Jupyter Notebook.\n", + "\n", + "In this section, Jupyter Notebook and Python settings are initialized.\n", + "For code in Python, the [PEP8 standard](https://www.python.org/dev/peps/pep-0008/)\n", + "(\"PEP = Python Enhancement Proposal\") is enforced with minor variations to improve readability.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 17 + }, + "id": "1wK6e7a5EVG5", + "outputId": "0043b6d7-65ff-4d36-86d7-6acda4a5dc3c", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "" + ] + }, + "metadata": {} + } + ], + "source": [ + "# Notebook settings\n", + "\n", + "# clear the namespace variables\n", + "from IPython import get_ipython\n", + "get_ipython().run_line_magic(\"reset\", \"-sf\")\n", + "\n", + "# formatting: cell width\n", + "from IPython.display import display, HTML\n", + "display(HTML(\"\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5V9gFHqyEVG7" + }, + "source": [ + "#### Importing Required Libraries\n", + "\n", + "If you run this notebook on Google Colab, you will need to install the following libraries:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Mxggg0WmFDuy", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "010fad57-e734-4463-bd92-1333b1e887a2" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: openai in /usr/local/lib/python3.10/dist-packages (0.28.0)\n", + "Requirement already satisfied: requests>=2.20 in /usr/local/lib/python3.10/dist-packages (from openai) (2.31.0)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from openai) (4.66.1)\n", + "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from openai) (3.8.5)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai) (3.2.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai) (3.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai) (2.0.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai) (2023.7.22)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai) (23.1.0)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai) (6.0.4)\n", + "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai) (4.0.3)\n", + "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai) (1.9.2)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai) (1.4.0)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai) (1.3.1)\n" + ] + } + ], + "source": [ + "!pip install openai" + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install retry" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "aYrTzcumrSE9", + "outputId": "6b4b3aec-376c-4045-badd-2ae6c0e42df9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: retry in /usr/local/lib/python3.10/dist-packages (0.9.2)\n", + "Requirement already satisfied: decorator>=3.4.2 in /usr/local/lib/python3.10/dist-packages (from retry) (4.4.2)\n", + "Requirement already satisfied: py<2.0.0,>=1.4.26 in /usr/local/lib/python3.10/dist-packages (from retry) (1.11.0)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install kaleido" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "598t72H5Dxui", + "outputId": "84b8b633-3170-4afd-abea-86d7c54fe073" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: kaleido in /usr/local/lib/python3.10/dist-packages (0.2.1)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7b2yEtZjEVG8" + }, + "source": [ + "Next, we import the required libraries:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LuwY5ubtEVG9", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "import os\n", + "import openai\n", + "import pandas as pd\n", + "import plotly.express as px\n", + "from tqdm import tqdm\n", + "from retry import retry\n", + "from wordcloud import WordCloud\n", + "from tutorial_utils import evaluate_classifier" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "44WiOM3SEVG-" + }, + "source": [ + "\n", + "\n", + "### 1.2. Exploring the Data\n", + "\n", + "You can skip this section if you are already fammiliar with Part I of this tutorial.\n", + "\n", + "The data used throughout this tutorial is derived from data of a vehicle crash causation study performed in the United States from 2005 to 2007. The dataset has almost 7'000 records, each relating to one accident. For each case, a verbal description of the accident is available in English, which summarizes road and weather conditions, vehicles, drivers and passengers involved, preconditions, injury severities, etc. The same information is also encoded in tabular form, so that we can apply supervised learning techniques to train the NLP models and compare the information extracted from the verbal descriptions with the encoded data.\n", + "\n", + "The original data consists of multiple tables. For this tutorial, we have aggregated it into a single dataset and added German translations of the English accident descriptions. The translations were generated using the [DeepL python API](https://pypi.org/project/deepl/).\n", + "\n", + "To explore the data, let's load it into a Pandas DataFrame and examine its shape, columns and data types:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DogoPiqXEVG-", + "outputId": "cab3c351-d8ee-489f-9146-eb9d187bff22", + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "shape of DataFrame: (6949, 16)\n", + "('level_0', dtype('int64'))\n", + "('index', dtype('int64'))\n", + "('SCASEID', dtype('int64'))\n", + "('SUMMARY_EN', dtype('O'))\n", + "('SUMMARY_GE', dtype('O'))\n", + "('INJSEVA', dtype('int64'))\n", + "('NUMTOTV', dtype('int64'))\n", + "('WEATHER1', dtype('int64'))\n", + "('WEATHER2', dtype('int64'))\n", + "('WEATHER3', dtype('int64'))\n", + "('WEATHER4', dtype('int64'))\n", + "('WEATHER5', dtype('int64'))\n", + "('WEATHER6', dtype('int64'))\n", + "('WEATHER7', dtype('int64'))\n", + "('WEATHER8', dtype('int64'))\n", + "('INJSEVB', dtype('int64'))\n" + ] + } + ], + "source": [ + "df = pd.read_parquet(\"NHTSA_NMVCCS_extract.parquet.gzip\")\n", + "print(f\"shape of DataFrame: {df.shape}\")\n", + "print(*list(zip(df.columns, df.dtypes)), sep=\"\\n\")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "The column `SCASEID` is a unique case identifier.\n", + "\n", + "The columns `SUMMARY_EN` and `SUMMARY_GE` are strings representing the verbal descriptions of the accident in English and German, respectively.\n", + "\n", + "`NUMTOTV` is the number of vehicles involved in the case. Let's have a look at the distribution of this feature:" + ], + "metadata": { + "id": "HbWiphKq49iZ" + } + }, + { + "cell_type": "code", + "source": [ + "fig = px.bar(df[\"NUMTOTV\"].value_counts().sort_index(), width=640)\n", + "fig.update_layout(title=\"number of cases by number of vehicles\", xaxis_title=\"number of vehicles\",\n", + " yaxis_title=\"number of cases\")\n", + "fig.show(config={\"toImageButtonOptions\": {\"format\": 'svg', \"filename\": \"num_vehicles\"}})" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 542 + }, + "id": "sZJYuvAc5HIW", + "outputId": "2aa6cf0c-2caf-4bd0-9600-2682e277702f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Most cases involve two vehicles, and only very few accidents involve more than three vehicles.\n", + "\n", + "Each of the columns `WEATHER1` to `WEATHER8` indicates the presence of a specific weather condition (1: weather condition present, 9999: presence of weather condition unknown, 0 otherwise):\n", + "\n", + "| column | meaning | count |\n", + "|---|---|---|\n", + "| `WEATHER1` | cloudy | 1112 |\n", + "| `WEATHER2` | snow | 114 |\n", + "| `WEATHER3` | fog, smog, smoke | 28 |\n", + "| `WEATHER4` | rain | 624 |\n", + "| `WEATHER5` | sleet, hail (freezing drizzle or rain) | 25 |\n", + "| `WEATHER6` | blowing snow | 38 |\n", + "| `WEATHER7` | severe crosswinds | 20 |\n", + "| `WEATHER8` | other | 25 |\n", + "\n", + "\n", + "These weather conditions are not mutually exclusive, i.e., more than one condition can be present in a single case. The frequency distribution looks as follows:" + ], + "metadata": { + "id": "AR_3rVMz5lyz" + } + }, + { + "cell_type": "code", + "source": [ + "fig=px.bar(x=range(1,9), y=[(df[\"WEATHER\"+str(i)]==1).sum() for i in range(1,9)], width=640)\n", + "fig.update_layout(title=\"number of cases by weather condition\", xaxis_title=\"weather condition\",\n", + " yaxis_title=\"number of cases\")\n", + "fig.show(config={\"toImageButtonOptions\": {\"format\": 'svg', \"filename\": \"weather\"}})" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 542 + }, + "id": "aR7onfnc6IUY", + "outputId": "c5e55c64-39c9-48e0-c211-0341646d8abf" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The most frequently recorded weather conditions are \"cloudy\" (`WEATHER1`) and \"rain\" (`WEATHER4`).\n", + "\n", + "`INJSEVA` indicates the most serious sustained injury in the accident. For instance, if one person was not injured, and another person suffered a non-incapacitating injury, injury class 2 was assigned to the case.\n", + "\n", + "Information on injury severity has been taken from police accident reports, which are not available in the data. Unfortunately, this information does not necessarily align with the case description: There are many cases for which the case description indicates the presence of an injury, but INJSEVA does not, and vice versa.\n", + "\n", + "For this reason, we created manually an additional column `INJSEVB` based on the case description, to indicate the presence of a (possible) bodily injury. The table below shows the distribution of number of cases by the two variables.\n", + "\n", + "| `INJSEVA` | meaning | count | `INJSEVB`=0 | `INJSEVB`=1 |\n", + "|---|---|---|---|---|\n", + "| 0 | O - No injury | 1'458 | 96| 1'554 |\n", + "| 1 | C - Possible injury | 1'112 | 1'298 | 2'410 |\n", + "| 2 | B - Non-incapacitating injury | 729 | 945 | 1'674 |\n", + "| 3 | A - Incapacitating injury | 304 | 373 | 677 |\n", + "| 4 | K - Killed | 5 | 114 | 119 |\n", + "| 5 | U - Injury, severity unknown | 44 | 122 | 166 |\n", + "| 6 | Died prior to crash | 0 | 0| 0 |\n", + "| 9 | Unknown if injured | 51 | 16 | 67 |\n", + "| 10 | No person in crash | 1 | 0| 1 |\n", + " 11 | No PAR (police accident report) obtained | 231 | 50 | 281 |\n", + "|**Total**| | **3'935** | **3'014**| **6'949**|\n", + "\n", + "Now we turn to the verbal accident descriptions. First, we examine the length of the English texts, `SUMMARY_EN`. To this end, we split the texts into words, with blank spaces as separator, and show a box plot of the text length by number of vehicles involved in the accident:" + ], + "metadata": { + "id": "5JgGwQUt6Y8l" + } + }, + { + "cell_type": "code", + "source": [ + "# statistics of summary length\n", + "df[\"words per case summary\"] = df[\"SUMMARY_EN\"].str.split().apply(len)\n", + "print(f\"Overall number of words by case summary: min {df['words per case summary'].min()}, \"\n", + " f\"average {df['words per case summary'].mean():.0f}, max {df['words per case summary'].max()}\")\n", + "fig = px.box(df, x=\"NUMTOTV\", y=\"words per case summary\", width=640)\n", + "fig.show(config={\"toImageButtonOptions\": {\"format\": 'svg', \"filename\": \"text_length\"}})" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 559 + }, + "id": "EqRcgK837K42", + "outputId": "583bc6b9-b925-4f2b-dbb5-08c6d21bc102" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Overall number of words by case summary: min 60, average 419, max 1248\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Not surprisingly, the length of the descriptions correlates with the number of vehicles involved.\n", + "\n", + "The average length is above 400 words.\n", + "\n", + "Let's examine one of the English texts and its German translation:" + ], + "metadata": { + "id": "aXS50_o07R_W" + } + }, + { + "cell_type": "code", + "source": [ + "display(HTML(df.loc[0, \"SUMMARY_EN\"]))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 138 + }, + "id": "TFgOi5y_7a7w", + "outputId": "c38cdfe6-5fa0-4ff0-ab3d-52fee97088dd" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "V1, a 2000 Pontiac Montana minivan, made a left turn from a private driveway onto a northbound 5-lane two-way, dry asphalt roadway on a downhill grade. The posted speed limit on this roadway was 80 kmph (50 MPH). V1 entered the roadway by crossing over the two southbound lanes and then entering the third northbound lane, which was a left turn-only lane at a 4-way intersection. The driver of V1 intended to travel straight through the intersection, and so he began to change lanes to the right. He did not see V2, a 1994 Pontiac Grand Am, that was traveling in the second northbound lane. The northbound roadway had curved to the right prior to the private driveway that V1 had exited. As V1 began to change lanes to the right, the front of V1 contacted the left rear of V2 before coming to final rest on the roadway.\r \r The driver of V1 was a 60-year old male who reported that he had been traveling between 2-17 kmph (1-10 mph) prior to the crash. He had no health-related problems, and had taken no medication prior to the crash. He was rested and traveling back home. He was wearing his prescribed lenses that corrected a myopic (nearsighted) condition. He did not sustain any injuries from the crash and refused treatment.\r \r The Critical Precrash Event for the driver of V1 was when he began to travel over the lane line on the right side of the travel lane. The Critical Reason for the Critical Precrash Event was inadequate surveillance (failed to look, looked but did not see). Associated factors coded to the driver of V1 include an illegal use of a left turn lane (cited by police) and an unfamiliarity with the roadway. As per the driver of V1, this was the first time he had driven on this roadway. \r \r The driver of V2 was a 28-year old woman who reported that she had been traveling between 66-80 kmph (41-50 mph) prior to the crash. She had no health-related problems, and had taken no medication prior to the crash. She was rested and on her way home. She does not wear corrective lenses. She sustained minor injuries and was transported to a local trauma facility.\r \r The Critical Precrash Event for the driver of V2 was when the other vehicle encroached into her lane, from an adjacent lane (same direction) over the left lane line. The Critical Reason for the Critical Precrash Event was not coded to the driver of V2 and no associated factors were coded to her." + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "display(HTML(df.loc[0, \"SUMMARY_GE\"]))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 173 + }, + "id": "0LSITZqq7ffd", + "outputId": "857968b6-81c0-4fdb-cd26-9df898135987" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "V1, ein Minivan der Marke Pontiac Montana aus dem Jahr 2000, bog von einer privaten Einfahrt nach links auf eine zweispurige, trockene Asphaltstraße mit 5 Fahrspuren in nördlicher Richtung und einem Gefälle ab. Die zulässige Höchstgeschwindigkeit auf dieser Fahrbahn betrug 80 km/h (50 MPH). V1 fuhr auf die Fahrbahn, indem er die beiden Fahrspuren in Richtung Süden überquerte und dann auf die dritte Fahrspur in Richtung Norden einfuhr, die an einer Kreuzung mit vier Fahrspuren nur für Linksabbieger vorgesehen war. Der Fahrer von V1 beabsichtigte, geradeaus über die Kreuzung zu fahren, und begann daher, die Spur nach rechts zu wechseln. Dabei übersah er V2, einen Pontiac Grand Am von 1994, der auf der zweiten Fahrspur in Richtung Norden unterwegs war. Die Fahrbahn in nördlicher Richtung war vor der privaten Einfahrt, aus der V1 herausgefahren war, nach rechts gebogen. Als V1 begann, die Spur nach rechts zu wechseln, berührte die Front von V1 das linke Heck von V2, bevor er auf der Fahrbahn zum Stehen kam. Der Fahrer von V1 war ein 60-jähriger Mann, der angab, vor dem Unfall mit einer Geschwindigkeit von 2 bis 17 km/h unterwegs gewesen zu sein. Er hatte keine gesundheitlichen Probleme und hatte vor dem Unfall keine Medikamente eingenommen. Er war ausgeruht und auf dem Weg nach Hause. Er trug die ihm verschriebenen Kontaktlinsen, die eine Kurzsichtigkeit korrigieren. Er zog sich bei dem Unfall keine Verletzungen zu und lehnte eine Behandlung ab. Das kritische Ereignis vor dem Unfall war für den Fahrer von V1, als er begann, die Fahrspurlinie auf der rechten Seite der Fahrbahn zu überfahren. Der kritische Grund für das kritische Ereignis vor dem Unfall war unzureichende Überwachung (nicht hingesehen, hingesehen, aber nicht gesehen). Zu den assoziierten Faktoren, die dem Fahrer von V1 zugeschrieben werden, gehören das illegale Benutzen einer Linksabbiegerspur (von der Polizei verwarnt) und die Unkenntnis der Fahrbahn. Für den Fahrer von V1 war es das erste Mal, dass er diese Fahrbahn befuhr. \r \r Bei der Fahrerin von V2 handelte es sich um eine 28-jährige Frau, die angab, vor dem Unfall mit einer Geschwindigkeit von 66-80 km/h unterwegs gewesen zu sein. Sie hatte keine gesundheitlichen Probleme und hatte vor dem Unfall keine Medikamente eingenommen. Sie war ausgeruht und befand sich auf dem Heimweg. Sie trägt keine Korrekturgläser. Sie erlitt leichte Verletzungen und wurde in eine örtliche Unfallklinik gebracht. Das kritische Ereignis vor dem Unfall war für die Fahrerin von V2, als das andere Fahrzeug von einer benachbarten Fahrspur (gleiche Richtung) über die linke Fahrspurlinie in ihre Spur eindrang. Der kritische Grund für das kritische Vorunfallereignis wurde der Fahrerin von V2 nicht zugeordnet, und es wurden ihr keine zugehörigen Faktoren zugeordnet." + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "To get an impression of the most frequent words, we generate a simple word cloud form all English case descriptions. By default, the word cloud excludes so-called stop words (such as articles, prepositions, pronouns, conjunctions, etc.), which are the most common words and do not add much information to the text." + ], + "metadata": { + "id": "iQSybuXr7oXF" + } + }, + { + "cell_type": "code", + "source": [ + "text = df[\"SUMMARY_EN\"].str.cat(sep=\" \")\n", + "\n", + "# Create and generate a word cloud image:\n", + "word_cloud = WordCloud(max_words=100, background_color=\"white\").generate(text)\n", + "\n", + "# Display the generated image:\n", + "fig = px.imshow(word_cloud, width=640)\n", + "fig.update_layout(xaxis_showticklabels=False, yaxis_showticklabels=False)\n", + "fig.show(config={\"toImageButtonOptions\": {\"format\": 'svg', \"filename\": \"word_cloud\"}})" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 542 + }, + "id": "qkpolrOT7tHV", + "outputId": "58952a6c-a752-4f91-cee2-2b6485a7eeea" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7I4oINQQEVHB" + }, + "source": [ + "\n", + "\n", + "## 2. Extract Features Using ChatGPT\n", + "\n", + "Imagine the following situation: We are building a model to predict the severity of accidents based on features available in tabular form. We believe that knowing the number of vehicles involved in the and whether someone was injured would help improve the model. However, all we have available are accident reports containing the information in unstructured free text form.\n", + "\n", + "If we have sufficient data with labels, we can use supervised techniques such as examined in Part I of this tutorial.\n", + "\n", + "In this Part III, we learn an unsupervised approach that does not require labels.\n", + "\n", + "More precisely, we will use ChatGPT to extract the following information from the car accident reports:\n", + "* Was someone injured or killed?\n", + "* How many vehicles were involved?\n", + "\n", + "Let's get started." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Djm3pEdfEVHC" + }, + "source": [ + "\n", + "\n", + "### 2.1 First Steps With the ChatGPT API\n", + "\n", + "\n", + "The idea is very simple: We specify a number of questions and ask ChatGPT to provide answers based on a given accident report.\n", + "\n", + "The prompt might look as follows:\n", + "\n", + "```\n", + "Read the following text, and answer the following:\n", + "1. Was someone injured?\n", + "2. Was someone killed?\n", + "3. How many vehicles were involved?\n", + "4. Summarize your last answer by a number.\n", + "Text:\n", + "V1, a 2000 Pontiac Montana minivan, made a left turn [...]\n", + "```\n", + "\n", + "The response might look like:\n", + "\n", + "```\n", + "1. Yes, the driver of V2 sustained minor injuries.\n", + "2. No, no one was killed.\n", + "3. Two vehicles were involved.\n", + "4. 2\n", + "```\n", + "\n", + "So all we have to do is to extract the desired features from this response!\n", + "\n", + "We begin by writing a short function to call the OpenAI API.\n" + ] + }, + { + "cell_type": "code", + "source": [ + "@retry((openai.error.APIError, openai.error.ServiceUnavailableError), tries=10, delay=15)\n", + "def call_openai(content):\n", + " return openai.ChatCompletion.create(\n", + " model=\"gpt-3.5-turbo\",\n", + " messages=[{\"role\": \"user\", \"content\": content}],\n", + " temperature=0.2,\n", + " max_tokens=256,\n", + " top_p=1,\n", + " frequency_penalty=0,\n", + " presence_penalty=0\n", + " )" + ], + "metadata": { + "id": "uxKexE7OueWd" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Note that we have used the `retry` decorator to retry 10 times with a waiting time of 15 seconds to handle some of the most common exceptions (you are invited to develop more sophisticated ways to deal with such issues).\n", + "\n", + "The parameters have the following effects:\n", + "* `model`: Specifies the ChatGPT model version.\n", + "* `messages`: Specifies the content of the user prompt.\n", + "* `temperature`: Values in the interval $[0, 1]$. Controls the randomness of the text generated. A higher temperature results in more diverse and creative output, while a lower temperature makes the output more deterministic and focused. For our purpose, we require fact-based answers and therefore go for low values of temperature.\n", + "* `top_p`: Instead of considering all possible tokens, GPT-3 considers only a subset of tokens (the \"nucleus\") whose cumulative probability mass adds up to this threshold. With `top_p`=1, we allow all possible tokens.\n", + "* `frequency_penalty`: Penalizes repetition of words in the response. For our purpose, we don't mind word repetitions and therefore set this parameter to 0.\n", + "* `presence_penalty`: Encourages use of a diverse vocabulary in the response. For our purpose, this aspect is not important and therefore we set this parameter to 0.\n", + "\n", + "You are encouraged to experiment with these parameters.\n", + "\n", + "Please note that the results may not be reproducible between runs and model versions.\n", + "\n", + "Next, we specify the location of the API authentication key:" + ], + "metadata": { + "id": "RGBNLjDauh90" + } + }, + { + "cell_type": "code", + "source": [ + "openai.api_key_path = \"./openai-key-at.txt\"\n", + "openai.api_key = os.getenv(\"OPENAI_API_KEY\")" + ], + "metadata": { + "id": "g7vgKfVMzebY" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Now we are ready!\n", + "\n", + "We specify the following prompt ..." + ], + "metadata": { + "id": "Ah1X_jCzz0Y4" + } + }, + { + "cell_type": "code", + "source": [ + "prompt = \"\"\"\n", + "Read the following text, and answer the following:\n", + "1. Was someone injured?\n", + "2. Was someone killed?\n", + "3. How many vehicles were involved?\n", + "4. Summarize your last answer by a number.\n", + "Text:\n", + "\"\"\"\n", + "prompt" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "aPQSgdAG0BTM", + "outputId": "973a26a4-3eeb-40cf-b28c-400ff583cc82" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'\\nRead the following text, and answer the following:\\n1. Was someone injured?\\n2. Was someone killed?\\n3. How many vehicles were involved?\\n4. Summarize your last answer by a number.\\nText:\\n'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "... and apply it to the first English accident report:" + ], + "metadata": { + "id": "rf9pctAV2Dyr" + } + }, + { + "cell_type": "code", + "source": [ + "response = call_openai(prompt + df.iloc[0][\"SUMMARY_EN\"])\n", + "response" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "s0ZTa-0b0keR", + "outputId": "f972af7c-5014-41bf-fbb5-c8fcb461d88f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " JSON: {\n", + " \"id\": \"chatcmpl-7vkj3d4NvHiu3Uy1BUIQyqVRp7FV2\",\n", + " \"object\": \"chat.completion\",\n", + " \"created\": 1693998665,\n", + " \"model\": \"gpt-3.5-turbo-0613\",\n", + " \"choices\": [\n", + " {\n", + " \"index\": 0,\n", + " \"message\": {\n", + " \"role\": \"assistant\",\n", + " \"content\": \"1. Yes, the driver of V2 sustained minor injuries.\\n2. No, no one was killed.\\n3. Two vehicles were involved.\\n4. 2\"\n", + " },\n", + " \"finish_reason\": \"stop\"\n", + " }\n", + " ],\n", + " \"usage\": {\n", + " \"prompt_tokens\": 618,\n", + " \"completion_tokens\": 33,\n", + " \"total_tokens\": 651\n", + " }\n", + "}" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "As you can see, we received a chat completion object, from which the response is easy to unpack:" + ], + "metadata": { + "id": "spUqVn8U2cCw" + } + }, + { + "cell_type": "code", + "source": [ + "print(response[\"choices\"][0][\"message\"][\"content\"])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "44Hmpy2W20bU", + "outputId": "8214f583-24f4-4f92-9f60-5b7e946484ec" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "1. Yes, the driver of V2 sustained minor injuries.\n", + "2. No, no one was killed.\n", + "3. Two vehicles were involved.\n", + "4. 2\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Indeed, the text says that \"[the driver of V2] sustained minor injuries and was transported to a local trauma facility\". There is no mention of a fatality, and there were two vehicles involved, namely V1 and V2:" + ], + "metadata": { + "id": "JlYtHQzM26wS" + } + }, + { + "cell_type": "code", + "source": [ + "display(HTML(df.loc[0, \"SUMMARY_EN\"]))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 138 + }, + "id": "GOKidim53JUS", + "outputId": "73288c85-ae70-441c-f13c-4f2261265f22" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "V1, a 2000 Pontiac Montana minivan, made a left turn from a private driveway onto a northbound 5-lane two-way, dry asphalt roadway on a downhill grade. The posted speed limit on this roadway was 80 kmph (50 MPH). V1 entered the roadway by crossing over the two southbound lanes and then entering the third northbound lane, which was a left turn-only lane at a 4-way intersection. The driver of V1 intended to travel straight through the intersection, and so he began to change lanes to the right. He did not see V2, a 1994 Pontiac Grand Am, that was traveling in the second northbound lane. The northbound roadway had curved to the right prior to the private driveway that V1 had exited. As V1 began to change lanes to the right, the front of V1 contacted the left rear of V2 before coming to final rest on the roadway.\r \r The driver of V1 was a 60-year old male who reported that he had been traveling between 2-17 kmph (1-10 mph) prior to the crash. He had no health-related problems, and had taken no medication prior to the crash. He was rested and traveling back home. He was wearing his prescribed lenses that corrected a myopic (nearsighted) condition. He did not sustain any injuries from the crash and refused treatment.\r \r The Critical Precrash Event for the driver of V1 was when he began to travel over the lane line on the right side of the travel lane. The Critical Reason for the Critical Precrash Event was inadequate surveillance (failed to look, looked but did not see). Associated factors coded to the driver of V1 include an illegal use of a left turn lane (cited by police) and an unfamiliarity with the roadway. As per the driver of V1, this was the first time he had driven on this roadway. \r \r The driver of V2 was a 28-year old woman who reported that she had been traveling between 66-80 kmph (41-50 mph) prior to the crash. She had no health-related problems, and had taken no medication prior to the crash. She was rested and on her way home. She does not wear corrective lenses. She sustained minor injuries and was transported to a local trauma facility.\r \r The Critical Precrash Event for the driver of V2 was when the other vehicle encroached into her lane, from an adjacent lane (same direction) over the left lane line. The Critical Reason for the Critical Precrash Event was not coded to the driver of V2 and no associated factors were coded to her." + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "We can use the same English prompt and apply it to the German version of the accident report. The response is in English:" + ], + "metadata": { + "id": "CnI4fYcIyDrD" + } + }, + { + "cell_type": "code", + "source": [ + "text = df.iloc[0][\"SUMMARY_GE\"]\n", + "display(HTML(text))\n", + "response = call_openai(prompt + text)\n", + "print(response[\"choices\"][0][\"message\"][\"content\"])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 243 + }, + "id": "Fd64ys9AyAiy", + "outputId": "9bf74be7-142b-4d0e-db8d-abb039a93c4d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "V1, ein Minivan der Marke Pontiac Montana aus dem Jahr 2000, bog von einer privaten Einfahrt nach links auf eine zweispurige, trockene Asphaltstraße mit 5 Fahrspuren in nördlicher Richtung und einem Gefälle ab. Die zulässige Höchstgeschwindigkeit auf dieser Fahrbahn betrug 80 km/h (50 MPH). V1 fuhr auf die Fahrbahn, indem er die beiden Fahrspuren in Richtung Süden überquerte und dann auf die dritte Fahrspur in Richtung Norden einfuhr, die an einer Kreuzung mit vier Fahrspuren nur für Linksabbieger vorgesehen war. Der Fahrer von V1 beabsichtigte, geradeaus über die Kreuzung zu fahren, und begann daher, die Spur nach rechts zu wechseln. Dabei übersah er V2, einen Pontiac Grand Am von 1994, der auf der zweiten Fahrspur in Richtung Norden unterwegs war. Die Fahrbahn in nördlicher Richtung war vor der privaten Einfahrt, aus der V1 herausgefahren war, nach rechts gebogen. Als V1 begann, die Spur nach rechts zu wechseln, berührte die Front von V1 das linke Heck von V2, bevor er auf der Fahrbahn zum Stehen kam. Der Fahrer von V1 war ein 60-jähriger Mann, der angab, vor dem Unfall mit einer Geschwindigkeit von 2 bis 17 km/h unterwegs gewesen zu sein. Er hatte keine gesundheitlichen Probleme und hatte vor dem Unfall keine Medikamente eingenommen. Er war ausgeruht und auf dem Weg nach Hause. Er trug die ihm verschriebenen Kontaktlinsen, die eine Kurzsichtigkeit korrigieren. Er zog sich bei dem Unfall keine Verletzungen zu und lehnte eine Behandlung ab. Das kritische Ereignis vor dem Unfall war für den Fahrer von V1, als er begann, die Fahrspurlinie auf der rechten Seite der Fahrbahn zu überfahren. Der kritische Grund für das kritische Ereignis vor dem Unfall war unzureichende Überwachung (nicht hingesehen, hingesehen, aber nicht gesehen). Zu den assoziierten Faktoren, die dem Fahrer von V1 zugeschrieben werden, gehören das illegale Benutzen einer Linksabbiegerspur (von der Polizei verwarnt) und die Unkenntnis der Fahrbahn. Für den Fahrer von V1 war es das erste Mal, dass er diese Fahrbahn befuhr. \r \r Bei der Fahrerin von V2 handelte es sich um eine 28-jährige Frau, die angab, vor dem Unfall mit einer Geschwindigkeit von 66-80 km/h unterwegs gewesen zu sein. Sie hatte keine gesundheitlichen Probleme und hatte vor dem Unfall keine Medikamente eingenommen. Sie war ausgeruht und befand sich auf dem Heimweg. Sie trägt keine Korrekturgläser. Sie erlitt leichte Verletzungen und wurde in eine örtliche Unfallklinik gebracht. Das kritische Ereignis vor dem Unfall war für die Fahrerin von V2, als das andere Fahrzeug von einer benachbarten Fahrspur (gleiche Richtung) über die linke Fahrspurlinie in ihre Spur eindrang. Der kritische Grund für das kritische Vorunfallereignis wurde der Fahrerin von V2 nicht zugeordnet, und es wurden ihr keine zugehörigen Faktoren zugeordnet." + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "1. Yes, the driver of V2 (Pontiac Grand Am) suffered minor injuries.\n", + "2. No, no one was killed.\n", + "3. Two vehicles were involved (V1 and V2).\n", + "4. 2\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Now, we want to examine more examples. We store the results in a list." + ], + "metadata": { + "id": "HOccrBgK3oeh" + } + }, + { + "cell_type": "code", + "source": [ + "# reset results\n", + "results = []" + ], + "metadata": { + "id": "RWSxiwgD05bq" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "It might happen that the following code stops, for instance due to temporary unavailability of the API. In this case, you can simply resume execution after a while.\n", + "\n", + "Feel free to change the upper bound of the loop. In order to run a large number of samples, you may need to switch to a paid scheme." + ], + "metadata": { + "id": "8M8dmb6X311g" + } + }, + { + "cell_type": "code", + "source": [ + "for i in tqdm(range(len(results), 10)):\n", + " text = df.iloc[i][\"SUMMARY_EN\"]\n", + " response = call_openai(prompt + text)\n", + " results.append(response[\"choices\"][0][\"message\"][\"content\"])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "rlRJSJK40YWa", + "outputId": "c42ea9eb-a1a7-4602-9ae8-ddde9156355c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 10/10 [00:42<00:00, 4.24s/it]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# store the results in a DataFrame and export to a csv file\n", + "if not os.path.exists(\"./results\"): os.makedirs(\"./results\")\n", + "pd.DataFrame(results, columns=[\"response\"]).to_csv(f\"./results/NHTSA_responses_{i:04d}.csv\", index=False)" + ], + "metadata": { + "id": "k2ohc8bm4juc" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "results" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8dNQ3zns4UXY", + "outputId": "6162da8f-d48b-4701-b423-c2df7810b611" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "['1. Yes, the driver of V2 sustained minor injuries.\\n2. No, no one was killed.\\n3. Two vehicles were involved.\\n4. 2',\n", + " '1. Yes, the driver of V2 was injured and bleeding.\\n2. No, no one was killed.\\n3. Two vehicles were involved.\\n4. 2',\n", + " '1. No one was injured.\\n2. No one was killed.\\n3. Two vehicles were involved.\\n4. The number of vehicles involved is 2.',\n", + " '1. Yes, the driver of vehicle one (V1) was injured.\\n2. No, no one was killed.\\n3. Only one vehicle (V1) was involved in the crash.\\n4. 1',\n", + " '1. Yes, the 17-year-old male driver of Vehicle #1 was transported to a hospital and treated for a complaint of pain.\\n2. No, no one was killed in the crash.\\n3. Two vehicles were involved in the crash.\\n4. 2',\n", + " '1. Yes, the driver of Vehicle #2 and the passenger in Vehicle #2 had minor injuries to the head/neck areas.\\n2. No, no one was killed in the crash.\\n3. Two vehicles were involved in the crash.\\n4. 2',\n", + " '1. Yes, someone was injured. \\n2. No, no one was killed. \\n3. Two vehicles were involved. \\n4. The number of vehicles involved was two.',\n", + " '1. Yes, someone was injured. The driver of Vehicle #1, an 82-year-old male, was transported to a local hospital for a head injury.\\n2. No, no one was killed.\\n3. Only one vehicle, Vehicle #1 (2004 Subaru Forester), was involved in the crash.\\n4. 1',\n", + " '1. Yes, the driver of Vehicle #1 was injured.\\n2. No, no one was killed.\\n3. Two vehicles were involved.\\n4. 2',\n", + " '1. Yes, the 19-year-old female driver of Vehicle #1 was injured and transported, treated, and released for minor bleeding to the head.\\n2. No, there is no mention of anyone being killed in the text.\\n3. Two vehicles were involved in the crash - Vehicle #1 (1987 Honda Accord) and Vehicle #2 (1994 Honda Civic).\\n4. The number of vehicles involved is 2.']" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "\n", + "### 2.2 Extracting the Features from the Reponses\n", + "\n", + "Next, we need to extract the desired features from the responses. We write a few of functions to achieve this.\n", + "\n", + "The first function, `first_matching_expression`, accepts a string, a dictionary and a default value as inputs. The dictionary is supposed to hold a mapping from expressions to values. The function searches the expression which appears first in the string and returns its corresponding value. If no expression is found, the default value is returned." + ], + "metadata": { + "id": "zTSnboVA7omm" + } + }, + { + "cell_type": "code", + "source": [ + "def first_matching_expression(string, dictionary, default):\n", + " \"\"\" Given a string and a dict of {expression: value}, returns value corresponding to first occurring expression. \"\"\"\n", + " # put default at end of the string\n", + " positions = [(len(string), default)]\n", + " # append with tuple (position, value) for each (item: value) in the dictionary\n", + " for item, value in dictionary.items():\n", + " position = string.find(item)\n", + " # suppress items which were not found\n", + " if position >= 0:\n", + " positions.append((position, value))\n", + " # return value corresponding to first position\n", + " return sorted(positions)[0][1]" + ], + "metadata": { + "id": "qXu1DY-X8Deh" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "The next function splits a response into separate substrings representing the answers to each of the four questions. Then it extracts return values by searching defined expressions, by means of the function `first_matching_expression`. It returns both the substrings and the extracted information.\n", + "\n", + "This function is highly task-specific." + ], + "metadata": { + "id": "hGcyZO519Bf3" + } + }, + { + "cell_type": "code", + "source": [ + "def extract_responses(string):\n", + " string = string.lower() + \" \"\n", + " i1 = string.find(\"1. \")\n", + " i2 = string.find(\"2. \")\n", + " i3 = string.find(\"3. \")\n", + " i4 = string.find(\"4. \")\n", + " s1 = string[i1:i2][3:]\n", + " s2 = string[i2:i3][3:]\n", + " s3 = string[i3:i4][3:]\n", + " s4 = string[i4:][3:]\n", + " d1 = {\"yes\": 1, \"minor\": 1}\n", + " r1 = first_matching_expression(s1, d1, 0)\n", + " d2 = {\"yes\": 1}\n", + " r2 = first_matching_expression(s2, d2, 0)\n", + " d3 = {\"1\": 1, \"2\": 2, \"3\": 3, \"4\": 4, \"5\": 5, \"6\": 6, \"7\": 7, \"8\": 8,\n", + " \"9\": 9, \"only\": 1, \"one\": 1, \"two\": 2, \"three\": 3, \"four\": 4,\n", + " \"five\": 5, \"six\": 6, \"seven\": 7, \"eight\": 8, \"nine\": 9}\n", + " r3 = first_matching_expression(s3, d3, 1)\n", + " r4 = first_matching_expression(s4, d3, 1)\n", + " return [s1, s2, s3, s4, r1, r2, r3, r4]" + ], + "metadata": { + "id": "dyOpRR6C9755" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Finally, we define a function `add_responses_to_df` that takes a list of responses, applies `extract_responses`, concatenates the information to the original DataFrame and stores the resulting DataFrame.\n" + ], + "metadata": { + "id": "__CykhPc-ek9" + } + }, + { + "cell_type": "code", + "source": [ + "def add_responses_to_df(responses, df, path_file_result):\n", + " df_results = pd.concat([\n", + " df.iloc[:len(responses)],\n", + " pd.DataFrame(\n", + " [extract_responses(r) for r in responses[\"response\"]],\n", + " columns=[\"s1\", \"s2\", \"s3\", \"s4\", \"r1\", \"r2\", \"r3\", \"r4\"])],\n", + " axis=1)\n", + " df_results.to_excel(path_file_result)\n", + " return df_results" + ], + "metadata": { + "id": "qmxcc4i6-i1G" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "We load the responses for the first 1000 samples from a previous run of this notebook." + ], + "metadata": { + "id": "VHwNErPL7OeN" + } + }, + { + "cell_type": "code", + "source": [ + "results = pd.read_csv(\"NHTSA_responses_0999.csv\")\n", + "results" + ], + "metadata": { + "id": "k5Uwn0Z3_rOU", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 423 + }, + "outputId": "cc9d8395-d14a-4ee6-e8ca-c363b569edf4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " response\n", + "0 1. Yes, the driver of V2 sustained minor injur...\n", + "1 1. No, the driver of V2 was not injured in the...\n", + "2 1. No one was injured.\\n2. No one was killed.\\...\n", + "3 1. Yes, the driver of vehicle one (V1) was inj...\n", + "4 1. Yes, the 17-year-old male driver of Vehicle...\n", + ".. ...\n", + "995 1. Yes, someone was injured.\\n2. No, no one wa...\n", + "996 1. No, no one was injured.\\n2. No, no one was ...\n", + "997 1. No one was injured.\\n2. No one was killed.\\...\n", + "998 1. No one was injured.\\n2. No one was killed.\\...\n", + "999 1. It is not mentioned in the text whether som...\n", + "\n", + "[1000 rows x 1 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
response
01. Yes, the driver of V2 sustained minor injur...
11. No, the driver of V2 was not injured in the...
21. No one was injured.\\n2. No one was killed.\\...
31. Yes, the driver of vehicle one (V1) was inj...
41. Yes, the 17-year-old male driver of Vehicle...
......
9951. Yes, someone was injured.\\n2. No, no one wa...
9961. No, no one was injured.\\n2. No, no one was ...
9971. No one was injured.\\n2. No one was killed.\\...
9981. No one was injured.\\n2. No one was killed.\\...
9991. It is not mentioned in the text whether som...
\n", + "

1000 rows × 1 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 27 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df_res = add_responses_to_df(results, df, \"./results/df_results.xlsx\")" + ], + "metadata": { + "id": "p2LA4Gd3_3hp" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "\n", + "### 2.3 Performance evaluation\n", + "\n", + "Next, we want to evaluate the performance of our model.\n", + "\n", + "Let's look at the confusion matrix of the predicted vs true number of involved vehicles:\n", + "\n", + "\n" + ], + "metadata": { + "id": "_g3KTpBW60o_" + } + }, + { + "cell_type": "code", + "source": [ + "y_true = df_res[\"NUMTOTV\"]\n", + "y_pred = df_res[\"r4\"]\n", + "labels = [str(i) for i in sorted(set(y_true).union(set(y_pred)))]\n", + "_ = evaluate_classifier(y_true, y_pred, None, labels,\n", + " \"ChatGPT #vehicles\", \"cm_nv_chat_gpt\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 820 + }, + "id": "mbPJA_04FQds", + "outputId": "cb54bf9a-9737-4f89-c6e8-2d36f4e20772" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "ChatGPT #vehicles\n", + "accuracy score = 97.4%, log loss = nan, Brier loss = nan\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 1 0.99 0.97 0.98 256\n", + " 2 0.98 1.00 0.99 625\n", + " 3 0.92 0.90 0.91 94\n", + " 4 1.00 0.75 0.86 20\n", + " 5 0.67 0.50 0.57 4\n", + " 8 1.00 1.00 1.00 1\n", + "\n", + " accuracy 0.97 1000\n", + " macro avg 0.93 0.85 0.88 1000\n", + "weighted avg 0.97 0.97 0.97 1000\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "For the identification of cases with bodily injury, the performance looks as follows:" + ], + "metadata": { + "id": "xLq_B72X8nel" + } + }, + { + "cell_type": "code", + "source": [ + "y_true = df_res[\"INJSEVB\"]\n", + "y_pred = 1- (1 - df_res[\"r1\"]) * (1 - df_res[\"r2\"])\n", + "labels = [str(i) for i in sorted(set(y_true).union(set(y_pred)))]\n", + "_ = evaluate_classifier(y_true, y_pred, None, labels,\n", + " \"ChatGPT injury\", \"cm_inj_chat_gpt\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 750 + }, + "id": "16A9KflsCj-3", + "outputId": "e3f5495e-9543-40c9-c76a-f3014688ccb8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "ChatGPT injury\n", + "accuracy score = 88.1%, log loss = nan, Brier loss = nan\n", + "classification report\n", + " precision recall f1-score support\n", + "\n", + " 0 0.87 0.81 0.84 382\n", + " 1 0.89 0.92 0.91 618\n", + "\n", + " accuracy 0.88 1000\n", + " macro avg 0.88 0.87 0.87 1000\n", + "weighted avg 0.88 0.88 0.88 1000\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "For both tasks, we can compare the accuracy score to the ones achieved by the supervised approaches examined in Part I of this tutorial.\n", + "We observe the following:\n", + "* The accuracy score is higher than with supervised training of a logistic regression classifier on the DistilBERT-encoded texts.\n", + "* The accuracy score is somewhat below the one obtained using task-specific fine-tuning of the DistilBERT model.\n", + "\n", + "Note, however, that here we have not employed any task-specific training!" + ], + "metadata": { + "id": "TqgnpwRx9mhE" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0Wet19WmEVHN" + }, + "source": [ + "\n", + "\n", + "## 3. Conclusion\n", + "\n", + "Congratulations!\n", + "\n", + "In this Part III of the tutorial, you have used ChatGPT to extract features from text in an unsupervised fashion.\n", + "\n", + "Advantages of this approach are certainly that no labels are required, and that it is very simple to implement.\n", + "\n", + "On the other hand, execution time is longer than for the supervised approaches examined in Part I.\n", + "\n", + "In terms of accuracy score, the approach used here performs better than supervised training of a logistic regression classifier on the DistilBERT-encoded texts, but somewhat worse than task-specific supervised fine-tuning of the DistilBERT model.\n", + "Note however that we haven't performed any fine-tuning in this notebook.\n", + "\n", + "In practice, the unsupervised and supervised techniques could be combined, for instance by using ChatGPT to generate labels for a sufficintly large set of data, that is then used in a supervised setting.\n", + "\n", + "If you have enjoyed this tutorial, feel free to apply any of the approaches - or improved versions, of course - to your own text data, to enrich your structured features available for supervised learning tasks." + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file