-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmodelRNN-LSTM.lua
353 lines (332 loc) · 11.9 KB
/
modelRNN-LSTM.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
----------------------------------------------------------------------
--
-- Deep time series learning: Analysis of Torch
--
-- Main functions for classification
--
----------------------------------------------------------------------
----------------------------------------------------------------------
-- Imports
require 'rnn'
require 'unsup'
require 'optim'
require 'torch'
require 'modelRNN'
local nninit = require 'nninit'
local function lstm(x, prev_c, prev_h)
-- Calculate all four gates in one go
local i2h = nn.Linear(params.rnn_size, 4*params.rnn_size)(x)
local h2h = nn.Linear(params.rnn_size, 4*params.rnn_size)(prev_h)
local gates = nn.CAddTable()({i2h, h2h})
-- Reshape to (batch_size, n_gates, hid_size)
-- Then slize the n_gates dimension, i.e dimension 2
local reshaped_gates = nn.Reshape(4,params.rnn_size)(gates)
local sliced_gates = nn.SplitTable(2)(reshaped_gates)
-- Use select gate to fetch each gate and apply nonlinearity
local in_gate = nn.Sigmoid()(nn.SelectTable(1)(sliced_gates))
local in_transform = nn.Tanh()(nn.SelectTable(2)(sliced_gates))
local forget_gate = nn.Sigmoid()(nn.SelectTable(3)(sliced_gates))
local out_gate = nn.Sigmoid()(nn.SelectTable(4)(sliced_gates))
local next_c = nn.CAddTable()({
nn.CMulTable()({forget_gate, prev_c}),
nn.CMulTable()({in_gate, in_transform})
})
local next_h = nn.CMulTable()({out_gate, nn.Tanh()(next_c)})
return next_c, next_h
end
local function create_network()
local x = nn.Identity()()
local y = nn.Identity()()
local prev_s = nn.Identity()()
local i = {[0] = LookupTable(params.vocab_size,
params.rnn_size)(x)}
local next_s = {}
local split = {prev_s:split(2 * params.layers)}
for layer_idx = 1, params.layers do
local prev_c = split[2 * layer_idx - 1]
local prev_h = split[2 * layer_idx]
local dropped = nn.Dropout(params.dropout)(i[layer_idx - 1])
local next_c, next_h = lstm(dropped, prev_c, prev_h)
table.insert(next_s, next_c)
table.insert(next_s, next_h)
i[layer_idx] = next_h
end
local h2y = nn.Linear(params.rnn_size, params.vocab_size)
local dropped = nn.Dropout(params.dropout)(i[params.layers])
local pred = nn.LogSoftMax()(h2y(dropped))
local err = nn.ClassNLLCriterion()({pred, y})
local module = nn.gModule({x, y, prev_s},
{err, nn.Identity()(next_s)})
return module;
end
local modelRNNLSTM, parent = torch.class('modelRNNLSTM', 'modelClass')
function modelRNNLSTM:defineModel(structure, options)
-- Container
local model = nn.Sequential();
-- Hidden layers
for i = 1,structure.nLayers do
if i == 1 then nIn = self.windowSize; else nIn = structure.layers[i - 1]; end
-- Prepare one layer of reccurent computation
local r = nn.Recurrent(
structure.layers[i],
nn.Linear(nIn, structure.layers[i]),
nn.Linear(structure.layers[i], structure.layers[i]),
self.nonLinearity(),
self.rho
);
model:add(r);
-- Layer-wise linear transform
if self.layerwiseLinear then model:add(nn.Linear(structure.layers[i], structure.layers[i])) end
-- Batch normalization
if self.batchNormalize then model:add(nn.BatchNormalization(structure.layers[i])); end
-- Non-linearity
if self.addNonLinearity then model:add(self.nonLinearity()); end
-- Dropout
if self.dropout then model:add(nn.Dropout(self.dropout)); end
end
-- Final regression layer for classification
if self.sequencer then
-- Sequencer case simply needs to add a linear transform to number of classes
model:add(nn.Linear(structure.layers[structure.nLayers], structure.nOutputs))
rnnModel = nn.Sequencer(model);
model = nn.Sequential();
-- Number of windows we will consider
local nWins = torch.ceil((structure.nInputs - self.windowSize + 1) / self.windowStep)
-- Here we add the subsequencing trick
model:add(nn.SlidingWindow(2, self.windowSize, self.windowStep));
model:add(rnnModel);
model:add(nn.JoinTable(2));
model:add(nn.Linear(nWins * structure.nOutputs, structure.nOutputs));
else
-- Recursor case
rnnLayers = nn.Recursor(model, self.rho);
model = nn.Sequential()
-- Add the recurrent
model:add(rnnLayers);
-- Needs to reshape the data from all outputs
model:add(nn.Reshape(structure.layers[structure.nLayers]));
-- And then add linear transform to number of classes
model:add(nn.Linear(structure.layers[structure.nLayers], structure.nOutputs))
end
return model;
end
function modelRNNLSTM:definePretraining(structure, l, options)
--[[ Encoder part ]]--
local finalEncoder = nn.Sequential()
local encoder = nn.Sequential();
if l == 1 then
if (self.sequencer) then nIn = self.windowSize; else nIn = structure.nInputs end
else
nIn = structure.layers[l-1];
end
-- One layer is defined between
-- In = nIn
-- Out = structure.layers[l]
-- In the first layer we have to perform a Sliding Window
if l == 1 then
-- Number of windows we will consider
local nWins = torch.ceil((structure.nInputs - self.windowSize + 1) / self.windowStep)
-- Here we add the subsequencing trick
finalEncoder:add(nn.SlidingWindow(2, self.windowSize, self.windowStep));
end
--[[ Decoder part ]]--
local decoder = nn.Sequential()
local finalDecoder = nn.Sequential()
--
-- Prepare decoding layer of reccurent computation
--
local rDec = {}
decoder:add(nn.Sequencer(rDec));
decoder:add(nn.Sequencer(nn.Linear(structure.layers[l], nIn)))
finalDecoder:add(decoder);
-- In the first layer we have to join windows
if l == 1 then
-- Number of windows we will consider
local nWins = torch.ceil((structure.nInputs - self.windowSize + 1) / self.windowStep)
-- Here we add the subsequencing trick
finalDecoder:add(nn.JoinTable(2));
finalDecoder:add(nn.Linear(nWins * self.windowSize, structure.nInputs));
end
-- Construct an autoencoder
local model = unsup.AutoEncoder(finalEncoder, finalDecoder, options.beta);
-- We will need a sequencer criterion for deeper layers
if (l > 1) then model.loss = nn.SequencerCriterion(model.loss); end
-- Return the complete model
return model;
end
function g_cloneManyTimes(net, T)
local clones = {}
local params, gradParams = net:parameters()
local mem = torch.MemoryFile("w"):binary()
mem:writeObject(net)
for t = 1, T do
-- We need to use a new reader for each clone.
-- We don't want to use the pointers to already read objects.
local reader = torch.MemoryFile(mem:storage(), "r"):binary()
local clone = reader:readObject()
reader:close()
local cloneParams, cloneGradParams = clone:parameters()
for i = 1, #params do
cloneParams[i]:set(params[i])
cloneGradParams[i]:set(gradParams[i])
end
clones[t] = clone
collectgarbage()
end
mem:close()
return clones
end
local function setup()
print("Creating a RNN LSTM network.")
local core_network = create_network()
paramx, paramdx = core_network:getParameters()
model.s = {}
model.ds = {}
model.start_s = {}
for j = 0, params.seq_length do
model.s[j] = {}
for d = 1, 2 * params.layers do
model.s[j][d] = transfer_data(torch.zeros(params.batch_size, params.rnn_size))
end
end
for d = 1, 2 * params.layers do
model.start_s[d] = transfer_data(torch.zeros(params.batch_size, params.rnn_size))
model.ds[d] = transfer_data(torch.zeros(params.batch_size, params.rnn_size))
end
model.core_network = core_network
model.rnns = g_cloneManyTimes(core_network, params.seq_length)
model.norm_dw = 0
model.err = transfer_data(torch.zeros(params.seq_length))
end
local function reset_state(state)
state.pos = 1
if model ~= nil and model.start_s ~= nil then
for d = 1, 2 * params.layers do
model.start_s[d]:zero()
end
end
end
local function reset_ds()
for d = 1, #model.ds do
model.ds[d]:zero()
end
end
local function fp(state)
g_replace_table(model.s[0], model.start_s)
if state.pos + params.seq_length > state.data:size(1) then
reset_state(state)
end
for i = 1, params.seq_length do
local x = state.data[state.pos]
local y = state.data[state.pos + 1]
local s = model.s[i - 1]
model.err[i], model.s[i] = unpack(model.rnns[i]:forward({x, y, s}))
state.pos = state.pos + 1
end
g_replace_table(model.start_s, model.s[params.seq_length])
return model.err:mean()
end
local function bp(state)
paramdx:zero()
reset_ds()
for i = params.seq_length, 1, -1 do
state.pos = state.pos - 1
local x = state.data[state.pos]
local y = state.data[state.pos + 1]
local s = model.s[i - 1]
local derr = transfer_data(torch.ones(1))
local tmp = model.rnns[i]:backward({x, y, s},
{derr, model.ds})[3]
g_replace_table(model.ds, tmp)
cutorch.synchronize()
end
state.pos = state.pos + params.seq_length
model.norm_dw = paramdx:norm()
if model.norm_dw > params.max_grad_norm then
local shrink_factor = params.max_grad_norm / model.norm_dw
paramdx:mul(shrink_factor)
end
paramx:add(paramdx:mul(-params.lr))
end
local function run_valid()
reset_state(state_valid)
g_disable_dropout(model.rnns)
local len = (state_valid.data:size(1) - 1) / (params.seq_length)
local perp = 0
for i = 1, len do
perp = perp + fp(state_valid)
end
print("Validation set perplexity : " .. g_f3(torch.exp(perp / len)))
g_enable_dropout(model.rnns)
end
local function run_test()
reset_state(state_test)
g_disable_dropout(model.rnns)
local perp = 0
local len = state_test.data:size(1)
g_replace_table(model.s[0], model.start_s)
for i = 1, (len - 1) do
local x = state_test.data[i]
local y = state_test.data[i + 1]
perp_tmp, model.s[1] = unpack(model.rnns[1]:forward({x, y, model.s[0]}))
perp = perp + perp_tmp[1]
g_replace_table(model.s[0], model.s[1])
end
print("Test set perplexity : " .. g_f3(torch.exp(perp / (len - 1))))
g_enable_dropout(model.rnns)
end
local function main()
g_init_gpu(arg)
state_train = {data=transfer_data(ptb.traindataset(params.batch_size))}
state_valid = {data=transfer_data(ptb.validdataset(params.batch_size))}
state_test = {data=transfer_data(ptb.testdataset(params.batch_size))}
print("Network parameters:")
print(params)
local states = {state_train, state_valid, state_test}
for _, state in pairs(states) do
reset_state(state)
end
setup()
local step = 0
local epoch = 0
local total_cases = 0
local beginning_time = torch.tic()
local start_time = torch.tic()
print("Starting training.")
local words_per_step = params.seq_length * params.batch_size
local epoch_size = torch.floor(state_train.data:size(1) / params.seq_length)
local perps
while epoch < params.max_max_epoch do
local perp = fp(state_train)
if perps == nil then
perps = torch.zeros(epoch_size):add(perp)
end
perps[step % epoch_size + 1] = perp
step = step + 1
bp(state_train)
total_cases = total_cases + params.seq_length * params.batch_size
epoch = step / epoch_size
if step % torch.round(epoch_size / 10) == 10 then
local wps = torch.floor(total_cases / torch.toc(start_time))
local since_beginning = g_d(torch.toc(beginning_time) / 60)
print('epoch = ' .. g_f3(epoch) ..
', train perp. = ' .. g_f3(torch.exp(perps:mean())) ..
', wps = ' .. wps ..
', dw:norm() = ' .. g_f3(model.norm_dw) ..
', lr = ' .. g_f3(params.lr) ..
', since beginning = ' .. since_beginning .. ' mins.')
end
if step % epoch_size == 0 then
run_valid()
if epoch > params.max_epoch then
params.lr = params.lr / params.decay
end
end
if step % 33 == 0 then
cutorch.synchronize()
collectgarbage()
end
end
run_test()
print("Training is over.")
end