-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnxnk.py
571 lines (486 loc) · 21.3 KB
/
nxnk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
"""
This module provides networkx-like graph constructors and methods with a NetworKit backend.
Besides convenient, networkx-like functions, this wrapper class protects from
the fragility of NetworKit at the expense of performance when constructing the graph.
Unlike networkx, this networkx-like wrapper over NetworKit does not concern itself with
attributes other than weight.
By design, the iterable of user-defined nodes provided as argument to many methods is only ever read once. This enables consuming generators effectively.
Albert Cardona, 2017-06-23
"""
from networkit import graph, algebraic
from itertools import chain
from collections import deque
from util import deprecated
class Graph:
def __init__(self, weighted=True, directed=False, nkG=None):
self.nkG = nkG if nkG is not None else graph.Graph(weighted=weighted, directed=directed)
# Map of user-defined nodes to NetworKit-defined node IDs
self.unodes = {}
# Map of NetworKit-defined node IDs vs user-defined nodes
self.knodes = {}
def to_user_nodes(self, knodes):
""" Return the user-defined node corresponding to each given NetworKit node ID (a knode). """
for knode in knodes:
yield self.knodes[knode]
def to_networkit_nodes(self, nodes):
""" Return the NetworKit node ID (a knode) corresponding to each given user-defined node. """
for node in nodes:
yield self.unodes[node]
def add_node(self, node):
""" Adds the node and returns the NetworKit ID for the newly added node.
If the node already existed, returns the existing NetworKit ID. """
# If present, return it
knode = self.unodes.get(node, None)
if knode is None:
knode = self.nkG.addNode()
self.unodes[node] = knode
self.knodes[knode] = node
return knode
def add_nodes_from(self, nodes):
""" Given an iterable of nodes to add, add them and return an iterable of knodes.
If a node already exists, its knode is returned in any case. """
# Dereference
addNode = self.nkG.addNode
get = self.unodes.get
setitem_unodes = self.unodes.__setitem__
setitem_knodes = self.knodes.__setitem__
#
for node in nodes:
knode = get(node, None)
if knode is None:
knode = addNode()
setitem_unodes(node, knode) # unodes[node] = knode
setitem_knodes(knode, node) # knodes[knode] = node
yield knode
def add_edge(self, source, target, weight=1.0):
""" Adds an edge relating source and target.
The weight must be a number, or leave it as default (1.0).
Does not allow duplicated edges (like networkx, and unlike NetworKit).
If the edge exists, the weight is updated.
Does not add two edges like networkx: NetworKit has true undirected edges. """
# Must check that the weight is a number.
# Will throw a ValueError if it is not a float.
weight = float(weight)
ksource = self.add_node(source)
ktarget = self.add_node(target)
if self.nkG.hasEdge(ksource, ktarget):
if self.nkG.isWeighted():
self.nkG.setWeight(ksource, ktarget, weight)
else:
self.nkG.addEdge(ksource, ktarget, weight)
def add_edges_from(self, edges):
""" Differs from networkx's add_edges_from in that the tuple
describing each edge, if it has 3 entries, the 3rd entry
is the weight, not a dictionary.
See also: add_edges_from_pairs when individual weights are not needed. """
edges = iter(edges) # ensure iterator
# Discover if edges is an iterable of pairs
edge = next(edges)
if 2 == len(edge):
# Choose higher-performance function
self.add_edge(edge[0], edge[1])
self.add_edges_from_pairs(edges)
else:
self.add_edge(edge[0], edge[1], float(edge[2]))
is_weighted = self.nkG.isWeighted()
# Dereference: performance gain
hasEdge = self.nkG.hasEdge
addEdge = self.nkG.addEdge
setWeight = self.nkG.setWeight
#
weights = deque() # will only ever have one single value
def storeWeight(edge):
weights.append(edge[2])
return edge[0:2]
#
knodes = self.add_nodes_from(chain.from_iterable(map(storeWeight, edges))) # here, map is faster than list comprehension
for ksource in knodes:
ktarget = next(knodes)
w = weights.popleft()
if hasEdge(ksource, ktarget):
if is_weighted:
setWeight(ksource, ktarget, float(w))
else:
addEdge(ksource, ktarget, float(w))
""" # simple but inneficient: far too many unnecessary function calls
for edge in edges:
self.add_edge(edge[0], edge[1],
weight=float(edge[2]) if len(edge) > 2 else 1.0)
"""
def add_edges_from_pairs(self, edges, weight=1.0):
""" Add edges from an iterable of pairs of nodes.
All edges with default weight of 1.0. """
weight = float(weight) # ensure number
is_weighted = self.nkG.isWeighted()
# Dereference: performance gain
hasEdge = self.nkG.hasEdge
addEdge = self.nkG.addEdge
setWeight = self.nkG.setWeight
#
knodes = self.add_nodes_from(chain.from_iterable(edges)) # a generator
# Consumes two knodes at a time: notice the call to next(knodes)
for ksource in knodes:
ktarget = next(knodes)
if hasEdge(ksource, ktarget):
if is_weighted:
setWeight(ksource, ktarget, weight)
else:
addEdge(ksource, ktarget, weight)
def add_path(self, nodes, weight=1.0, cycle=False):
""" Add edges in a path.
If an edge exists, will update the weight. """
weight = float(weight)
is_weighted = self.nkG.isWeighted()
# Dereference
hasEdge = self.nkG.hasEdge
addEdge = self.nkG.addEdge
setWeight = self.nkG.setWeight
#
knodes = self.add_nodes_from(nodes)
ksource = next(knodes)
if cycle:
knodes = chain(knodes, (ksource,))
for ktarget in knodes:
if hasEdge(ksource, ktarget):
if is_weighted:
setWeight(ksource, ktarget, weight)
else:
addEdge(ksource, ktarget, weight)# faster function call with weight as 3rd arg than as keyword arg with w=weight
ksource = ktarget
def add_cycle(self, nodes, weight=1.0):
""" Add edges into a closed path.
If an edge exists, will update the weight. """
self.add_path(nodes, weight=weight, cycle=True)
def add_star(self, nodes, weight=1.0):
""" First node makes an edge to every other node.
If an edge exists, will update the weight. """
weight = float(weight)
is_weighted = self.nkG.isWeighted()
# Dereference
hasEdge = self.nkG.hasEdge
addEdge = self.nkG.addEdge
setWeight = self.nkG.setWeight
#
knodes = self.add_nodes_from(nodes)
ksource = next(knodes)
for ktarget in knodes:
if hasEdge(ksource, ktarget):
if is_weighted:
setWeight(ksource, ktarget, weight)
else:
addEdge(ksource, ktarget, weight)
def remove_node(self, node):
knode = self.unodes.get(node, None)
if knode:
self.nkG.removeNode(knode)
del self.unodes[node]
del self.knodes[knode]
def remove_nodes_from(self, nodes):
for node in node:
self.remove_node(node)
def remove_edge(self, source, target):
ksource = self.unodes.get(source, None)
ktarget = self.unodes.get(target, None)
if ksource is not None and ktarget is not None:
self.nkG.removeEdge(ksource, ktarget)
def remove_edges_from(self, edges):
for edge in edges:
self.remove_edge(edge[0], edge[1])
self.nkG.compactEdges()
def has_successor(self, node):
knode = self.unodes.get(node, None)
if knode is None:
return False
return len(self.nkG.neighbors(knode)) > 0
def has_predecessor(self, node):
knode = self.unodes.get(node, None)
if knode is None:
return False
if self.nkG.isDirected():
# Find at least one predecessor: a source that has node as target
for ksource, ktarget in self.nkG.edges():
if ktarget == knode:
return True
else:
return len(self.nkG.neighbors(knode)) > 0
def number_of_nodes(self):
return self.nkG.numberOfNodes()
def order(self):
return self.nkG.numberOfNodes()
def size(self):
""" Number of edges in the graph. """
return self.nkG.numberOfEdges()
def number_of_edges(self, source=None, target=None):
""" Same behavior as networkx.number_of_edges """
if target is None or source is None:
return self.nkG.numberOfEdges()
else:
if source in self.unodes and target in self.unodes:
return 1 # TODO doesn't read right
else:
return 0
def number_of_selfloops(self):
return self.nkG.numberOfSelfLoops()
def selfloop_edges(self):
for ksource, ktarget in self.nkG.edges():
if ksource == ktarget:
node = self.knodes[ksource]
yield (node, node)
def nodes_with_selfloops(self):
for node, _ in self.selfloop_edges():
yield node
def subgraph(self, nodes):
# Dereference
uget = self.unodes.get
#
unodes = {}
knodes = {}
for node in nodes:
knode = uget(node, None)
if knode is None:
continue
unodes[node] = knode
knodes[knode] = node
sub = self.__class__(nkG=self.nkG.subgraphFromNodes(knodes.keys()))
sub.unodes = unodes
sub.knodes = knodes
return sub
def edges(self, weight=False):
# Dereference
kget = self.knodes.__getitem__
#
if weight:
# Dereference
weightFn = self.nkG.weight
#
for ksource, ktarget in self.nkG.edges():
yield (kget(ksource), # self.knodes[ksource]
kget(ktarget), # self.knodes[ktarget]
weightFn(ksource, ktarget)) # self.nkG.weight(ksource, ktarget)
else:
for ksource, ktarget in self.nkG.edges():
yield (kget(ksource), # self.knodes[ksource]
kget(ktarget)) # self.knodes[ktarget]
def nodes(self):
# Correct, but wrong order. Wouldn't match with order in e.g. adjacency_matrix()
# return self.unodes.keys()
return self.to_user_nodes(self.nkG.nodes())
def is_multigraph(self):
return False
def is_directed(self):
return self.nkG.isDirected()
def to_directed(self):
""" Return a directed copy of the graph: two directed edges for every undirected edge. """
if self.is_directed():
return self.copy(directed=True)
#
d = DiGraph(weighted=self.nkG.isWeighted())
def reciprocal_edges():
for source, target, weight in self.edges(weight=True):
yield source, target, weight
yield target, source, weight
d.add_edges_from(reciprocal_edges())
return d
def copy(self, directed=False):
""" Safely deep-copy this graph. """
# While it could be made faster, there is no guarantee as to what IDs
# the NetworKit Graph.addNode function will return.
copy = self.__class__(weighted=self.nkG.isWeighted(), directed=directed)
for ksource, ktarget in self.nkG.edges():
copy.add_edge(self.knodes[ksource],
self.knodes[ktarget],
self.nkG.weight(ksource, ktarget))
return copy
def to_undirected(self):
return self.copy(directed=False)
def clear(self):
self.nkG = graph.Graph(weighted=self.nkG.isWeighted(), directed=self.nkG.isDirected())
self.unodes.clear()
self.knodes.clear()
def __iter__(self):
""" Return an iterator over all nodes of the graph. """
return self.nodes()
# Correct, but wrong order
# return self.unodes.keys()
def __contains__(self, node):
""" Return true if node exists in the graph. """
knode = self.unodes.get(node, None)
return knode is not None and self.nkG.hasNode(knode)
def __len__(self):
""" Return the number of nodes. """
return self.number_of_nodes()
def ___getitem__(self, node):
""" Return a dictionary of nodes connected to node as keys, and edge weight as values. """
knode = self.unodes.get(node, None)
if knode:
return {kn: self.nkG.weight(kn) for kn in self.nkG.neighbors(knode)}
else:
return {}
def has_node(self, node):
""" Return true if node exists in the graph. """
knode = self.unodes.get(node, None)
return knode is not None and self.nkG.hasNode(knode)
def has_edge(self, source, target):
ksource = self.unodes.get(source, None)
ktarget = self.unodes.get(target, None)
return ksource is not None and ktarget is not None and self.nkG.hasEdge(ksource, ktarget)
def weight(self, source, target):
ksource = self.unodes.get(source, None)
ktarget = self.unodes.get(target, None)
assert ksource is not None
assert ktarget is not None
return self.nkG.weight(ksource, ktarget)
def degree(self, nbunch=None, weight=False):
""" Return the degree for a single node if the node is in the graph.
Works like networkx.graph.degree when called with nbunch=node, and
does not handle an iterable of nodes.
See also: degrees (which mimics networkx.degrees_iter). """
# Test if nbunch holds a single, valid node
ksource = self.unodes.get(nbunch, None)
if ksource is not None:
# nbunch is a single node
if weight:
return sum(self.nkG.weight(ksource, ktarget) for ktarget in self.nkG.neighbors(ksource))
else:
return len(self.nkG.neighbors(ksource))
def degrees(self, nbunch=None, weight=False):
""" Return a generator of (node, degree) tuples.
When nbunch=None (default), compute for all nodes.
When weight=None (default), the degree is the number of edges,
otherwise the degree is the sum of a node edges' weights.
When an iterable of nodes is provided with nbunch, will silently ignore
nodes not in this graph. """
# Dereference
weightFn = self.nkG.weight
neighbors = self.nkG.neighbors
#
if nbunch is None:
# Surely there is way using partial and starmap to avoid these repetitions
if weight:
for node, ksource in self.unodes.items():
yield node, sum(weightFn(ksource, ktarget) for ktarget in neighbors(ksource))
else:
for node, ksource in self.unodes.items():
yield node, len(neighbors(ksource))
else:
# User-provided list may contain nodes not in this graph
uget = self.unodes.get
if weight:
for node in nbunch:
ksource = uget(node, None)
if ksource is not None:
yield node, sum(weightFn(ksource, ktarget) for ktarget in neighbors(ksource))
else:
for node in nbunch:
ksource = uget(node, None)
if ksource is not None:
yield node, len(neighbors(ksource))
def adjacency(self):
""" Like networkx.graph.adjacency_iter.
The order of the nodes is that of self.nodes(). """
# Dereference
neighbors = self.nkG.neighbors
kget = self.knodes.get
#
for knode in self.nkG.nodes():
yield list(map(kget, neighbors(knode)))
def adjacency_matrix(self, sparse=True):
""" If sparse=True (default) returns a scipy.sparse.crs.crs_matrix,
otherwise a numpy.ndarray with the dense matrix.
The edge weights are the values in the matrix.
To identify which matrix row and column index corresponds to which graph node,
get the node list from self.nkG.nodes(). """
t = 'sparse' if sparse else 'dense'
return algebraic.adjacencyMatrix(self.nkG, matrixType=t)
def nx_adapter(self):
""" Return a wrapper over this nxnk graph (not a copy) with methods compatible with networkx. """
nxg = NXGraph(weighted=self.nkG.isWeighted(), nkG=self.nkG)
nxg.unodes = self.unodes
nxg.knodes = self.knodes
return nxg
# START deprecated methods that merely call methods above.
@deprecated("Call add_edges_from(edges) instead.")
def add_weighted_edges_from(self, edges):
""" OBSOLETE. Add edges from an iterable of tuples like (source, target, weight).
Calls self.add_edges_from(edges).
For compatibility with networkx."""
self.add_edges_from(edges)
@deprecated("Call neighbors(node) instead.")
def neighbors_iter(self, node):
""" OBSOLETE. Calls self.neighbors(node).
For compatibility with networkx. """
return self.neighbors(node)
@deprecated("Call edges(weight) instead.")
def edges_iter(self, weight=False):
""" OBSOLETE. Calls self.edges(weight=weight).
For compatibility with networkx. """
return self.edges(weight=weight)
@deprecated("Call adjacency() instead.")
def adjacency_iter(self):
""" OBSOLETE. Calls self.adjacency().
For compatibility with networkx. """
return self.adjacency()
@deprecated("Call adjacency() instead.")
def adjacency_list(self):
""" OBSOLETE. Calls list(self.adjacency()).
For compatibility with networkx. """
return list(self.adjacency())
@deprecated("Call degrees(nbunch, weight) instead.")
def degree_iter(self, nbunch=None, weight=False):
""" OBSOLETE. Calls self.degrees(nbunch=nbunch, weight=weight).
For compatibility with networkx. """
return self.degrees(nbunch=nbunch, weight=weight)
class DiGraph(Graph):
def __init__(self, weighted=True, directed=True, nkG=None):
super(DiGraph, self).__init__(weighted=weighted, directed=True, nkG=nkG)
def copy(self, directed=True):
return super(DiGraph, self).copy(directed=directed)
def reverse(self):
""" Return a new DiGraph with all edges reversed. """
d = self.__class__(weighted=self.nkG.isWeighted(), nkG=self.nkG.transpose())
d.unodes.update(self.unodes)
d.knodes.update(self.knodes)
return d
def nx_adapter(self):
""" Return a wrapper over this graph (not a copy) with methods compatible with networkx. """
nxd = NXDiGraph(nkG=self.nkG)
nxd.unodes = self.unodes
nxd.knodes = self.knodes
return nxd
# It is likely that the code duplication below can be solved with multiple inheritance.
class NXGraph(Graph):
"""
Adapter class for nxnk.Graph to work as a drop-in replacement for networkx.Graph in NetworkX libraries:
1. wrap methods to return lists instead of iterables.
2. run iterables returned by methods that don't in networkx.
"""
def __init__(self, weighted=True, directed=False, nkG=None):
super(NXGraph, self).__init__(weighted=weighted, directed=directed, nkG=nkG)
def nodes(self):
return list(super(NXGraph, self).nodes())
def edges(self):
return list(super(NXGraph, self).edges())
def add_nodes_from(self, nodes):
deque(super(NXGraph, self).add_nodes_from(nodes), 0)
def selfloop_edges(self):
return list(super(NXGraph, self).selfloop_edges())
def nodes_with_selfloops(self):
return list(super(NXGraph, self).nodes_with_selfloops())
class NXDiGraph(DiGraph):
"""
Adapter class for nxnk.DiGraph to work as a drop-in replacement for networkx.DiGraph in NetworkX libraries:
1. wrap methods to return lists instead of iterables.
2. run iterables returned by methods that don't in networkx.
"""
def __init__(self, weighted=True, directed=True, nkG=None):
super(NXDiGraph, self).__init__(weighted=weighted, directed=directed, nkG=nkG)
def nodes(self):
return list(super(NXDiGraph, self).nodes())
def edges(self):
return list(super(NXDiGraph, self).edges())
def add_nodes_from(self, nodes):
deque(super(NXDiGraph, self).add_nodes_from(nodes), 0)
def selfloop_edges(self):
return list(super(NXDiGraph, self).selfloop_edges())
def nodes_with_selfloops(self):
return list(super(NXDiGraph, self).nodes_with_selfloops())