-
Notifications
You must be signed in to change notification settings - Fork 0
/
astar-2.5d.py
82 lines (69 loc) · 2.46 KB
/
astar-2.5d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
import heapq
import matplotlib.pyplot as plt
def heuristic(a, b):
return np.sqrt((b[0] - a[0]) ** 2 + (b[1] - a[1]) ** 2)
def astar(array, start, goal, K):
neighbors = [(0,1),(0,-1),(1,0),(-1,0),(1,1),(1,-1),(-1,1),(-1,-1)]
close_set = set()
came_from = {}
gscore = {start:0}
fscore = {start:heuristic(start, goal)}
oheap = []
heapq.heappush(oheap, (fscore[start], start))
while oheap:
current = heapq.heappop(oheap)[1]
if current == goal:
data = []
while current in came_from:
data.append(current)
current = came_from[current]
return data
close_set.add(current)
for i, j in neighbors:
neighbor = current[0] + i, current[1] + j
tentative_g_score = gscore[current] + heuristic(current, neighbor)
if 0 <= neighbor[0] < array.shape[0]:
if 0 <= neighbor[1] < array.shape[1]:
if abs(array[current[0]][current[1]] - array[neighbor[0]][neighbor[1]]) > K:
continue
else:
continue
else:
continue
if neighbor in close_set and tentative_g_score >= gscore.get(neighbor, 0):
continue
if tentative_g_score < gscore.get(neighbor, 0) or neighbor not in [i[1]for i in oheap]:
came_from[neighbor] = current
gscore[neighbor] = tentative_g_score
fscore[neighbor] = tentative_g_score + heuristic(neighbor, goal)
heapq.heappush(oheap, (fscore[neighbor], neighbor))
return False
def visualize_path(array, path):
array = np.copy(array)
for point in path:
array[point[0]][point[1]] = 50
plt.imshow(array, cmap='hot', interpolation='nearest')
plt.title('2.5D A* Map and Path')
plt.show()
def main():
matrix = np.array([
[1, 2, 3, 4, 5, 7, 7, 8, 9],
[9, 8, 5, 6, 6, 8, 3, 2, 1],
[1, 2, 3, 4, 5, 9, 7, 8, 9],
[9, 8, 4, 6, 8, 9, 3, 2, 1],
[1, 2, 3, 4, 5, 6, 7, 8, 9]
])
start = (0, 0)
goal = (4, 8)
K = 1.0
path = astar(matrix, start, goal, K)
path.append(start)
if path:
print("Path found")
print(path)
visualize_path(matrix, path)
else:
print("Path not found")
if __name__ == "__main__":
main()