-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_all.py
209 lines (177 loc) · 8.6 KB
/
test_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import io
import unittest
import torch
from torch import nn, Tensor
from typing import List
from models.matcher import HungarianMatcher
from models.position_encoding import PositionEmbeddingSine, PositionEmbeddingLearned
from models.backbone import Backbone, Joiner, BackboneBase
from util import box_ops
from util.misc import nested_tensor_from_tensor_list
from hubconf import detr_resnet50, detr_resnet50_panoptic
# onnxruntime requires python 3.5 or above
try:
import onnxruntime
except ImportError:
onnxruntime = None
class Tester(unittest.TestCase):
def test_box_cxcywh_to_xyxy(self):
t = torch.rand(10, 4)
r = box_ops.box_xyxy_to_cxcywh(box_ops.box_cxcywh_to_xyxy(t))
self.assertLess((t - r).abs().max(), 1e-5)
@staticmethod
def indices_torch2python(indices):
return [(i.tolist(), j.tolist()) for i, j in indices]
def test_hungarian(self):
n_queries, n_targets, n_classes = 100, 15, 91
logits = torch.rand(1, n_queries, n_classes + 1)
boxes = torch.rand(1, n_queries, 4)
tgt_labels = torch.randint(high=n_classes, size=(n_targets,))
tgt_boxes = torch.rand(n_targets, 4)
matcher = HungarianMatcher()
targets = [{'labels': tgt_labels, 'boxes': tgt_boxes}]
indices_single = matcher({'pred_logits': logits, 'pred_boxes': boxes}, targets)
indices_batched = matcher({'pred_logits': logits.repeat(2, 1, 1),
'pred_boxes': boxes.repeat(2, 1, 1)}, targets * 2)
self.assertEqual(len(indices_single[0][0]), n_targets)
self.assertEqual(len(indices_single[0][1]), n_targets)
self.assertEqual(self.indices_torch2python(indices_single),
self.indices_torch2python([indices_batched[0]]))
self.assertEqual(self.indices_torch2python(indices_single),
self.indices_torch2python([indices_batched[1]]))
# test with empty targets
tgt_labels_empty = torch.randint(high=n_classes, size=(0,))
tgt_boxes_empty = torch.rand(0, 4)
targets_empty = [{'labels': tgt_labels_empty, 'boxes': tgt_boxes_empty}]
indices = matcher({'pred_logits': logits.repeat(2, 1, 1),
'pred_boxes': boxes.repeat(2, 1, 1)}, targets + targets_empty)
self.assertEqual(len(indices[1][0]), 0)
indices = matcher({'pred_logits': logits.repeat(2, 1, 1),
'pred_boxes': boxes.repeat(2, 1, 1)}, targets_empty * 2)
self.assertEqual(len(indices[0][0]), 0)
def test_position_encoding_script(self):
m1, m2 = PositionEmbeddingSine(), PositionEmbeddingLearned()
mm1, mm2 = torch.jit.script(m1), torch.jit.script(m2) # noqa
def test_backbone_script(self):
backbone = Backbone('resnet50', True, False, False)
torch.jit.script(backbone) # noqa
def test_model_script_detection(self):
model = detr_resnet50(pretrained=False).eval()
scripted_model = torch.jit.script(model)
x = nested_tensor_from_tensor_list([torch.rand(3, 200, 200), torch.rand(3, 200, 250)])
out = model(x)
out_script = scripted_model(x)
self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"]))
self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"]))
def test_model_script_panoptic(self):
model = detr_resnet50_panoptic(pretrained=False).eval()
scripted_model = torch.jit.script(model)
x = nested_tensor_from_tensor_list([torch.rand(3, 200, 200), torch.rand(3, 200, 250)])
out = model(x)
out_script = scripted_model(x)
self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"]))
self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"]))
self.assertTrue(out["pred_masks"].equal(out_script["pred_masks"]))
def test_model_detection_different_inputs(self):
model = detr_resnet50(pretrained=False).eval()
# support NestedTensor
x = nested_tensor_from_tensor_list([torch.rand(3, 200, 200), torch.rand(3, 200, 250)])
out = model(x)
self.assertIn('pred_logits', out)
# and 4d Tensor
x = torch.rand(1, 3, 200, 200)
out = model(x)
self.assertIn('pred_logits', out)
# and List[Tensor[C, H, W]]
x = torch.rand(3, 200, 200)
out = model([x])
self.assertIn('pred_logits', out)
def test_warpped_model_script_detection(self):
class WrappedDETR(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, inputs: List[Tensor]):
sample = nested_tensor_from_tensor_list(inputs)
return self.model(sample)
model = detr_resnet50(pretrained=False)
wrapped_model = WrappedDETR(model)
wrapped_model.eval()
scripted_model = torch.jit.script(wrapped_model)
x = [torch.rand(3, 200, 200), torch.rand(3, 200, 250)]
out = wrapped_model(x)
out_script = scripted_model(x)
self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"]))
self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"]))
@unittest.skipIf(onnxruntime is None, 'ONNX Runtime unavailable')
class ONNXExporterTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
torch.manual_seed(123)
def run_model(self, model, inputs_list, tolerate_small_mismatch=False, do_constant_folding=True, dynamic_axes=None,
output_names=None, input_names=None):
model.eval()
onnx_io = io.BytesIO()
# export to onnx with the first input
torch.onnx.export(model, inputs_list[0], onnx_io,
do_constant_folding=do_constant_folding, opset_version=12,
dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names)
# validate the exported model with onnx runtime
for test_inputs in inputs_list:
with torch.no_grad():
if isinstance(test_inputs, torch.Tensor) or isinstance(test_inputs, list):
test_inputs = (nested_tensor_from_tensor_list(test_inputs),)
test_ouputs = model(*test_inputs)
if isinstance(test_ouputs, torch.Tensor):
test_ouputs = (test_ouputs,)
self.ort_validate(onnx_io, test_inputs, test_ouputs, tolerate_small_mismatch)
def ort_validate(self, onnx_io, inputs, outputs, tolerate_small_mismatch=False):
inputs, _ = torch.jit._flatten(inputs)
outputs, _ = torch.jit._flatten(outputs)
def to_numpy(tensor):
if tensor.requires_grad:
return tensor.detach().cpu().numpy()
else:
return tensor.cpu().numpy()
inputs = list(map(to_numpy, inputs))
outputs = list(map(to_numpy, outputs))
ort_session = onnxruntime.InferenceSession(onnx_io.getvalue())
# compute onnxruntime output prediction
ort_inputs = dict((ort_session.get_inputs()[i].name, inpt) for i, inpt in enumerate(inputs))
ort_outs = ort_session.run(None, ort_inputs)
for i in range(0, len(outputs)):
try:
torch.testing.assert_allclose(outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05)
except AssertionError as error:
if tolerate_small_mismatch:
self.assertIn("(0.00%)", str(error), str(error))
else:
raise
def test_model_onnx_detection(self):
model = detr_resnet50(pretrained=False).eval()
dummy_image = torch.ones(1, 3, 800, 800) * 0.3
model(dummy_image)
# Test exported model on images of different size, or dummy input
self.run_model(
model,
[(torch.rand(1, 3, 750, 800),)],
input_names=["inputs"],
output_names=["pred_logits", "pred_boxes"],
tolerate_small_mismatch=True,
)
@unittest.skip("CI doesn't have enough memory")
def test_model_onnx_detection_panoptic(self):
model = detr_resnet50_panoptic(pretrained=False).eval()
dummy_image = torch.ones(1, 3, 800, 800) * 0.3
model(dummy_image)
# Test exported model on images of different size, or dummy input
self.run_model(
model,
[(torch.rand(1, 3, 750, 800),)],
input_names=["inputs"],
output_names=["pred_logits", "pred_boxes", "pred_masks"],
tolerate_small_mismatch=True,
)
if __name__ == '__main__':
unittest.main()