From 10a32f333446cda9712a2ef01ba1ce7dcce374b3 Mon Sep 17 00:00:00 2001
From: Darinka Zobenica
+ Sada znamo da maske imaju ogroman efekat na usporavanje širenja bolesti COVID-19.
+ Ali ipak su neki ljudi protiv nošenja maski jer to vide kao lični izbor, a ne pitanje javnog zdravlja.
+
+ Ovakav stav zanemaruje širu sliku jer maske štite nosioca i ljude oko njega.
+ Ovakva dvosmerna zaštita znači da je široko rasprostranjeno nošenje maski moćan način za gašenje epidemije.
+
+ Ako odradimo računicu, videćemo da ako 60% ljudi nosi maske koje su 60% efektivne, širenje bolesti može pasti za do 60% - otprilike potreban procenat za zaustavljanje širenja koronavirusa.
+
+ But first, let’s get a ballpark sense for some numbers.
+ When a person exhales, they spray out saliva particles of various tiny sizes.
+ If they're contagious, then this 'mouth spray' is loaded with viral particles.
+ This virus-laden saliva spray is the main way that COVID-19 spreads.
+ When a contagious person breathes, they spray out roughly a thousand viral particles every minute. When they talk, they spray out roughly ten thousand viral particles every minute. When they cough, they spray out roughly a hundred thousand viral particles. And when they sneeze, they spray out roughly a million viral particles.
+ The more viral particles travel from person to person, the higher the chance of infection.
+ (And if infected, people exposed to more viral particles generally experience more severe symptoms.)
+ Masks reduce the mouth spray traveling between people — by blocking or by redirecting the spray — thereby reducing the chance of infection.
+ It's worth keeping in mind that no mask is perfect.
+ Even the N95 masks recommended for health workers are only guaranteed to block 95% of the hardest-to-block particles (and that’s only if you wear them correctly).
+
+ Masks don't guarantee safety, they reduce risk.
+ This is a lot like how an umbrella doesn't guarantee that you'll stay dry, but it does reduce your chance of getting wet.
+ Like umbrellas, masks only work if you use them correctly.
+ But unlike umbrellas, which only protect people who use them, masks also protect people around the wearer.
+
+
+ Let’s imagine that a contagious person wears a 50 percent effective mask.
+ By '50 percent effective', I mean that wearing this mask cuts in half the chance that they'll infect a nearby susceptible person.
+ But what if the susceptible person wears the mask instead?
+ In general, the effectiveness of a mask depends on whether you’re inhaling or exhaling through it.
+ For now, let’s keep things simple and assume that this mask is equally effective in either direction.
+ In that case, the chance of infection in this route also drops by 50%. What if both the contagious and the susceptible person wear a mask?
+ Well, the first mask cuts the chance of infection in half, and the second mask once again cuts the chance of infection in half.
+ So when both people wear masks, the chance of infection is half of half, i.e. 25% (as compared to when neither wear masks).
+ That's a 75% drop in the chance of infection.
+
+ If you think about it, it's surprising that a 50% effective mask can reduce the risk of infection by 75%.
+ This is possible because when both people wear masks, the chance of infection is halved twice.
+ This double protection makes masks much more effective than you might intuitively expect.
+ So here are all four routes through which an airborne disease can spread from person to person.
+ So far, we've only looked at disease transmission between two people.
+ How do we go from here to understanding disease transmission in the entire population?
+ Well, in the extreme limits, this is straightforward.
+ For example, if nobody wore a mask, then whenever two people meet, the chance that neither wear a mask is 100%.
+
+ So we'd only have to consider the first route of disease transmission, and the population would see no drop in disease transmission.
+
+ At the other extreme, if everyone wore a mask, then whenever two people meet, the chance that they both wear masks is 100%.
+
+ In this case, we’d only have to consider the last route of disease transmission.
+ Assuming masks are 50% effective in each direction, the population would see a 75% drop in disease transmission.
+
+ So when everyone wears a mask (or when no one wears one), it's straightforward to calculate the drop in disease transmission in the population, because there's only one route involved.
+
+ But in reality, some people wear masks and others don’t.
+ Which means the virus can spread through a mix of all four routes.
+ How likely each route is will depend on how many people wear masks.
+
+ For example, if 50% of people wear masks, then whenever two people meet at random, the chance that both people wear masks is 50% ⨉ 50%, i.e. 25%.
+ Similarly, you can work out the chance of the other three disease transmission routes.
+
+ When exactly half the population wears masks, it turns out that each route is equally likely.
+ (Can you convince yourself why this has to be true?)
+
+ We can now calculate the average drop in disease transmission in the population.
+ Since we’ve set things up so that each route is equally likely, this is just the average of 0%, 50%, 50% and 75%, which is 43.75%.
+
+ People who don’t wear masks get infected via the first two routes, which are equally likely when half the population wears a mask.
+ So the drop in disease transmission to non-mask wearers is the average of 0% and 50%, which is 25%.
+
+ Meanwhile, people who do wear masks get infected via the last two routes.
+ So the drop in disease transmission to mask-wearers is the average of 50% and 75%, which is 62.5%.
+
+ So even non-mask wearers get a modest benefit, because the air they inhale is often mediated by other people’s masks.
+ But mask-wearers benefit much more, thanks to the added protection their masks provide.
+ And since the population consists of both mask-wearers and non-mask wearers, the average benefit lies in between the benefit to these two groups. So in this simplified example (where 50% of people wear 50% effective masks) we’ve worked out how to go from the benefit that masks offer an individual to the average benefit that masks offer a population.
+ Let's apply this logic to any values of mask usage and mask effectiveness.
+ Vary the sliders below to see how masks moderate the spread of disease.
+
+ What happens to disease transmission if 60% of people wear a 60% effective mask?
+ Or 90% wear a 50% effective mask?
+ Or 50% wear a 90% effective mask?
+ This interactive lets you answer these questions.
+ The conclusion: When more people wear masks, everyone is safer.
+ By filtering inhaled air, masks provide first-hand protection to those who wear them.
+ And by filtering or redirecting exhaled air, masks provide second-hand protection to everyone — including people who don't wear masks.
+
+ In fact, masks are even more effective than these numbers suggest.
+
+ You put out a fire by starving it of oxygen.
+ But you don't need to get rid of all the oxygen, you only need to reduce it enough to stop the fire from growing.
+ It's the same with an epidemic — you don't need to cut disease transmission by 100%.
+ If you lower it just enough to stop the disease from spreading, you can extinguish the epidemic.
+
+ You've probably heard of the epidemiology term R0, pronounced R-nought or R-zero.
+ This is the number of people that a contagious person can infect in a population with no prior immunity to the disease.
+ When R0 exceeds 1, the disease will grow exponentially until either enough people get vaccinated, or enough people get infected and develop immunity to the disease.
+ But, as Ed Yong writes in the Atlantic, "R0 is not destiny".
+ R0 is a product of two numbers: the average number of people that a contagious person encounters, and the chance of infection upon contact.
+
+ Social distancing, quarantines, and lockdowns decrease the first number.
+ And masks decrease the second number.
+ The goal of all these public health strategies is to bring the epidemic under control by pulling R0 beneath 1.
+
+ With this in mind, let's re-express the impact of masks in terms of R0.
+ The graph below shows how R0 varies as mask-wearing increases.
+
+ You can use the first slider to vary R0, which for COVID-19 is between 2 and 3 (that's in the absence of other public health measures such as social distancing, which further reduce R0.)
+ By varying the effectiveness of the masks, you can see how masks can help bring an epidemic under control.
+
+ To stop the spread of COVID-19, we need to keep R0 beneath 1.
+ When this happens, on average, a contagious person will infect less than one person, and the epidemic will grind to a halt.
+
+ So how many people need to wear a 50% effective mask to stop the spread of COVID-19?
+ What if masks were 75% effective?
+ Or 90% effective?
+ This interactive lets you predict answers to these questions.
+
+ We can take our understanding one step further by expressing the power of masks in more human terms.
+ Masks save lives by reducing the chance of infection which, in turn, shrinks the extent of the epidemic.
+
+ As more people wear masks, R0 decreases.
+ And as R0 decreases, so does the number of infected people.
+ So we can get a clearer picture if instead of visualizing R0, we visualize the infected fraction of the population.
+
+ By using a widely-adopted mathematical model of epidemics known as an SIR model, we can relate R0 to the fraction of people who will eventually be infected.
+ (To learn more about SIR models, I recommend watching this excellent video.)
+ Although this model is a considerable simplification (e.g. it assumes random mixing between people and no lockdowns), it offers us a ballpark estimate of the human cost of not wearing masks.
+ This hill-shaped curve shows us how masks influence the size of an epidemic.
+ As more people wear masks, the number of infections plummet.
+
+ When very few people wear masks, we're at the top of the hill, and most people will eventually get infected.
+ But every step to the right moves us further down.
+ So even partially effective masks, when partially adopted, can help reduce the spread of COVID-19.
+
+ To completely stop the spread, we need to get to the bottom of this hill.
+ But there's a silver lining: as more people wear masks, the hill grows steeper.
+ Which means masks provide greater returns to society as more people wear them.
+
+ If enough people wear masks, we can reach the bottom of the hill, where the chance of infection is zero.
+ This is how masks can end an epidemic.
+ But masks can only end an epidemic if enough people wear them.
+
+ You might wonder how many people have to wear masks to end an epidemic.
+ Well, that depends on how effective the masks are.
+
+ By playing with interactive above, you'll see that if masks were 50% effective, we'd need roughly three-quarters of the population to wear them to stop the spread of COVID-19.
+ But if masks were 75% effective, we'd only need half the population to wear them to stop the spread.
+
+ The more effective the mask, the faster we can descend the hill.
+ That's why it's important to wear a mask that tightly seals your mouth and nose, and is made from an effective filtering material.
+
+ We all want to get to the bottom of the hill and stop the spread of COVID-19.
+ But you can't get there by yourself.
+ Each person can only take a tiny step downwards.
+ However, when many people take this small step, together, we take a giant leap down the hill. Together, we can get to the bottom of the hill. Together, we can hit the brakes on COVID-19.Say it, Don't Spray It
+
+ Why Masks Protect Us Twice
+
+ From People to The Population
+
+ Maskology
+
+ How To Stop An Epidemic
+
+
⨉ chance of infection upon contactThe Human Cost
+
+ The Multiplicative Power of Masks
Interaktivni esej o tome kako nam maske mogu pomoći da okončamo COVID-19 pandemiju
- by Aatish Bhatia ⨉ Minute Physics
+ priredili Aatish Bhatia ⨉ Minute Physics
by Aatish Bhatia ⨉ spray out saliva particles of various tiny sizes.
- If they're contagious, then this 'mouth spray' is loaded with viral particles.
- This virus-laden saliva spray is the main way that COVID-19 spreads.
+ Hajde za početak da steknemo osećaj za opseg kome neke brojke pripadaju.
+ Kada osoba izdahne, izbaci čestice pljuvačke različitih sitnih veličina.
+ Ako su zarazni, ovaj "sprej iz usta" je pun virusnih čestica.
+ Ovakav sprej pljuvačke pun virusa je glavni način na koji se COVID-19 širi.
When a contagious person breathes, they spray out roughly a thousand viral particles every minute.
+Kada zarazna osoba diše, izbaci otprilike hiljadu virusnih čestica u minuti.
-When they talk, they spray out roughly ten thousand viral particles every minute.
+Kada priča, izbaci otprilike deset hiljada virusnih čestica u minuti.
-When they cough, they spray out roughly a hundred thousand viral particles.
+Kada kašlje, izbaci otprilike sto hiljada virusnih čestica.
-And when they sneeze, they spray out roughly a million viral particles.
+A kada kine, izbaci otprilike milion virusnih čestica.
- The more viral particles travel from person to person, the higher the chance of infection. - (And if infected, people exposed to more viral particles generally experience more severe symptoms.) + Što više virusnih čestica pređe od osobe do osobe, to su veće šanse za infekciju. + (I ako se inficiraju, ljudi koji su izloženi većem broju virusnih čestica uobičajeno imaju znatno gore simptome.)
-Masks reduce the mouth spray traveling between people — by blocking or by redirecting the spray — thereby reducing the chance of infection.
+Maske smanjuju količinu spreja iz usta koji putuje između ljudi tako što ga blokiraju ili skreću, te tako smanjuju šansu infekcije.
- It's worth keeping in mind that no mask is perfect. - Even the N95 masks recommended for health workers are only guaranteed to block 95% of the hardest-to-block particles (and that’s only if you wear them correctly). + Bitno je napomenuti da nijedna maska nije savršena. + Čak i N95 maske koje su preporučene za zdravstvene radnike garantuju da će blokirati samo 95% čestica koje su teške za blokiranje (i to samo pod uslovom da se nose pravilno).
- Masks don't guarantee safety, they reduce risk. - This is a lot like how an umbrella doesn't guarantee that you'll stay dry, but it does reduce your chance of getting wet. - Like umbrellas, masks only work if you use them correctly. - But unlike umbrellas, which only protect people who use them, masks also protect people around the wearer. + Maske ne garantuju bezbednost, već smanjuju rizik. + Može se reći da je ovo slično načinu na koji kišobran ne garantuje da će osoba ostati suva, ali smanjuje šanse da će se nakvasiti. + Kao i kišobrani, maske rade samo ako se koriste pravilno. + Analogija tu staje jer nasuprot kišobranima, koji štite samo one koji ih koriste, maske štite i ljude u blizini nosioca.
-
- Let’s imagine that a contagious person wears a 50 percent effective mask. - By '50 percent effective', I mean that wearing this mask cuts in half the chance that they'll infect a nearby susceptible person. + Zamislimo da zarazna osoba nosi 50% efektivnu masku. + Pod time da je maska "50% efektivna" želim da kažem da ova maska upola smanjuje šansu da će nosilac zaraziti podložnu osobu u blizini.
But what if the susceptible person wears the mask instead?
+A šta ako je podložna osoba ta koja nosi masku?
- In general, the effectiveness of a mask depends on whether you’re inhaling or exhaling through it. - For now, let’s keep things simple and assume that this mask is equally effective in either direction. + Uopšteno, efektivnost maske zavisi od toga da li udišemo ili izdišemo kroz nju. + Za sad, hajde da pojednostavimo stvari tako što ćemo pretpostaviti da je ova maska podjednako efikasna u oba smera.
-In that case, the chance of infection in this route also drops by 50%.
+U tom slučaju, šansa za infekciju ovim putem takođe opada za 50%.
What if both the contagious and the susceptible person wear a mask?
+Šta ako i zarazna i podložna osoba nose masku?
- Well, the first mask cuts the chance of infection in half, and the second mask once again cuts the chance of infection in half. - So when both people wear masks, the chance of infection is half of half, i.e. 25% (as compared to when neither wear masks). - That's a 75% drop in the chance of infection. + Prva maska upola smanjuje verovatnoću druge infekcije, a druga maska takođe upola smanjuje verovatnoću infekcije. + Dakle, kada obe osobe nose maske, verovatnoća infekcije je pola od pola, tj. 25% (u poređenju sa situacijom kad niko ne nosi masku). + To znači da je verovatnoća da se podložna osoba zarazi za 75% manja nego bez maski.
- If you think about it, it's surprising that a 50% effective mask can reduce the risk of infection by 75%. - This is possible because when both people wear masks, the chance of infection is halved twice. - This double protection makes masks much more effective than you might intuitively expect. + Naizgled je iznenađujuće što maske sa 50% efektivnosti mogu da smanje rizik od infekcije za 75%. + Ovo je moguće jer kad obe osobe nose maske, verovatnoća infekcije se dvaput prepolovljuje. + Ova dvostruka zaštita čini da maske budu mnogo efektivnije nego što biste možda intuitivno očekivali.
-So here are all four routes through which an airborne disease can spread from person to person.
+Slede sva četiri nabrojana načina na koji se vazdušno prenosiva zaraza može preneti s osobe na osobu.
- So far, we've only looked at disease transmission between two people. - How do we go from here to understanding disease transmission in the entire population? + Za sada smo samo razgovarali o prenosu bolesti između dve osobe. + Kako da odatle pređemo na razumevanje prenosa bolesti u celokupnoj populaciji?
-Well, in the extreme limits, this is straightforward.
+Najlakše je doći do zaključka za ekstreme.
- For example, if nobody wore a mask, then whenever two people meet, the chance that neither wear a mask is 100%. + Na primer, ako niko ne bi nosio masku, onda bi verovatnoća da kada god se dve osobe sretnu nikoja ne nosi masku bila 100%.
- So we'd only have to consider the first route of disease transmission, and the population would see no drop in disease transmission. + U tom slučaju, morali bismo da razmatramo samo prvi način prenosa bolesti, tako da u populaciji ne bi bilo pada u prenosu bolesti.
- At the other extreme, if everyone wore a mask, then whenever two people meet, the chance that they both wear masks is 100%. + U drugom ekstremu imamo situaciju kada bi svi ljudi nosili maske. Tada bi kad god se dve osobe sretnu, verovatnoća da obe nose masku bila 100%.
- In this case, we’d only have to consider the last route of disease transmission. - Assuming masks are 50% effective in each direction, the population would see a 75% drop in disease transmission. + U ovom slučaju, trebalo bi samo razmotriti četvrti način prenosa bolesti. + Pod pretpostavkom da je maska 50% efektivna u svakom smeru, u populaciji bi bilo 75% manje prenosa bolesti.
- So when everyone wears a mask (or when no one wears one), it's straightforward to calculate the drop in disease transmission in the population, because there's only one route involved. + Dakle, kada svako nosi masku (ili kada je niko ne nosi), lako je izračunati za koliko će prenos bolesti opasti u populaciji, jer je u račun uključen samo jedan način prenosa.
- But in reality, some people wear masks and others don’t. - Which means the virus can spread through a mix of all four routes. - How likely each route is will depend on how many people wear masks. + U realnosti, pak, neki ljudi nose maske, a neki ne. + To znači da se virus može prenositi kroz mešavinu sva četiri načina. + Kolika je verovatnoća kog načina prenosa zavisi od toga koliko ljudi nosi maske.
- For example, if 50% of people wear masks, then whenever two people meet at random, the chance that both people wear masks is 50% ⨉ 50%, i.e. 25%. - Similarly, you can work out the chance of the other three disease transmission routes. + Na primer, ako 50% ljudi nosi maske, kad god se dve nasumične osobe sretnu, verovatnoća da obe nose masku je 50% ⨉ 50%, tj. 25%. + Na sličan način se može izračunati verovatnoća za druge puteve prenosa.
- When exactly half the population wears masks, it turns out that each route is equally likely. - (Can you convince yourself why this has to be true?) + Kada tačno pola populacije nosi maske, ispostavlja se da je svaki način prenosa jednako verovatan. + (Možete li dokazati sebi zašto ovo mora biti tačno?)
- We can now calculate the average drop in disease transmission in the population. - Since we’ve set things up so that each route is equally likely, this is just the average of 0%, 50%, 50% and 75%, which is 43.75%. + Sada možemo izračunati koliko prosečno opadne prenos bolesti u populaciji. + Pošto smo podesili parametre tako da je svaki način prenosa bolesti jednako verovatan, dovoljno je da izračunamo prosek vrednosti 0%, 50%, 50% i 75%, što je 43.75%.
- People who don’t wear masks get infected via the first two routes, which are equally likely when half the population wears a mask. - So the drop in disease transmission to non-mask wearers is the average of 0% and 50%, which is 25%. + Ljudi koji ne nose maske se inficiraju na prva dva načina, koja su podjednako verovatna kada pola populacije nosi maske. + Pad u prenosu bolesti onima koji ne nose maske je prosek od 0% i 50%, što je 25%.
- Meanwhile, people who do wear masks get infected via the last two routes. - So the drop in disease transmission to mask-wearers is the average of 50% and 75%, which is 62.5%. + Istovremeno, ljudi kojinose maske se inficiraju na druga dva načina. + Pad u prenosu bolesti ljudima koji nose maske je prosek od 50% i 75%, što je 62.5%.
- So even non-mask wearers get a modest benefit, because the air they inhale is often mediated by other people’s masks. - But mask-wearers benefit much more, thanks to the added protection their masks provide. + Dakle, čak i oni koji ne nose maske imaju solidnu korist od ovakve situacije jer je vazduh koji udišu često manje zarazan zahvaljujući tuđim maskama. + Ali nosioci maski imaju mnogo veću korist zahvaljujući dodatnoj zaštiti koju dobijaju od sopstvene maske.
-And since the population consists of both mask-wearers and non-mask wearers, the average benefit lies in between the benefit to these two groups.
+Pošto se populacija sastoji od ljudi koji nose i ne nose maske, prosečna korist je negde između ove dve vrednosti.
-So in this simplified example (where 50% of people wear 50% effective masks) we’ve worked out how to go from the benefit that masks offer an individual to the average benefit that masks offer a population.
+U našem pojednostavljenom primeru (gde 50% ljudi nosi 50% efektivne maske) shvatili smo kako na osnovu koristi koju od maske imaju pojedinci da dobijemo prosečnu korist koju maske donose populaciji.
U našem pojednostavljenom primeru (gde 50% ljudi nosi 50% efektivne maske) shvatili smo kako na osnovu koristi koju od maske imaju pojedinci da dobijemo prosečnu korist koju maske donose populaciji.
-- Let's apply this logic to any values of mask usage and mask effectiveness. + Primenimo ovu logiku na bilo koju vrednost procenta populacije koji koristi maske i efektivnosti maske. Vary the sliders below to see how masks moderate the spread of disease.
@@ -359,24 +359,24 @@- What happens to disease transmission if 60% of people wear a 60% effective mask? - Or 90% wear a 50% effective mask? - Or 50% wear a 90% effective mask? - This interactive lets you answer these questions. + Šta se dešava sa prenosom bolesti ako 60% ljudi nosi 60% efektivne maske? + Ili 90% nosi 50% efektivne maske? + Ili 50% nosi 90% efektivne maske? + Ovaj interaktivna tabela ti omogućava da dobiješ odgovor na ova pitanja.
-The conclusion: When more people wear masks, everyone is safer.
+Zaključak: Kada više ljudi nosi maske, svi su bezbedniji.
- By filtering inhaled air, masks provide first-hand protection to those who wear them. - And by filtering or redirecting exhaled air, masks provide second-hand protection to everyone — including people who don't wear masks. + Filtriranjem vazduha koji udišemo, maske nude direktnu zaštitu onima koji ih nose. + Filtriranjem ili skretanjem vazduha koji izdišemo, maske nude indirektnu zaštitu svima — uključujući i ljude koji ne nose maske.
- In fact, masks are even more effective than these numbers suggest. + Zapravo, maske su još efektivnije nego što ovi brojevi sugerišu.
- You put out a fire by starving it of oxygen. - But you don't need to get rid of all the oxygen, you only need to reduce it enough to stop the fire from growing. - It's the same with an epidemic — you don't need to cut disease transmission by 100%. - If you lower it just enough to stop the disease from spreading, you can extinguish the epidemic. + Možeš da ugasiš požar uskraćujući vatri kiseonik. + Ali ne moraš se otarasiti svog kiseonika, dovoljno je smanjiti dotok istog dovoljno da se spreči rast vatre. + Isto je i sa epidemijom — ne mora se smanjiti prenos bolesti za 100%. + Ako ga smanjimo dovoljno da zaustavimo širenje virusa, možemo ugasiti epidemiju.
- You've probably heard of the epidemiology term R0, pronounced R-nought or R-zero. - This is the number of people that a contagious person can infect in a population with no prior immunity to the disease. + Verovatno ste čuli za epidemiološki termin R0. + To je broj ljudi koje zarazna osoba može da inficira u populaciji koja nema nikakav imunitet na tu bolest od ranije.
-When R0 exceeds 1, the disease will grow exponentially until either enough people get vaccinated, or enough people get infected and develop immunity to the disease.
+Kada je R0 preko 1, bolest će se širiti eksponencijalno dok ili ne vakcinišemo dovoljno ljudi ili se dovoljno ljudi ne razboli i razvije tim putem imunitet na virus.
- But, as Ed Yong writes in the Atlantic, "R0 is not destiny". - R0 is a product of two numbers: the average number of people that a contagious person encounters, and the chance of infection upon contact. + Ali, kao što Ed Jong (eng. Ed Yong) piše za "Atlantic", "R0 nije sudbina". + R0 je proizvod dva broja: prosečnog broja osoba koje zarazna osoba sretne i verovatnoće da se desi infekcija prilikom tog kontakta.
- Social distancing, quarantines, and lockdowns decrease the first number. - And masks decrease the second number. - The goal of all these public health strategies is to bring the epidemic under control by pulling R0 beneath 1. + Fizičko distanciranje, karantiniranje, i mere zabrane kretanja mogu da smanje prvi broj. + Maske smanjuju drugi broj. + Cilj svih ovih strategija javnog zdravlja je da se epidemija dovede pod kontrolu tako što smanjimo R0 ispod 1.
- With this in mind, let's re-express the impact of masks in terms of R0. - The graph below shows how R0 varies as mask-wearing increases. + Sa ovim na umu, izvedimo uticaj maski na R0. + Grafik ispod prikazuje kako R0 varira u odnosu na porast procenta populacije koji nosi maske.
- You can use the first slider to vary R0, which for COVID-19 is between 2 and 3 (that's in the absence of other public health measures such as social distancing, which further reduce R0.) - By varying the effectiveness of the masks, you can see how masks can help bring an epidemic under control. + Prvi slajder možete koristiti za menjanje R0, koji je za COVID-19 između 2 i 3 (u odsustvu bilo kakvih mera javnog zdravlja kao što su fizičko distanciranje, koje mogu smanjiti R0). + Menjanjem efektivnosti masaka, možete videti kako maske mogu pomoći u dovođenje epidemije pod kontrolu.
- To stop the spread of COVID-19, we need to keep R0 beneath 1. - When this happens, on average, a contagious person will infect less than one person, and the epidemic will grind to a halt. + Da bismo zaustavili širenje COVID-19, moramo održati R0 ispod 1. + Kada se ovo desi, u proseku, zarazna osoba će inficirati manje od jedne osobe, što će zaustaviti epidemiju.
- So how many people need to wear a 50% effective mask to stop the spread of COVID-19? - What if masks were 75% effective? - Or 90% effective? - This interactive lets you predict answers to these questions. + Dakle, koliko ljudi mora da nosi 50% efektivnu masku da bismo zaustavili širenje COVID-19? + Šta ako su maske 75% efektivne? + Ili 90% efektivne? + Ovaj interaktivni grafik može ti dati odgovore na ova pitanja.
From 0ae629c168703ce4a549c8042b4d8fab72c2f780 Mon Sep 17 00:00:00 2001 From: Darinka ZobenicaAlthough this model is a considerable simplification (e.g. it assumes random mixing between people and no lockdowns), it offers us a ballpark estimate of the human cost of not wearing masks.
+Iako je ovaj model prilično pojednostavljenje (npr. pretpostavlja da ljudi nasumično biraju s kim će interagovati i da neće biti mera zabrane kretanja), nudi nam aproksimaciju štete po ljude ako ne nosimo maske masovno.
- This hill-shaped curve shows us how masks influence the size of an epidemic. - As more people wear masks, the number of infections plummet. + Brdolika kriva nam pokazuje kako maske utiču na veličinu epidemije. + Što više ljudi nosi maske, to broj infekcija više pada.
- When very few people wear masks, we're at the top of the hill, and most people will eventually get infected. - But every step to the right moves us further down. - So even partially effective masks, when partially adopted, can help reduce the spread of COVID-19. + Kada jako malo ljudi nosi maske, na vrhu smo krive i većina ljudi će se kad-tad inficirati. + Ali svaki korak nadesno nas spušta još više na dole. + Dakle, čak i delimično efektivne maske koje samo deo populacije nosi mogu pomoći da se smanji širenje koronavirusa.
- To completely stop the spread, we need to get to the bottom of this hill. - But there's a silver lining: as more people wear masks, the hill grows steeper. - Which means masks provide greater returns to society as more people wear them. + Da bismo sasvim zaustavili širenje, moramo doći na dno ovog brda. + U svakom zlu ima i dobra: što više ljudi nosi maske, brdo je strmije. + To znači da make doprinose sve veću dobit društvu što ih više ljudi nosi.
- If enough people wear masks, we can reach the bottom of the hill, where the chance of infection is zero. - This is how masks can end an epidemic. - But masks can only end an epidemic if enough people wear them. + Ako dovoljno ljudi nosi maske, možemo doći do dna brda, gde je šansa infekcije skoro 0. + Ovako maske mogu okončati epidemiju. + Ali maske mogu okončati epidemiju samo ako ih dovoljno ljudi nosi.
- You might wonder how many people have to wear masks to end an epidemic. - Well, that depends on how effective the masks are. + Možda se pitate koliko ljudi moraju da nose maske da bi se završila epidemija. + To zavisi od toga koliko su maske efektivne.
- By playing with interactive above, you'll see that if masks were 50% effective, we'd need roughly three-quarters of the population to wear them to stop the spread of COVID-19. - But if masks were 75% effective, we'd only need half the population to wear them to stop the spread. + Ako se igrate sa grafikom iznad, videćete da ako bi maske bile 50% efektivne, trebalo bi da ih otprilike tri četvrtine populacije nosi da se zaustavi širenje koronavirusa. + Ali ako su maske 75% efektivne, bilo bi dovoljno da ih pola populacije nosi da bi se zaustavilo širenje.
- The more effective the mask, the faster we can descend the hill. - That's why it's important to wear a mask that tightly seals your mouth and nose, and is made from an effective filtering material. + Što je efektivnija maska, to brže možemo da se spustimo niz brdo. + Zato je bitno nositi masku koja prijanja uz lice i pokriva usta i nos, i koja je pravljena od materijala koji je dobar za filtraciju.
- We all want to get to the bottom of the hill and stop the spread of COVID-19. - But you can't get there by yourself. - Each person can only take a tiny step downwards. + Svi želimo da dođemo na dno brda i zaustavimo širenje koronavirusa. + Ali ne možeš dostići taj cilj sam. + Svaka osoba može napraviti malecni korak nadole.
-However, when many people take this small step, together, we take a giant leap down the hill.
+Ipak, kada mnogo ljudi napravi takav malecni korak, zajedno, možemo napraviti ogroman skok nadole.
-Together, we can get to the bottom of the hill.
+Zajedno možemo doći do dna brda.
-Together, we can hit the brakes on COVID-19.
+Zajedno možemo zaustaviti COVID-19.
- Prvi slajder možete koristiti za menjanje R0, koji je za COVID-19 između 2 i 3 (u odsustvu bilo kakvih mera javnog zdravlja kao što su fizičko distanciranje, koje mogu smanjiti R0). + Prvi klizač možete koristiti za menjanje R0, koji je za COVID-19 između 2 i 3 (u odsustvu bilo kakvih mera javnog zdravlja kao što su fizičko distanciranje, koje mogu smanjiti R0). Menjanjem efektivnosti masaka, možete videti kako maske mogu pomoći u dovođenje epidemije pod kontrolu.
@@ -558,7 +557,7 @@Što više ljudi nosi maske, to se više R0 smanjuje. Što se R0 više smanjuje, to se više smanjuje ukupan broj ljudi koji će biti inficirani. - Možemo dobiti jasnu tako što umesto da vizualizujemo R0, mi vizualizujemo inficirani deo populacije. + Možemo dobiti jasnu sliku tako što umesto da vizualizujemo R0, mi vizualizujemo inficirani deo populacije.
@@ -617,7 +616,7 @@
Brdolika kriva nam pokazuje kako maske utiču na veličinu epidemije. - Što više ljudi nosi maske, to broj infekcija više pada. + Što više ljudi nosi maske, to broj infekcija više opada.