-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmccabethiele.py
147 lines (117 loc) · 5.25 KB
/
mccabethiele.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import streamlit as st
import numpy as np
from matplotlib import pyplot, style
from scipy.optimize import fsolve
np.seterr(divide='ignore', invalid='ignore')
def main():
st.title('McCabe-Thiele Plot Generator')
st.write(
'The McCabe-Thiele method is used to determine the number of equilibrium stages for a distillation column.')
style.use('classic')
if st.checkbox('General Conditions'):
F = st.number_input('Feed Flow Rate', value=100.000)
zf = st.number_input('Feed concentration', value=0.500)
xd = st.number_input('Distillate concentration', value=0.900)
xb = st.number_input('Bottoms concentration', value=0.100)
R = st.number_input('Reflux Ratio', value=3.000)
q = st.number_input('Thermal Quality', value=1.000)
a = st.number_input('Relative Volatility', value=2.500)
def dbf(f):
return [xd * f[0] + xb * f[1] - zf * F, f[0] + f[1] - F]
[D, B] = fsolve(dbf, [30, 20])
st.write('Distillate: ', round(D, 4), 'Bottoms: ', round(B, 4))
Lr = R * D
Ls = Lr + q * F
Vr = Lr + D
Vs = Vr + (q - 1) * F
def x_eq(x):
# x on the equlibrium curve
return x / (a * (1 - x) + x)
def rec_opline(x):
# rectifying section operating line: y = (Lr/Vr)*x + (D*xd/Vr)
return (Lr / Vr) * x + (D * xd / Vr)
def strip_opline(x):
# stripping section operating line: y = (Ls/Vs)*x - (B*xb/Vs)
return (Ls / Vs) * x - (B * xb / Vs)
# intersection point of rectifying opline and stripping opline
def inter_pt(p):
return [(Lr / Vr) * p[0] + (D * xd / Vr) - p[1], (Ls / Vs) * p[0] - (B * xb / Vs) - p[1]]
[xq, yq] = fsolve(inter_pt, [0.5, 0.5])
def min_reflux(x):
return [q * x[0] - zf - x[1] * (q - 1), x[1] - a * x[0] / (1 + x[0] * (a - 1))]
[xrmin, yrmin] = fsolve(min_reflux, [0.5, 0.6])
slope = (xd - yrmin) / (xd - xrmin)
Rmin = slope / (1 - slope)
st.write("The minimum reflux ratio is ", round(Rmin, 4))
# y-x equilibrium curve
x = np.linspace(0, 1, 10000)
y = a * x / (1 + x * (a - 1))
gen = pyplot.figure(figsize=(7, 7), facecolor='white')
pyplot.suptitle("McCabe-Thiele Plot")
pyplot.xlabel('x')
pyplot.ylabel('y')
pyplot.plot(x, y, color='black', linewidth=1)
pyplot.plot(x, x, color='black', linewidth=1)
pyplot.xlim(0, 1)
pyplot.ylim(0, 1)
pyplot.grid(color='grey', linewidth=0.3)
# rectifying section operating line
x, y = [xq, xd], [yq, xd]
pyplot.plot(x, y, label='rectifying section', color='b', linewidth=1)
# stripping section operating line
x, y = [xq, xb], [yq, xb]
pyplot.plot(x, y, label='stripping section', color='g', linewidth=1)
pyplot.legend(loc='best')
x0, y0 = xd, xd
for i in range(1, 100):
x1, y1 = x_eq(y0), y0
pyplot.plot([x0, x1], [y0, y1], color='r', linewidth=1)
if x1 > xq:
x2, y2 = x1, rec_opline(x1)
if x1 < xq:
x2, y2 = x1, strip_opline(x1)
if (x2, y2) < (xb, xb):
pyplot.plot([x1, x2], [y1, x2], color='r', linewidth=1)
else:
pyplot.plot([x1, x2], [y1, y2], color='r', linewidth=1)
x0, y0 = x2, y2
if y2 < x2:
break
pyplot.plot([xd, xd], [0, xd], linestyle='--', linewidth=1)
pyplot.plot([xb, xb], [0, xb], linestyle='--', linewidth=1)
pyplot.title("Number of stages = infinity", size=10) if i == 99 \
else pyplot.title("Number of stages = %d" % i, size=10)
st.write(gen)
if st.checkbox('Total Reflux Conditions'):
xd_tr = st.number_input('Top concentration', value=0.900)
xb_tr = st.number_input('Bottom concentration', value=0.100)
a_tr = st.number_input('Relative Volatility (average)', value=2.500)
def x_eq(x):
# x on the equlibrium curve
return x / (a_tr * (1 - x) + x)
# y-x equilibrium curve
x = np.linspace(0, 1, 10000)
y = a_tr * x / (1 + x * (a_tr - 1))
tr = pyplot.figure(figsize=(7, 7), facecolor='white')
pyplot.suptitle("McCabe-Thiele Plot - Total Reflux")
pyplot.xlabel('x')
pyplot.ylabel('y')
pyplot.plot(x, y, color='black', linewidth=1)
pyplot.plot(x, x, color='black', linewidth=1)
pyplot.xlim(0, 1)
pyplot.ylim(0, 1)
pyplot.grid(color='grey', linewidth=0.3)
x0, y0, xb_tr = xd_tr, xd_tr, xb_tr
for i in range(1, 100):
x1, y1 = x_eq(y0), x0
pyplot.plot([x0, x1], [y0, y1], color='r', linewidth=1)
x2, y2 = x1, x1
pyplot.plot([x1, x2], [y1, x2], color='r', linewidth=1)
x0, y0 = x2, y2
if x2 < xb_tr:
break
pyplot.plot([xd_tr, xd_tr], [0, xd_tr], linestyle='--', linewidth=1)
pyplot.plot([xb_tr, xb_tr], [0, xb_tr], linestyle='--', linewidth=1)
pyplot.title("Number of stages = infinity", size=10) if i == 99 \
else pyplot.title("Number of stages = %d" % i, size=10)
st.write(tr)