-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_sample.py
130 lines (103 loc) · 6.46 KB
/
generate_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import argparse
import random
from datetime import datetime
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.utils as vutils
from torch.autograd import Variable
from tqdm import tqdm
from model import PSGANGenerator as Generator
torch.backends.cudnn.benchmark = True
def save_image(imgs, output_dir="log", img_name="output", img_ext=".png"):
vutils.save_image(imgs.data, "{}".format(os.path.join(output_dir, img_name+img_ext)))
def train(args):
def to_var(x, volatile=False, requires_grad=False):
if torch.cuda.is_available() and not args.nogpu:
x = x.cuda(args.gpu_device_num)
return Variable(x, volatile=volatile, requires_grad=requires_grad)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
print("\nsaving at {}\n".format(args.save_dir))
print("initializing...")
# if args.layer_num is 5 and args.base_conv_channel is 64 then
# gen_layer: [Z_dim, 512, 256, 128, 64, 3]
gen_layers = [args.zl_dim+args.zg_dim+args.zp_dim]+[args.base_conv_channel*(2**(args.layer_num-n)) for n in range(2, args.layer_num+1)]+[3]
print("generator channels: ", gen_layers)
if torch.cuda.is_available() and not args.nogpu:
generator = Generator(conv_channels=gen_layers,
kernel_size=args.kernel_size,
local_noise_dim=args.zl_dim,
global_noise_dim=args.zg_dim,
periodic_noise_dim=args.zp_dim,
spatial_size=args.spatial_size,
hidden_noise_dim=args.mlp_hidden_dim).cuda(args.gpu_device_num)
else:
generator = Generator(conv_channels=gen_layers,
kernel_size=args.kernel_size,
local_noise_dim=args.zl_dim,
global_noise_dim=args.zg_dim,
periodic_noise_dim=args.zp_dim,
spatial_size=args.spatial_size,
hidden_noise_dim=args.mlp_hidden_dim)
generator.eval()
print("loading pretrained parameter... ", end="")
generator.load_trained_param(args.trained, print_debug=args.show_parameters)
print("done.")
if args.show_parameters:
for idx, m in enumerate(model.modules()):
print(idx, '->', m)
print(args)
# for sampling
random_noise = to_var(generator.generate_noise(batch_size=args.sample_num,
local_dim=args.zl_dim,
global_dim=args.zg_dim,
periodic_dim=args.zp_dim,
spatial_size=args.spatial_size,
tile=args.tile),
volatile=False)
random_noise_interpolation = to_var(generator.generate_noise_interpolation(batch_size=args.sample_num,
local_dim=args.zl_dim,
global_dim=args.zg_dim,
periodic_dim=args.zp_dim,
spatial_size=args.spatial_size),
volatile=False)
random_noise_interpolation_left_right = to_var(generator.generate_noise_left2right_interpolation(batch_size=args.sample_num,
local_dim=args.zl_dim,
global_dim=args.zg_dim,
periodic_dim=args.zp_dim,
spatial_size=args.spatial_size),
volatile=False)
# generate fake image
fake_img = generator(random_noise, tile=args.tile)
save_image(fake_img.mul(0.5).add(0.5).cpu(), output_dir=args.save_dir, img_name="sample_from_random_noise")
fake_img = generator(random_noise_interpolation, tile=1)
save_image(fake_img.mul(0.5).add(0.5).cpu(), output_dir=args.save_dir, img_name="interpolation_sample")
fake_img = generator(random_noise_interpolation_left_right, tile=1)
save_image(fake_img.mul(0.5).add(0.5).cpu(), output_dir=args.save_dir, img_name="interpolation_left_to_right_sample")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# setting
parser.add_argument('--trained', type=str, default="trained_model", help='trained parameter path of generator.')
# detail settings
parser.add_argument('--zl_dim', type=int, default=40, help='size of local part noise dimension') # set default same as author's implementation
parser.add_argument('--zg_dim', type=int, default=20, help='size of global part noise dimension') # set default same as author's implementation
parser.add_argument('--zp_dim', type=int, default=3, help='size of periodic part noise dimension') # set default same as author's implementation
parser.add_argument('--mlp_hidden_dim', type=int, default=60, help='size of periodic part noise dimension')
parser.add_argument('--spatial_size', type=int, default=64, help='size of spatial dimension')
# for pytorch there is no pad="same", if you need use 5 or other sizes, you might need add torch.nn.functional.pad in the model.
parser.add_argument('--kernel_size', type=int, default=4, help='size of kernels')
parser.add_argument('--layer_num', type=int, default=5, help='number of layers')
parser.add_argument('--base_conv_channel', type=int, default=32, help='base channel number of convolution layer')
parser.add_argument('--tile', type=int, default=1, help='')
parser.add_argument('--save_dir', type=str, default="./log/sampled", help='directory of saving sampled image')
parser.add_argument('--epochs', type=int, default=10000, help="train epoch num.")
parser.add_argument('--sample_num', type=int, default=1, help="sample size")
parser.add_argument('--num_workers', type=int, default=8, help="worker # of data loader")
parser.add_argument('--gpu_device_num', type=int, default=0, help="device number of gpu")
# option
parser.add_argument('-nogpu', action="store_true", default=False, help="don't use gpu")
parser.add_argument('-show_parameters', action="store_true", default=False, help='show model parameters')
args = parser.parse_args()
train(args)